What’s new in 1.5.0 (September 19, 2022) — pandas 2.2.3 documentation (original) (raw)
These are the changes in pandas 1.5.0. See Release notes for a full changelog including other versions of pandas.
Enhancements#
pandas-stubs
#
The pandas-stubs
library is now supported by the pandas development team, providing type stubs for the pandas API. Please visitpandas-dev/pandas-stubs for more information.
We thank VirtusLab and Microsoft for their initial, significant contributions to pandas-stubs
Native PyArrow-backed ExtensionArray#
With Pyarrow installed, users can now create pandas objects that are backed by a pyarrow.ChunkedArray
and pyarrow.DataType
.
The dtype
argument can accept a string of a pyarrow data typewith pyarrow
in brackets e.g. "int64[pyarrow]"
or, for pyarrow data types that take parameters, a ArrowDtypeinitialized with a pyarrow.DataType
.
In [1]: import pyarrow as pa
In [2]: ser_float = pd.Series([1.0, 2.0, None], dtype="float32[pyarrow]")
In [3]: ser_float Out[3]: 0 1.0 1 2.0 2 dtype: float[pyarrow]
In [4]: list_of_int_type = pd.ArrowDtype(pa.list_(pa.int64()))
In [5]: ser_list = pd.Series([[1, 2], [3, None]], dtype=list_of_int_type)
In [6]: ser_list Out[6]: 0 [1. 2.] 1 [ 3. nan] dtype: list<item: int64>[pyarrow]
In [7]: ser_list.take([1, 0]) Out[7]: 1 [ 3. nan] 0 [1. 2.] dtype: list<item: int64>[pyarrow]
In [8]: ser_float * 5 Out[8]: 0 5.0 1 10.0 2 dtype: float[pyarrow]
In [9]: ser_float.mean() Out[9]: 1.5
In [10]: ser_float.dropna() Out[10]: 0 1.0 1 2.0 dtype: float[pyarrow]
Most operations are supported and have been implemented using pyarrow compute functions. We recommend installing the latest version of PyArrow to access the most recently implemented compute functions.
Warning
This feature is experimental, and the API can change in a future release without warning.
DataFrame interchange protocol implementation#
Pandas now implement the DataFrame interchange API spec. See the full details on the API at https://data-apis.org/dataframe-protocol/latest/index.html
The protocol consists of two parts:
- New method DataFrame.__dataframe__() which produces the interchange object. It effectively “exports” the pandas dataframe as an interchange object so any other library which has the protocol implemented can “import” that dataframe without knowing anything about the producer except that it makes an interchange object.
- New function pandas.api.interchange.from_dataframe() which can take an arbitrary interchange object from any conformant library and construct a pandas DataFrame out of it.
Styler#
The most notable development is the new method Styler.concat() which allows adding customised footer rows to visualise additional calculations on the data, e.g. totals and counts etc. (GH 43875, GH 46186)
Additionally there is an alternative output method Styler.to_string(), which allows using the Styler’s formatting methods to create, for example, CSVs (GH 44502).
A new feature Styler.relabel_index() is also made available to provide full customisation of the display of index or column headers (GH 47864)
Minor feature improvements are:
- Adding the ability to render
border
andborder-{side}
CSS properties in Excel (GH 42276)- Making keyword arguments consist: Styler.highlight_null() now accepts
color
and deprecatesnull_color
although this remains backwards compatible (GH 45907)
Control of index with group_keys
in DataFrame.resample()#
The argument group_keys
has been added to the method DataFrame.resample(). As with DataFrame.groupby(), this argument controls the whether each group is added to the index in the resample when Resampler.apply() is used.
Warning
Not specifying the group_keys
argument will retain the previous behavior and emit a warning if the result will change by specifying group_keys=False
. In a future version of pandas, not specifying group_keys
will default to the same behavior as group_keys=False
.
In [11]: df = pd.DataFrame( ....: {'a': range(6)}, ....: index=pd.date_range("2021-01-01", periods=6, freq="8H") ....: ) ....:
In [12]: df.resample("D", group_keys=True).apply(lambda x: x) Out[12]: a 2021-01-01 2021-01-01 00:00:00 0 2021-01-01 08:00:00 1 2021-01-01 16:00:00 2 2021-01-02 2021-01-02 00:00:00 3 2021-01-02 08:00:00 4 2021-01-02 16:00:00 5
In [13]: df.resample("D", group_keys=False).apply(lambda x: x) Out[13]: a 2021-01-01 00:00:00 0 2021-01-01 08:00:00 1 2021-01-01 16:00:00 2 2021-01-02 00:00:00 3 2021-01-02 08:00:00 4 2021-01-02 16:00:00 5
Previously, the resulting index would depend upon the values returned by apply
, as seen in the following example.
In [1]: # pandas 1.3 In [2]: df.resample("D").apply(lambda x: x) Out[2]: a 2021-01-01 00:00:00 0 2021-01-01 08:00:00 1 2021-01-01 16:00:00 2 2021-01-02 00:00:00 3 2021-01-02 08:00:00 4 2021-01-02 16:00:00 5
In [3]: df.resample("D").apply(lambda x: x.reset_index()) Out[3]: index a 2021-01-01 0 2021-01-01 00:00:00 0 1 2021-01-01 08:00:00 1 2 2021-01-01 16:00:00 2 2021-01-02 0 2021-01-02 00:00:00 3 1 2021-01-02 08:00:00 4 2 2021-01-02 16:00:00 5
from_dummies#
Added new function from_dummies() to convert a dummy coded DataFrame into a categorical DataFrame.
In [11]: import pandas as pd
In [12]: df = pd.DataFrame({"col1_a": [1, 0, 1], "col1_b": [0, 1, 0], ....: "col2_a": [0, 1, 0], "col2_b": [1, 0, 0], ....: "col2_c": [0, 0, 1]}) ....:
In [13]: pd.from_dummies(df, sep="_") Out[13]: col1 col2 0 a b 1 b a 2 a c
Writing to ORC files#
The new method DataFrame.to_orc() allows writing to ORC files (GH 43864).
This functionality depends the pyarrow library. For more details, see the IO docs on ORC.
Warning
- It is highly recommended to install pyarrow using conda due to some issues occurred by pyarrow.
- to_orc() requires pyarrow>=7.0.0.
- to_orc() is not supported on Windows yet, you can find valid environments on install optional dependencies.
- For supported dtypes please refer to supported ORC features in Arrow.
- Currently timezones in datetime columns are not preserved when a dataframe is converted into ORC files.
df = pd.DataFrame(data={"col1": [1, 2], "col2": [3, 4]}) df.to_orc("./out.orc")
Reading directly from TAR archives#
I/O methods like read_csv() or DataFrame.to_json() now allow reading and writing directly on TAR archives (GH 44787).
df = pd.read_csv("./movement.tar.gz")
...
df.to_csv("./out.tar.gz")
This supports .tar
, .tar.gz
, .tar.bz
and .tar.xz2
archives. The used compression method is inferred from the filename. If the compression method cannot be inferred, use the compression
argument:
df = pd.read_csv(some_file_obj, compression={"method": "tar", "mode": "r:gz"}) # noqa F821
(mode
being one of tarfile.open
’s modes: https://docs.python.org/3/library/tarfile.html#tarfile.open)
read_xml now supports dtype
, converters
, and parse_dates
#
Similar to other IO methods, pandas.read_xml() now supports assigning specific dtypes to columns, apply converter methods, and parse dates (GH 43567).
