Волновая механика | это... Что такое Волновая механика? (original) (raw)

**Квантовая механика
\Delta x\cdot\Delta p \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение ... Математическая формулировка ... Основа Классическая механика · Интерференция · Бра и кет · Гамильтониан Фундаментальные понятия Квантовое состояние · Волновая функция · Суперпозиция · Запутанность ·Измерение · Неопределённость · Запрет Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннелирование Эксперименты Опыт Дэвиссона — Джермера · Опыт Поппера · Опыт Штерна — Герлаха · Опыт Юнга ·Проверка неравенств Белла · Фотоэффект · Эффект Комптона Формулировки Картина Шрёдингера · Картина Гейзенберга · Картина взаимодействия · Матричная квантовая механика · Интегралы по траекториям Уравнения Уравнение Шрёдингера · Уравнение Паули · Уравнение Клейна — Гордона · Уравнение Дирака Интерпретации Копенгагенская интерпретация · Теория скрытых параметров · Многомировая Сложные темы Квантовая теория поля · Квантовая гравитация · Теория всего Известные учёные Планк · Эйнштейн · Шрёдингер · Гейзенберг· Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт

Ква́нтовая меха́ника (другие названия: волновая механика, матричная механика) — раздел теоретической физики, описывающий квантовые системы и законы их движения.

Основными понятиями квантовой кинематики являются понятия наблюдаемой, состояния, среднего значения.

Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга.

Математический аппарат — теория операторов, теория вероятностей, функциональный анализ, операторные алгебры, теория групп.

Содержание

История

На заседании Немецкого физического общества Макс Планк зачитал свою историческую статью «К теории распределения энергии излучения в нормальном спектре», в которой он ввел универсальную постоянную h. Именно дату этого события, 14 декабря 1900 года, часто считают днем рождения квантовой теории.

Квантовая гипотеза Макса Планка состояла в том, что любая энергия поглощается или испускается только дискретными порциями, которые состоят из целого числа квантов с энергией ε таких, что эта энергия пропорциональна частоте ν с коэффициентом пропорциональности, определённым по формуле:

 \varepsilon = h \nu = \hbar \omega\,

где hпостоянная Планка.

В 1905 году для объяснения явлений фотоэффекта Альберт Эйнштейн, использовав квантовую гипотезу Планка, предположил, что свет состоит из квантов, которые впоследствии назвали фотонами.

Для объяснения структуры атома Нильс Бор в 1913 году предложил существование стационарных состояний электрона, в которых энергия может принимать лишь дискретные значения. Этот подход, развитый Арнольдом Зоммерфельдом и другими физиками, часто называют старой квантовой теорией (1900—1924). Отличительной чертой старой квантовой теории, является сочетание классической теории и противоречащими ей дополнительными предположениями.

В 1925—1926 годах была заложены основы последовательной квантовой теории, в виде квантовой механики, содержащей новые фундаментальные законы кинематики и динамики. Первая формулировка квантовой механики содержится в статье Вернера Гейзенберга, датированная 29 июля 1925 года. Эту дату можно считать днем рождения нерелятивистской квантовой механики. Отметим, что развитие и формирование основ квантовой механики продолжается до сих пор, и связано, например, с исследованиями открытых и диссипативных квантовых систем, квантовой информатикой, квантовым хаосом и др. Помимо квантовой механики, важнейшей частью квантовой теории является квантовая теория поля.

Математические основания квантовой механики

Математический аппарат нерелятивистской квантовой механики строится на следующих положениях:[1]

Эти положения позволяют создать математический аппарат, пригодный для описания широкого спектра задач в квантовой механике гамильтоновых систем, находящихся в чистых состояниях. Дальнейшим развитием этого аппарата является уравнение Дирака, которое с хорошей точностью позволяет описать релятивистские эффекты. Для динамики открытых, негамильтоновых и диссипативных квантовых систем применяется уравнение Линдблада.

Необычные явления, мысленные эксперименты и парадоксы квантовой механики

Разделы квантовой механики

В стандартных курсах квантовой механики изучаются следующие разделы

Комментарии

См. также

Литература

Примечания

  1. Ф. А. Березин, М. А. Шубин. Уравнение Шрёдингера.. — М.: Изд-во Моск. ун-та, 1983.

Ссылки