In [14]: from io import StringIO
In [15]: xml_dates = """ ....: ....: ....: square ....: 00360 ....: 4.0 ....: 2020-01-01 ....: ....: ....: circle ....: 00360 ....: ....: 2021-01-01 ....: ....: ....: triangle ....: 00180 ....: 3.0 ....: 2022-01-01 ....: ....: """ ....:
In [16]: df = pd.read_xml( ....: StringIO(xml_dates), ....: dtype={'sides': 'Int64'}, ....: converters={'degrees': str}, ....: parse_dates=['date'] ....: ) ....:
In [17]: df Out[17]: shape degrees sides date 0 square 00360 4 2020-01-01 1 circle 00360 2021-01-01 2 triangle 00180 3 2022-01-01
In [18]: df.dtypes Out[18]: shape object degrees object sides Int64 date datetime64[ns] dtype: object
read_xml now supports large XML using iterparse
#
For very large XML files that can range in hundreds of megabytes to gigabytes, pandas.read_xml()now supports parsing such sizeable files using lxml’s iterparse and etree’s iterparsewhich are memory-efficient methods to iterate through XML trees and extract specific elements and attributes without holding entire tree in memory (GH 45442).
In [1]: df = pd.read_xml( ... "/path/to/downloaded/enwikisource-latest-pages-articles.xml", ... iterparse = {"page": ["title", "ns", "id"]}) ... ) df Out[2]: title ns id 0 Gettysburg Address 0 21450 1 Main Page 0 42950 2 Declaration by United Nations 0 8435 3 Constitution of the United States of America 0 8435 4 Declaration of Independence (Israel) 0 17858 ... ... ... ... 3578760 Page:Black cat 1897 07 v2 n10.pdf/17 104 219649 3578761 Page:Black cat 1897 07 v2 n10.pdf/43 104 219649 3578762 Page:Black cat 1897 07 v2 n10.pdf/44 104 219649 3578763 The History of Tom Jones, a Foundling/Book IX 0 12084291 3578764 Page:Shakespeare of Stratford (1926) Yale.djvu/91 104 21450
[3578765 rows x 3 columns]
Copy on Write#
A new feature copy_on_write
was added (GH 46958). Copy on write ensures that any DataFrame or Series derived from another in any way always behaves as a copy. Copy on write disallows updating any other object than the object the method was applied to.
Copy on write can be enabled through:
pd.set_option("mode.copy_on_write", True) pd.options.mode.copy_on_write = True
Alternatively, copy on write can be enabled locally through:
with pd.option_context("mode.copy_on_write", True): ...
Without copy on write, the parent DataFrame is updated when updating a childDataFrame that was derived from this DataFrame.
In [19]: df = pd.DataFrame({"foo": [1, 2, 3], "bar": 1})
In [20]: view = df["foo"]
In [21]: view.iloc[0] Out[21]: 1
In [22]: df Out[22]: foo bar 0 1 1 1 2 1 2 3 1
With copy on write enabled, df won’t be updated anymore:
In [23]: with pd.option_context("mode.copy_on_write", True): ....: df = pd.DataFrame({"foo": [1, 2, 3], "bar": 1}) ....: view = df["foo"] ....: view.iloc[0] ....: df ....:
A more detailed explanation can be found here.
Other enhancements#
- Series.map() now raises when
arg
is dict butna_action
is not eitherNone
or'ignore'
(GH 46588) - MultiIndex.to_frame() now supports the argument
allow_duplicates
and raises on duplicate labels if it is missing or False (GH 45245) - StringArray now accepts array-likes containing nan-likes (
None
,np.nan
) for thevalues
parameter in its constructor in addition to strings and pandas.NA. (GH 40839) - Improved the rendering of
categories
in CategoricalIndex (GH 45218) - DataFrame.plot() will now allow the
subplots
parameter to be a list of iterables specifying column groups, so that columns may be grouped together in the same subplot (GH 29688). - to_numeric() now preserves float64 arrays when downcasting would generate values not representable in float32 (GH 43693)
- Series.reset_index() and DataFrame.reset_index() now support the argument
allow_duplicates
(GH 44410) - DataFrameGroupBy.min(), SeriesGroupBy.min(), DataFrameGroupBy.max(), and SeriesGroupBy.max() now supports Numba execution with the
engine
keyword (GH 45428) - read_csv() now supports
defaultdict
as adtype
parameter (GH 41574) - DataFrame.rolling() and Series.rolling() now support a
step
parameter with fixed-length windows (GH 15354) - Implemented a
bool
-dtype Index, passing a bool-dtype array-like topd.Index
will now retainbool
dtype instead of casting toobject
(GH 45061) - Implemented a complex-dtype Index, passing a complex-dtype array-like to
pd.Index
will now retain complex dtype instead of casting toobject
(GH 45845) - Series and DataFrame with
IntegerDtype
now supports bitwise operations (GH 34463) - Add
milliseconds
field support for DateOffset (GH 43371) - DataFrame.where() tries to maintain dtype of DataFrame if fill value can be cast without loss of precision (GH 45582)
- DataFrame.reset_index() now accepts a
names
argument which renames the index names (GH 6878) - concat() now raises when
levels
is given butkeys
is None (GH 46653) - concat() now raises when
levels
contains duplicate values (GH 46653) - Added
numeric_only
argument to DataFrame.corr(), DataFrame.corrwith(), DataFrame.cov(), DataFrame.idxmin(), DataFrame.idxmax(), DataFrameGroupBy.idxmin(), DataFrameGroupBy.idxmax(), DataFrameGroupBy.var(), SeriesGroupBy.var(), DataFrameGroupBy.std(), SeriesGroupBy.std(), DataFrameGroupBy.sem(), SeriesGroupBy.sem(), and DataFrameGroupBy.quantile() (GH 46560) - A errors.PerformanceWarning is now thrown when using
string[pyarrow]
dtype with methods that don’t dispatch topyarrow.compute
methods (GH 42613, GH 46725) - Added
validate
argument to DataFrame.join() (GH 46622) - Added
numeric_only
argument to Resampler.sum(), Resampler.prod(), Resampler.min(), Resampler.max(), Resampler.first(), and Resampler.last() (GH 46442) times
argument inExponentialMovingWindow
now acceptsnp.timedelta64
(GH 47003)- DataError, SpecificationError, SettingWithCopyError, SettingWithCopyWarning, NumExprClobberingError, UndefinedVariableError, IndexingError, PyperclipException, PyperclipWindowsException, CSSWarning, PossibleDataLossError, ClosedFileError, IncompatibilityWarning, AttributeConflictWarning, DatabaseError, PossiblePrecisionLoss, ValueLabelTypeMismatch, InvalidColumnName, and CategoricalConversionWarning are now exposed in
pandas.errors
(GH 27656) - Added
check_like
argument to testing.assert_series_equal() (GH 47247) - Add support for DataFrameGroupBy.ohlc() and SeriesGroupBy.ohlc() for extension array dtypes (GH 37493)
- Allow reading compressed SAS files with read_sas() (e.g.,
.sas7bdat.gz
files) - pandas.read_html() now supports extracting links from table cells (GH 13141)
DatetimeIndex.astype()
now supports casting timezone-naive indexes todatetime64[s]
,datetime64[ms]
, anddatetime64[us]
, and timezone-aware indexes to the correspondingdatetime64[unit, tzname]
dtypes (GH 47579)- Series reducers (e.g.
min
,max
,sum
,mean
) will now successfully operate when the dtype is numeric andnumeric_only=True
is provided; previously this would raise aNotImplementedError
(GH 47500) RangeIndex.union()
now can return a RangeIndex instead of aInt64Index
if the resulting values are equally spaced (GH 47557, GH 43885)- DataFrame.compare() now accepts an argument
result_names
to allow the user to specify the result’s names of both left and right DataFrame which are being compared. This is by default'self'
and'other'
(GH 44354) - DataFrame.quantile() gained a
method
argument that can accepttable
to evaluate multi-column quantiles (GH 43881) - Interval now supports checking whether one interval is contained by another interval (GH 46613)
- Added
copy
keyword to Series.set_axis() and DataFrame.set_axis() to allow user to set axis on a new object without necessarily copying the underlying data (GH 47932) - The method ExtensionArray.factorize() accepts
use_na_sentinel=False
for determining how null values are to be treated (GH 46601) - The
Dockerfile
now installs a dedicatedpandas-dev
virtual environment for pandas development instead of using thebase
environment (GH 48427)
Notable bug fixes#
These are bug fixes that might have notable behavior changes.
Using dropna=True
with groupby
transforms#
A transform is an operation whose result has the same size as its input. When the result is a DataFrame or Series, it is also required that the index of the result matches that of the input. In pandas 1.4, usingDataFrameGroupBy.transform() or SeriesGroupBy.transform() with null values in the groups and dropna=True
gave incorrect results. Demonstrated by the examples below, the incorrect results either contained incorrect values, or the result did not have the same index as the input.
In [24]: df = pd.DataFrame({'a': [1, 1, np.nan], 'b': [2, 3, 4]})
Old behavior:
In [3]: # Value in the last row should be np.nan df.groupby('a', dropna=True).transform('sum') Out[3]: b 0 5 1 5 2 5
In [3]: # Should have one additional row with the value np.nan df.groupby('a', dropna=True).transform(lambda x: x.sum()) Out[3]: b 0 5 1 5
In [3]: # The value in the last row is np.nan interpreted as an integer df.groupby('a', dropna=True).transform('ffill') Out[3]: b 0 2 1 3 2 -9223372036854775808
In [3]: # Should have one additional row with the value np.nan df.groupby('a', dropna=True).transform(lambda x: x) Out[3]: b 0 2 1 3
New behavior:
In [25]: df.groupby('a', dropna=True).transform('sum') Out[25]: b 0 5.0 1 5.0 2 NaN
In [26]: df.groupby('a', dropna=True).transform(lambda x: x.sum()) Out[26]: b 0 5.0 1 5.0 2 NaN
In [27]: df.groupby('a', dropna=True).transform('ffill') Out[27]: b 0 2.0 1 3.0 2 NaN
In [28]: df.groupby('a', dropna=True).transform(lambda x: x) Out[28]: b 0 2.0 1 3.0 2 NaN
Serializing tz-naive Timestamps with to_json() with iso_dates=True
#
DataFrame.to_json(), Series.to_json(), and Index.to_json()
would incorrectly localize DatetimeArrays/DatetimeIndexes with tz-naive Timestamps to UTC. (GH 38760)
Note that this patch does not fix the localization of tz-aware Timestamps to UTC upon serialization. (Related issue GH 12997)
Old Behavior
In [32]: index = pd.date_range( ....: start='2020-12-28 00:00:00', ....: end='2020-12-28 02:00:00', ....: freq='1H', ....: ) ....:
In [33]: a = pd.Series( ....: data=range(3), ....: index=index, ....: ) ....:
In [4]: from io import StringIO
In [5]: a.to_json(date_format='iso') Out[5]: '{"2020-12-28T00:00:00.000Z":0,"2020-12-28T01:00:00.000Z":1,"2020-12-28T02:00:00.000Z":2}'
In [6]: pd.read_json(StringIO(a.to_json(date_format='iso')), typ="series").index == a.index Out[6]: array([False, False, False])
New Behavior
In [34]: from io import StringIO
In [35]: a.to_json(date_format='iso') Out[35]: '{"2020-12-28T00:00:00.000Z":0,"2020-12-28T01:00:00.000Z":1,"2020-12-28T02:00:00.000Z":2}'
Roundtripping now works
In [36]: pd.read_json(StringIO(a.to_json(date_format='iso')), typ="series").index == a.index Out[36]: array([ True, True, True])
DataFrameGroupBy.value_counts with non-grouping categorical columns and observed=True
#
Calling DataFrameGroupBy.value_counts() with observed=True
would incorrectly drop non-observed categories of non-grouping columns (GH 46357).
In [6]: df = pd.DataFrame(["a", "b", "c"], dtype="category").iloc[0:2] In [7]: df Out[7]: 0 0 a 1 b
Old Behavior
In [8]: df.groupby(level=0, observed=True).value_counts() Out[8]: 0 a 1 1 b 1 dtype: int64
New Behavior
In [9]: df.groupby(level=0, observed=True).value_counts() Out[9]: 0 a 1 1 a 0 b 1 0 b 0 c 0 1 c 0 dtype: int64
Backwards incompatible API changes#
Increased minimum versions for dependencies#
Some minimum supported versions of dependencies were updated. If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.20.3 | X | X |
mypy (dev) | 0.971 | X | |
beautifulsoup4 | 4.9.3 | X | |
blosc | 1.21.0 | X | |
bottleneck | 1.3.2 | X | |
fsspec | 2021.07.0 | X | |
hypothesis | 6.13.0 | X | |
gcsfs | 2021.07.0 | X | |
jinja2 | 3.0.0 | X | |
lxml | 4.6.3 | X | |
numba | 0.53.1 | X | |
numexpr | 2.7.3 | X | |
openpyxl | 3.0.7 | X | |
pandas-gbq | 0.15.0 | X | |
psycopg2 | 2.8.6 | X | |
pymysql | 1.0.2 | X | |
pyreadstat | 1.1.2 | X | |
pyxlsb | 1.0.8 | X | |
s3fs | 2021.08.0 | X | |
scipy | 1.7.1 | X | |
sqlalchemy | 1.4.16 | X | |
tabulate | 0.8.9 | X | |
xarray | 0.19.0 | X | |
xlsxwriter | 1.4.3 | X |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
beautifulsoup4 | 4.9.3 | X |
blosc | 1.21.0 | X |
bottleneck | 1.3.2 | X |
brotlipy | 0.7.0 | |
fastparquet | 0.4.0 | |
fsspec | 2021.08.0 | X |
html5lib | 1.1 | |
hypothesis | 6.13.0 | X |
gcsfs | 2021.08.0 | X |
jinja2 | 3.0.0 | X |
lxml | 4.6.3 | X |
matplotlib | 3.3.2 | |
numba | 0.53.1 | X |
numexpr | 2.7.3 | X |
odfpy | 1.4.1 | |
openpyxl | 3.0.7 | X |
pandas-gbq | 0.15.0 | X |
psycopg2 | 2.8.6 | X |
pyarrow | 1.0.1 | |
pymysql | 1.0.2 | X |
pyreadstat | 1.1.2 | X |
pytables | 3.6.1 | |
python-snappy | 0.6.0 | |
pyxlsb | 1.0.8 | X |
s3fs | 2021.08.0 | X |
scipy | 1.7.1 | X |
sqlalchemy | 1.4.16 | X |
tabulate | 0.8.9 | X |
tzdata | 2022a | |
xarray | 0.19.0 | X |
xlrd | 2.0.1 | |
xlsxwriter | 1.4.3 | X |
xlwt | 1.3.0 | |
zstandard | 0.15.2 |
See Dependencies and Optional dependencies for more.
Other API changes#
- BigQuery I/O methods read_gbq() and DataFrame.to_gbq() default to
auth_local_webserver = True
. Google has deprecated theauth_local_webserver = False
“out of band” (copy-paste) flow. Theauth_local_webserver = False
option is planned to stop working in October 2022. (GH 46312) - read_json() now raises
FileNotFoundError
(previouslyValueError
) when input is a string ending in.json
,.json.gz
,.json.bz2
, etc. but no such file exists. (GH 29102) - Operations with Timestamp or Timedelta that would previously raise
OverflowError
instead raiseOutOfBoundsDatetime
orOutOfBoundsTimedelta
where appropriate (GH 47268) - When read_sas() previously returned
None
, it now returns an empty DataFrame (GH 47410) - DataFrame constructor raises if
index
orcolumns
arguments are sets (GH 47215)
Deprecations#
Warning
In the next major version release, 2.0, several larger API changes are being considered without a formal deprecation such as making the standard library zoneinfo the default timezone implementation instead of pytz
, having the Index support all data types instead of having multiple subclasses (CategoricalIndex, Int64Index
, etc.), and more. The changes under consideration are logged in this GitHub issue, and any feedback or concerns are welcome.
Label-based integer slicing on a Series with an Int64Index or RangeIndex#
In a future version, integer slicing on a Series with a Int64Index
or RangeIndex will be treated as label-based, not positional. This will make the behavior consistent with other Series.__getitem__()
and Series.__setitem__()
behaviors (GH 45162).
For example:
In [29]: ser = pd.Series([1, 2, 3, 4, 5], index=[2, 3, 5, 7, 11])
In the old behavior, ser[2:4]
treats the slice as positional:
Old behavior:
In [3]: ser[2:4] Out[3]: 5 3 7 4 dtype: int64
In a future version, this will be treated as label-based:
Future behavior:
In [4]: ser.loc[2:4] Out[4]: 2 1 3 2 dtype: int64
To retain the old behavior, use series.iloc[i:j]
. To get the future behavior, use series.loc[i:j]
.
Slicing on a DataFrame will not be affected.
ExcelWriter attributes#
All attributes of ExcelWriter were previously documented as not public. However some third party Excel engines documented accessingExcelWriter.book
or ExcelWriter.sheets
, and users were utilizing these and possibly other attributes. Previously these attributes were not safe to use; e.g. modifications to ExcelWriter.book
would not update ExcelWriter.sheets
and conversely. In order to support this, pandas has made some attributes public and improved their implementations so that they may now be safely used. (GH 45572)
The following attributes are now public and considered safe to access.
book
check_extension
close
date_format
datetime_format
engine
if_sheet_exists
sheets
supported_extensions
The following attributes have been deprecated. They now raise a FutureWarning
when accessed and will be removed in a future version. Users should be aware that their usage is considered unsafe, and can lead to unexpected results.
cur_sheet
handles
path
save
write_cells
See the documentation of ExcelWriter for further details.
Using group_keys
with transformers in DataFrameGroupBy.apply() and SeriesGroupBy.apply()#
In previous versions of pandas, if it was inferred that the function passed toDataFrameGroupBy.apply() or SeriesGroupBy.apply() was a transformer (i.e. the resulting index was equal to the input index), the group_keys
argument of DataFrame.groupby() andSeries.groupby() was ignored and the group keys would never be added to the index of the result. In the future, the group keys will be added to the index when the user specifies group_keys=True
.
As group_keys=True
is the default value of DataFrame.groupby() andSeries.groupby(), not specifying group_keys
with a transformer will raise a FutureWarning
. This can be silenced and the previous behavior retained by specifying group_keys=False
.
Inplace operation when setting values with loc
and iloc
#
Most of the time setting values with DataFrame.iloc() attempts to set values inplace, only falling back to inserting a new array if necessary. There are some cases where this rule is not followed, for example when setting an entire column from an array with different dtype:
In [30]: df = pd.DataFrame({'price': [11.1, 12.2]}, index=['book1', 'book2'])
In [31]: original_prices = df['price']
In [32]: new_prices = np.array([98, 99])
Old behavior:
In [3]: df.iloc[:, 0] = new_prices In [4]: df.iloc[:, 0] Out[4]: book1 98 book2 99 Name: price, dtype: int64 In [5]: original_prices Out[5]: book1 11.1 book2 12.2 Name: price, float: 64
This behavior is deprecated. In a future version, setting an entire column with iloc will attempt to operate inplace.
Future behavior:
In [3]: df.iloc[:, 0] = new_prices In [4]: df.iloc[:, 0] Out[4]: book1 98.0 book2 99.0 Name: price, dtype: float64 In [5]: original_prices Out[5]: book1 98.0 book2 99.0 Name: price, dtype: float64
To get the old behavior, use DataFrame.__setitem__()
directly:
In [3]: df[df.columns[0]] = new_prices In [4]: df.iloc[:, 0] Out[4] book1 98 book2 99 Name: price, dtype: int64 In [5]: original_prices Out[5]: book1 11.1 book2 12.2 Name: price, dtype: float64
To get the old behaviour when df.columns
is not unique and you want to change a single column by index, you can use DataFrame.isetitem()
, which has been added in pandas 1.5:
In [3]: df_with_duplicated_cols = pd.concat([df, df], axis='columns') In [3]: df_with_duplicated_cols.isetitem(0, new_prices) In [4]: df_with_duplicated_cols.iloc[:, 0] Out[4]: book1 98 book2 99 Name: price, dtype: int64 In [5]: original_prices Out[5]: book1 11.1 book2 12.2 Name: 0, dtype: float64
numeric_only
default value#
Across the DataFrame, DataFrameGroupBy
, and Resampler
operations such asmin
, sum
, and idxmax
, the default value of the numeric_only
argument, if it exists at all, was inconsistent. Furthermore, operations with the default value None
can lead to surprising results. (GH 46560)
In [1]: df = pd.DataFrame({"a": [1, 2], "b": ["x", "y"]})
In [2]: # Reading the next line without knowing the contents of df, one would # expect the result to contain the products for both columns a and b. df[["a", "b"]].prod() Out[2]: a 2 dtype: int64
To avoid this behavior, the specifying the value numeric_only=None
has been deprecated, and will be removed in a future version of pandas. In the future, all operations with a numeric_only
argument will default to False
. Users should either call the operation only with columns that can be operated on, or specify numeric_only=True
to operate only on Boolean, integer, and float columns.
In order to support the transition to the new behavior, the following methods have gained the numeric_only
argument.
- DataFrame.corr()
- DataFrame.corrwith()
- DataFrame.cov()
- DataFrame.idxmin()
- DataFrame.idxmax()
- DataFrameGroupBy.cummin()
- DataFrameGroupBy.cummax()
- DataFrameGroupBy.idxmin()
- DataFrameGroupBy.idxmax()
- DataFrameGroupBy.var()
- DataFrameGroupBy.std()
- DataFrameGroupBy.sem()
- DataFrameGroupBy.quantile()
- Resampler.mean()
- Resampler.median()
- Resampler.sem()
- Resampler.std()
- Resampler.var()
- DataFrame.rolling() operations
- DataFrame.expanding() operations
- DataFrame.ewm() operations
Other Deprecations#
- Deprecated the keyword
line_terminator
in DataFrame.to_csv() and Series.to_csv(), uselineterminator
instead; this is for consistency with read_csv() and the standard library ‘csv’ module (GH 9568) - Deprecated behavior of
SparseArray.astype()
, Series.astype(), and DataFrame.astype() with SparseDtype when passing a non-sparsedtype
. In a future version, this will cast to that non-sparse dtype instead of wrapping it in a SparseDtype (GH 34457) - Deprecated behavior of
DatetimeIndex.intersection()
andDatetimeIndex.symmetric_difference()
(union
behavior was already deprecated in version 1.3.0) with mixed time zones; in a future version both will be cast to UTC instead of object dtype (GH 39328, GH 45357) - Deprecated
DataFrame.iteritems()
,Series.iteritems()
,HDFStore.iteritems()
in favor of DataFrame.items(), Series.items(),HDFStore.items()
(GH 45321) - Deprecated
Series.is_monotonic()
andIndex.is_monotonic()
in favor of Series.is_monotonic_increasing() and Index.is_monotonic_increasing() (GH 45422, GH 21335) - Deprecated behavior of
DatetimeIndex.astype()
,TimedeltaIndex.astype()
,PeriodIndex.astype()
when converting to an integer dtype other thanint64
. In a future version, these will convert to exactly the specified dtype (instead of alwaysint64
) and will raise if the conversion overflows (GH 45034) - Deprecated the
__array_wrap__
method of DataFrame and Series, rely on standard numpy ufuncs instead (GH 45451) - Deprecated treating float-dtype data as wall-times when passed with a timezone to Series or DatetimeIndex (GH 45573)
- Deprecated the behavior of Series.fillna() and DataFrame.fillna() with
timedelta64[ns]
dtype and incompatible fill value; in a future version this will cast to a common dtype (usually object) instead of raising, matching the behavior of other dtypes (GH 45746) - Deprecated the
warn
parameter in infer_freq() (GH 45947) - Deprecated allowing non-keyword arguments in ExtensionArray.argsort() (GH 46134)
- Deprecated treating all-bool
object
-dtype columns as bool-like in DataFrame.any() and DataFrame.all() withbool_only=True
, explicitly cast to bool instead (GH 46188) - Deprecated behavior of method DataFrame.quantile(), attribute
numeric_only
will default False. Including datetime/timedelta columns in the result (GH 7308). - Deprecated
Timedelta.freq
andTimedelta.is_populated
(GH 46430) - Deprecated
Timedelta.delta
(GH 46476) - Deprecated passing arguments as positional in DataFrame.any() and Series.any() (GH 44802)
- Deprecated passing positional arguments to DataFrame.pivot() and pivot() except
data
(GH 30228) - Deprecated the methods
DataFrame.mad()
,Series.mad()
, and the corresponding groupby methods (GH 11787) - Deprecated positional arguments to Index.join() except for
other
, use keyword-only arguments instead of positional arguments (GH 46518) - Deprecated positional arguments to
StringMethods.rsplit()
andStringMethods.split()
except forpat
, use keyword-only arguments instead of positional arguments (GH 47423) - Deprecated indexing on a timezone-naive DatetimeIndex using a string representing a timezone-aware datetime (GH 46903, GH 36148)
- Deprecated allowing
unit="M"
orunit="Y"
in Timestamp constructor with a non-round float value (GH 47267) - Deprecated the
display.column_space
global configuration option (GH 7576) - Deprecated the argument
na_sentinel
in factorize(), Index.factorize(), and ExtensionArray.factorize(); passuse_na_sentinel=True
instead to use the sentinel-1
for NaN values anduse_na_sentinel=False
instead ofna_sentinel=None
to encode NaN values (GH 46910) - Deprecated DataFrameGroupBy.transform() not aligning the result when the UDF returned DataFrame (GH 45648)
- Clarified warning from to_datetime() when delimited dates can’t be parsed in accordance to specified
dayfirst
argument (GH 46210) - Emit warning from to_datetime() when delimited dates can’t be parsed in accordance to specified
dayfirst
argument even for dates where leading zero is omitted (e.g.31/1/2001
) (GH 47880) - Deprecated Series and
Resampler
reducers (e.g.min
,max
,sum
,mean
) raising aNotImplementedError
when the dtype is non-numric andnumeric_only=True
is provided; this will raise aTypeError
in a future version (GH 47500) - Deprecated Series.rank() returning an empty result when the dtype is non-numeric and
numeric_only=True
is provided; this will raise aTypeError
in a future version (GH 47500) - Deprecated argument
errors
for Series.mask(), Series.where(), DataFrame.mask(), and DataFrame.where() aserrors
had no effect on this methods (GH 47728) - Deprecated arguments
*args
and**kwargs
inRolling
,Expanding
, andExponentialMovingWindow
ops. (GH 47836) - Deprecated the
inplace
keyword inCategorical.set_ordered()
,Categorical.as_ordered()
, andCategorical.as_unordered()
(GH 37643) - Deprecated setting a categorical’s categories with
cat.categories = ['a', 'b', 'c']
, useCategorical.rename_categories()
instead (GH 37643) - Deprecated unused arguments
encoding
andverbose
in Series.to_excel() and DataFrame.to_excel() (GH 47912) - Deprecated the
inplace
keyword in DataFrame.set_axis() and Series.set_axis(), useobj = obj.set_axis(..., copy=False)
instead (GH 48130) - Deprecated producing a single element when iterating over a
DataFrameGroupBy
or aSeriesGroupBy
that has been grouped by a list of length 1; A tuple of length one will be returned instead (GH 42795) - Fixed up warning message of deprecation of
MultiIndex.lesort_depth()
as public method, as the message previously referred toMultiIndex.is_lexsorted()
instead (GH 38701) - Deprecated the
sort_columns
argument in DataFrame.plot() and Series.plot() (GH 47563). - Deprecated positional arguments for all but the first argument of DataFrame.to_stata() and read_stata(), use keyword arguments instead (GH 48128).
- Deprecated the
mangle_dupe_cols
argument in read_csv(), read_fwf(), read_table() and read_excel(). The argument was never implemented, and a new argument where the renaming pattern can be specified will be added instead (GH 47718) - Deprecated allowing
dtype='datetime64'
ordtype=np.datetime64
in Series.astype(), use “datetime64[ns]” instead (GH 47844)
Performance improvements#
- Performance improvement in DataFrame.corrwith() for column-wise (axis=0) Pearson and Spearman correlation when other is a Series (GH 46174)
- Performance improvement in DataFrameGroupBy.transform() and SeriesGroupBy.transform() for some user-defined DataFrame -> Series functions (GH 45387)
- Performance improvement in DataFrame.duplicated() when subset consists of only one column (GH 45236)
- Performance improvement in DataFrameGroupBy.diff() and SeriesGroupBy.diff() (GH 16706)
- Performance improvement in DataFrameGroupBy.transform() and SeriesGroupBy.transform() when broadcasting values for user-defined functions (GH 45708)
- Performance improvement in DataFrameGroupBy.transform() and SeriesGroupBy.transform() for user-defined functions when only a single group exists (GH 44977)
- Performance improvement in DataFrameGroupBy.apply() and SeriesGroupBy.apply() when grouping on a non-unique unsorted index (GH 46527)
- Performance improvement in DataFrame.loc() and Series.loc() for tuple-based indexing of a MultiIndex (GH 45681, GH 46040, GH 46330)
- Performance improvement in DataFrameGroupBy.var() and SeriesGroupBy.var() with
ddof
other than one (GH 48152) - Performance improvement in DataFrame.to_records() when the index is a MultiIndex (GH 47263)
- Performance improvement in
MultiIndex.values
when the MultiIndex contains levels of type DatetimeIndex, TimedeltaIndex or ExtensionDtypes (GH 46288) - Performance improvement in merge() when left and/or right are empty (GH 45838)
- Performance improvement in DataFrame.join() when left and/or right are empty (GH 46015)
- Performance improvement in DataFrame.reindex() and Series.reindex() when target is a MultiIndex (GH 46235)
- Performance improvement when setting values in a pyarrow backed string array (GH 46400)
- Performance improvement in factorize() (GH 46109)
- Performance improvement in DataFrame and Series constructors for extension dtype scalars (GH 45854)
- Performance improvement in read_excel() when
nrows
argument provided (GH 32727) - Performance improvement in Styler.to_excel() when applying repeated CSS formats (GH 47371)
- Performance improvement in
MultiIndex.is_monotonic_increasing()
(GH 47458) - Performance improvement in
BusinessHour
str
andrepr
(GH 44764) - Performance improvement in datetime arrays string formatting when one of the default strftime formats
"%Y-%m-%d %H:%M:%S"
or"%Y-%m-%d %H:%M:%S.%f"
is used. (GH 44764) - Performance improvement in Series.to_sql() and DataFrame.to_sql() (
SQLiteTable
) when processing time arrays. (GH 44764) - Performance improvement to read_sas() (GH 47404)
- Performance improvement in
argmax
andargmin
for arrays.SparseArray (GH 34197)
Bug fixes#
Categorical#
- Bug in
Categorical.view()
not accepting integer dtypes (GH 25464) - Bug in
CategoricalIndex.union()
when the index’s categories are integer-dtype and the index containsNaN
values incorrectly raising instead of casting tofloat64
(GH 45362) - Bug in concat() when concatenating two (or more) unordered CategoricalIndex variables, whose categories are permutations, yields incorrect index values (GH 24845)
Datetimelike#
- Bug in DataFrame.quantile() with datetime-like dtypes and no rows incorrectly returning
float64
dtype instead of retaining datetime-like dtype (GH 41544) - Bug in to_datetime() with sequences of
np.str_
objects incorrectly raising (GH 32264) - Bug in Timestamp construction when passing datetime components as positional arguments and
tzinfo
as a keyword argument incorrectly raising (GH 31929) - Bug in Index.astype() when casting from object dtype to
timedelta64[ns]
dtype incorrectly castingnp.datetime64("NaT")
values tonp.timedelta64("NaT")
instead of raising (GH 45722) - Bug in SeriesGroupBy.value_counts() index when passing categorical column (GH 44324)
- Bug in DatetimeIndex.tz_localize() localizing to UTC failing to make a copy of the underlying data (GH 46460)
- Bug in
DatetimeIndex.resolution()
incorrectly returning “day” instead of “nanosecond” for nanosecond-resolution indexes (GH 46903) - Bug in Timestamp with an integer or float value and
unit="Y"
orunit="M"
giving slightly-wrong results (GH 47266) - Bug in DatetimeArray construction when passed another DatetimeArray and
freq=None
incorrectly inferring the freq from the given array (GH 47296) - Bug in to_datetime() where
OutOfBoundsDatetime
would be thrown even iferrors=coerce
if there were more than 50 rows (GH 45319) - Bug when adding a
DateOffset
to a Series would not add thenanoseconds
field (GH 47856)
Timedelta#
- Bug in
astype_nansafe()
astype(“timedelta64[ns]”) fails when np.nan is included (GH 45798) - Bug in constructing a Timedelta with a
np.timedelta64
object and aunit
sometimes silently overflowing and returning incorrect results instead of raisingOutOfBoundsTimedelta
(GH 46827) - Bug in constructing a Timedelta from a large integer or float with
unit="W"
silently overflowing and returning incorrect results instead of raisingOutOfBoundsTimedelta
(GH 47268)
Time Zones#
Numeric#
- Bug in operations with array-likes with
dtype="boolean"
and NA incorrectly altering the array in-place (GH 45421) - Bug in arithmetic operations with nullable types without NA values not matching the same operation with non-nullable types (GH 48223)
- Bug in
floordiv
when dividing byIntegerDtype
0
would return0
instead ofinf
(GH 48223) - Bug in division,
pow
andmod
operations on array-likes withdtype="boolean"
not being like theirnp.bool_
counterparts (GH 46063) - Bug in multiplying a Series with
IntegerDtype
orFloatingDtype
by an array-like withtimedelta64[ns]
dtype incorrectly raising (GH 45622) - Bug in
mean()
where the optional dependencybottleneck
causes precision loss linear in the length of the array.bottleneck
has been disabled formean()
improving the loss to log-linear but may result in a performance decrease. (GH 42878)
Conversion#
- Bug in DataFrame.astype() not preserving subclasses (GH 40810)
- Bug in constructing a Series from a float-containing list or a floating-dtype ndarray-like (e.g.
dask.Array
) and an integer dtype raising instead of casting like we would with annp.ndarray
(GH 40110) - Bug in
Float64Index.astype()
to unsigned integer dtype incorrectly casting tonp.int64
dtype (GH 45309) - Bug in Series.astype() and DataFrame.astype() from floating dtype to unsigned integer dtype failing to raise in the presence of negative values (GH 45151)
- Bug in array() with
FloatingDtype
and values containing float-castable strings incorrectly raising (GH 45424) - Bug when comparing string and datetime64ns objects causing
OverflowError
exception. (GH 45506) - Bug in metaclass of generic abstract dtypes causing DataFrame.apply() and Series.apply() to raise for the built-in function
type
(GH 46684) - Bug in DataFrame.to_records() returning inconsistent numpy types if the index was a MultiIndex (GH 47263)
- Bug in DataFrame.to_dict() for
orient="list"
ororient="index"
was not returning native types (GH 46751) - Bug in DataFrame.apply() that returns a DataFrame instead of a Series when applied to an empty DataFrame and
axis=1
(GH 39111) - Bug when inferring the dtype from an iterable that is not a NumPy
ndarray
consisting of all NumPy unsigned integer scalars did not result in an unsigned integer dtype (GH 47294) - Bug in DataFrame.eval() when pandas objects (e.g.
'Timestamp'
) were column names (GH 44603)
Strings#
- Bug in str.startswith() and str.endswith() when using other series as parameter _pat_. Now raises
TypeError
(GH 3485) - Bug in Series.str.zfill() when strings contain leading signs, padding ‘0’ before the sign character rather than after as
str.zfill
from standard library (GH 20868)
Interval#
- Bug in
IntervalArray.__setitem__()
when settingnp.nan
into an integer-backed array raisingValueError
instead ofTypeError
(GH 45484) - Bug in IntervalDtype when using datetime64[ns, tz] as a dtype string (GH 46999)
Indexing#
- Bug in DataFrame.iloc() where indexing a single row on a DataFrame with a single ExtensionDtype column gave a copy instead of a view on the underlying data (GH 45241)
- Bug in
DataFrame.__getitem__()
returning copy when DataFrame has duplicated columns even if a unique column is selected (GH 45316, GH 41062) - Bug in Series.align() does not create MultiIndex with union of levels when both MultiIndexes intersections are identical (GH 45224)
- Bug in setting a NA value (
None
ornp.nan
) into a Series with int-based IntervalDtype incorrectly casting to object dtype instead of a float-based IntervalDtype (GH 45568) - Bug in indexing setting values into an
ExtensionDtype
column withdf.iloc[:, i] = values
withvalues
having the same dtype asdf.iloc[:, i]
incorrectly inserting a new array instead of setting in-place (GH 33457) - Bug in
Series.__setitem__()
with a non-integer Index when using an integer key to set a value that cannot be set inplace where aValueError
was raised instead of casting to a common dtype (GH 45070) - Bug in DataFrame.loc() not casting
None
toNA
when setting value as a list into DataFrame (GH 47987) - Bug in
Series.__setitem__()
when setting incompatible values into aPeriodDtype
orIntervalDtype
Series raising when indexing with a boolean mask but coercing when indexing with otherwise-equivalent indexers; these now consistently coerce, along with Series.mask() and Series.where() (GH 45768) - Bug in DataFrame.where() with multiple columns with datetime-like dtypes failing to downcast results consistent with other dtypes (GH 45837)
- Bug in
isin()
upcasting tofloat64
with unsigned integer dtype and list-like argument without a dtype (GH 46485) - Bug in
Series.loc.__setitem__()
andSeries.loc.__getitem__()
not raising when using multiple keys without using a MultiIndex (GH 13831) - Bug in Index.reindex() raising
AssertionError
whenlevel
was specified but no MultiIndex was given; level is ignored now (GH 35132) - Bug when setting a value too large for a Series dtype failing to coerce to a common type (GH 26049, GH 32878)
- Bug in
loc.__setitem__()
treatingrange
keys as positional instead of label-based (GH 45479) - Bug in
DataFrame.__setitem__()
casting extension array dtypes to object when setting with a scalar key and DataFrame as value (GH 46896) - Bug in
Series.__setitem__()
when setting a scalar to a nullable pandas dtype would not raise aTypeError
if the scalar could not be cast (losslessly) to the nullable type (GH 45404) - Bug in
Series.__setitem__()
when settingboolean
dtype values containingNA
incorrectly raising instead of casting toboolean
dtype (GH 45462) - Bug in Series.loc() raising with boolean indexer containing
NA
when Index did not match (GH 46551) - Bug in
Series.__setitem__()
where setting NA into a numeric-dtype Series would incorrectly upcast to object-dtype rather than treating the value asnp.nan
(GH 44199) - Bug in DataFrame.loc() when setting values to a column and right hand side is a dictionary (GH 47216)
- Bug in
Series.__setitem__()
withdatetime64[ns]
dtype, an all-False
boolean mask, and an incompatible value incorrectly casting toobject
instead of retainingdatetime64[ns]
dtype (GH 45967) - Bug in
Index.__getitem__()
raisingValueError
when indexer is from boolean dtype withNA
(GH 45806) - Bug in
Series.__setitem__()
losing precision when enlarging Series with scalar (GH 32346) - Bug in Series.mask() with
inplace=True
or setting values with a boolean mask with small integer dtypes incorrectly raising (GH 45750) - Bug in DataFrame.mask() with
inplace=True
andExtensionDtype
columns incorrectly raising (GH 45577) - Bug in getting a column from a DataFrame with an object-dtype row index with datetime-like values: the resulting Series now preserves the exact object-dtype Index from the parent DataFrame (GH 42950)
- Bug in
DataFrame.__getattribute__()
raisingAttributeError
if columns have"string"
dtype (GH 46185) - Bug in DataFrame.compare() returning all
NaN
column when comparing extension array dtype and numpy dtype (GH 44014) - Bug in DataFrame.where() setting wrong values with
"boolean"
mask for numpy dtype (GH 44014) - Bug in indexing on a DatetimeIndex with a
np.str_
key incorrectly raising (GH 45580) - Bug in
CategoricalIndex.get_indexer()
when index containsNaN
values, resulting in elements that are in target but not present in the index to be mapped to the index of the NaN element, instead of -1 (GH 45361) - Bug in setting large integer values into Series with
float32
orfloat16
dtype incorrectly altering these values instead of coercing tofloat64
dtype (GH 45844) - Bug in Series.asof() and DataFrame.asof() incorrectly casting bool-dtype results to
float64
dtype (GH 16063) - Bug in
NDFrame.xs()
, DataFrame.iterrows(), DataFrame.loc() and DataFrame.iloc() not always propagating metadata (GH 28283) - Bug in DataFrame.sum() min_count changes dtype if input contains NaNs (GH 46947)
- Bug in
IntervalTree
that lead to an infinite recursion. (GH 46658) - Bug in PeriodIndex raising
AttributeError
when indexing onNA
, rather than puttingNaT
in its place. (GH 46673) - Bug in DataFrame.at() would allow the modification of multiple columns (GH 48296)
Missing#
- Bug in Series.fillna() and DataFrame.fillna() with
downcast
keyword not being respected in some cases where there are no NA values present (GH 45423) - Bug in Series.fillna() and DataFrame.fillna() with IntervalDtype and incompatible value raising instead of casting to a common (usually object) dtype (GH 45796)
- Bug in Series.map() not respecting
na_action
argument if mapper is adict
or Series (GH 47527) - Bug in DataFrame.interpolate() with object-dtype column not returning a copy with
inplace=False
(GH 45791) - Bug in DataFrame.dropna() allows to set both
how
andthresh
incompatible arguments (GH 46575) - Bug in DataFrame.fillna() ignored
axis
when DataFrame is single block (GH 47713)
MultiIndex#
- Bug in DataFrame.loc() returning empty result when slicing a MultiIndex with a negative step size and non-null start/stop values (GH 46156)
- Bug in DataFrame.loc() raising when slicing a MultiIndex with a negative step size other than -1 (GH 46156)
- Bug in DataFrame.loc() raising when slicing a MultiIndex with a negative step size and slicing a non-int labeled index level (GH 46156)
- Bug in Series.to_numpy() where multiindexed Series could not be converted to numpy arrays when an
na_value
was supplied (GH 45774) - Bug in
MultiIndex.equals
not commutative when only one side has extension array dtype (GH 46026) - Bug in MultiIndex.from_tuples() cannot construct Index of empty tuples (GH 45608)
I/O#
- Bug in DataFrame.to_stata() where no error is raised if the DataFrame contains
-np.inf
(GH 45350) - Bug in read_excel() results in an infinite loop with certain
skiprows
callables (GH 45585) - Bug in DataFrame.info() where a new line at the end of the output is omitted when called on an empty DataFrame (GH 45494)
- Bug in read_csv() not recognizing line break for
on_bad_lines="warn"
forengine="c"
(GH 41710) - Bug in DataFrame.to_csv() not respecting
float_format
forFloat64
dtype (GH 45991) - Bug in read_csv() not respecting a specified converter to index columns in all cases (GH 40589)
- Bug in read_csv() interpreting second row as Index names even when
index_col=False
(GH 46569) - Bug in read_parquet() when
engine="pyarrow"
which caused partial write to disk when column of unsupported datatype was passed (GH 44914) - Bug in DataFrame.to_excel() and ExcelWriter would raise when writing an empty DataFrame to a
.ods
file (GH 45793) - Bug in read_csv() ignoring non-existing header row for
engine="python"
(GH 47400) - Bug in read_excel() raising uncontrolled
IndexError
whenheader
references non-existing rows (GH 43143) - Bug in read_html() where elements surrounding
<br>
were joined without a space between them (GH 29528) - Bug in read_csv() when data is longer than header leading to issues with callables in
usecols
expecting strings (GH 46997) - Bug in Parquet roundtrip for Interval dtype with
datetime64[ns]
subtype (GH 45881) - Bug in read_excel() when reading a
.ods
file with newlines between xml elements (GH 45598) - Bug in read_parquet() when
engine="fastparquet"
where the file was not closed on error (GH 46555) - DataFrame.to_html() now excludes the
border
attribute from<table>
elements whenborder
keyword is set toFalse
. - Bug in read_sas() with certain types of compressed SAS7BDAT files (GH 35545)
- Bug in read_excel() not forward filling MultiIndex when no names were given (GH 47487)
- Bug in read_sas() returned
None
rather than an empty DataFrame for SAS7BDAT files with zero rows (GH 18198) - Bug in DataFrame.to_string() using wrong missing value with extension arrays in MultiIndex (GH 47986)
- Bug in
StataWriter
where value labels were always written with default encoding (GH 46750) - Bug in
StataWriterUTF8
where some valid characters were removed from variable names (GH 47276) - Bug in DataFrame.to_excel() when writing an empty dataframe with MultiIndex (GH 19543)
- Bug in read_sas() with RLE-compressed SAS7BDAT files that contain 0x40 control bytes (GH 31243)
- Bug in read_sas() that scrambled column names (GH 31243)
- Bug in read_sas() with RLE-compressed SAS7BDAT files that contain 0x00 control bytes (GH 47099)
- Bug in read_parquet() with
use_nullable_dtypes=True
wherefloat64
dtype was returned instead of nullableFloat64
dtype (GH 45694) - Bug in DataFrame.to_json() where
PeriodDtype
would not make the serialization roundtrip when read back with read_json() (GH 44720) - Bug in read_xml() when reading XML files with Chinese character tags and would raise
XMLSyntaxError
(GH 47902)
Period#
- Bug in subtraction of Period from PeriodArray returning wrong results (GH 45999)
- Bug in Period.strftime() and PeriodIndex.strftime(), directives
%l
and%u
were giving wrong results (GH 46252) - Bug in inferring an incorrect
freq
when passing a string to Period microseconds that are a multiple of 1000 (GH 46811) - Bug in constructing a Period from a Timestamp or
np.datetime64
object with non-zero nanoseconds andfreq="ns"
incorrectly truncating the nanoseconds (GH 46811) - Bug in adding
np.timedelta64("NaT", "ns")
to a Period with a timedelta-like freq incorrectly raisingIncompatibleFrequency
instead of returningNaT
(GH 47196) - Bug in adding an array of integers to an array with PeriodDtype giving incorrect results when
dtype.freq.n > 1
(GH 47209) - Bug in subtracting a Period from an array with PeriodDtype returning incorrect results instead of raising
OverflowError
when the operation overflows (GH 47538)
Plotting#
- Bug in DataFrame.plot.barh() that prevented labeling the x-axis and
xlabel
updating the y-axis label (GH 45144) - Bug in DataFrame.plot.box() that prevented labeling the x-axis (GH 45463)
- Bug in DataFrame.boxplot() that prevented passing in
xlabel
andylabel
(GH 45463) - Bug in DataFrame.boxplot() that prevented specifying
vert=False
(GH 36918) - Bug in DataFrame.plot.scatter() that prevented specifying
norm
(GH 45809) - Fix showing “None” as ylabel in Series.plot() when not setting ylabel (GH 46129)
- Bug in DataFrame.plot() that led to xticks and vertical grids being improperly placed when plotting a quarterly series (GH 47602)
- Bug in DataFrame.plot() that prevented setting y-axis label, limits and ticks for a secondary y-axis (GH 47753)
Groupby/resample/rolling#
- Bug in DataFrame.resample() ignoring
closed="right"
on TimedeltaIndex (GH 45414) - Bug in DataFrameGroupBy.transform() fails when
func="size"
and the input DataFrame has multiple columns (GH 27469) - Bug in DataFrameGroupBy.size() and DataFrameGroupBy.transform() with
func="size"
produced incorrect results whenaxis=1
(GH 45715) - Bug in ExponentialMovingWindow.mean() with
axis=1
andengine='numba'
when the DataFrame has more columns than rows (GH 46086) - Bug when using
engine="numba"
would return the same jitted function when modifyingengine_kwargs
(GH 46086) - Bug in DataFrameGroupBy.transform() fails when
axis=1
andfunc
is"first"
or"last"
(GH 45986) - Bug in DataFrameGroupBy.cumsum() with
skipna=False
giving incorrect results (GH 46216) - Bug in DataFrameGroupBy.sum(), SeriesGroupBy.sum(), DataFrameGroupBy.prod(),
SeriesGroupBy.prod, :meth:()
.DataFrameGroupBy.cumsum`, and SeriesGroupBy.cumsum() with integer dtypes losing precision (GH 37493) - Bug in DataFrameGroupBy.cumsum() and SeriesGroupBy.cumsum() with
timedelta64[ns]
dtype failing to recognizeNaT
as a null value (GH 46216) - Bug in DataFrameGroupBy.cumsum() and SeriesGroupBy.cumsum() with integer dtypes causing overflows when sum was bigger than maximum of dtype (GH 37493)
- Bug in DataFrameGroupBy.cummin(), SeriesGroupBy.cummin(), DataFrameGroupBy.cummax() and SeriesGroupBy.cummax() with nullable dtypes incorrectly altering the original data in place (GH 46220)
- Bug in DataFrame.groupby() raising error when
None
is in first level of MultiIndex (GH 47348) - Bug in DataFrameGroupBy.cummax() and SeriesGroupBy.cummax() with
int64
dtype with leading value being the smallest possible int64 (GH 46382) - Bug in DataFrameGroupBy.cumprod() and SeriesGroupBy.cumprod()
NaN
influences calculation in different columns withskipna=False
(GH 48064) - Bug in DataFrameGroupBy.max() and SeriesGroupBy.max() with empty groups and
uint64
dtype incorrectly raisingRuntimeError
(GH 46408) - Bug in DataFrameGroupBy.apply() and SeriesGroupBy.apply() would fail when
func
was a string and args or kwargs were supplied (GH 46479) - Bug in
SeriesGroupBy.apply()
would incorrectly name its result when there was a unique group (GH 46369) - Bug in Rolling.sum() and Rolling.mean() would give incorrect result with window of same values (GH 42064, GH 46431)
- Bug in Rolling.var() and Rolling.std() would give non-zero result with window of same values (GH 42064)
- Bug in Rolling.skew() and Rolling.kurt() would give NaN with window of same values (GH 30993)
- Bug in Rolling.var() would segfault calculating weighted variance when window size was larger than data size (GH 46760)
- Bug in
Grouper.__repr__()
wheredropna
was not included. Now it is (GH 46754) - Bug in DataFrame.rolling() gives ValueError when center=True, axis=1 and win_type is specified (GH 46135)
- Bug in DataFrameGroupBy.describe() and SeriesGroupBy.describe() produces inconsistent results for empty datasets (GH 41575)
- Bug in DataFrame.resample() reduction methods when used with
on
would attempt to aggregate the provided column (GH 47079) - Bug in DataFrame.groupby() and Series.groupby() would not respect
dropna=False
when the input DataFrame/Series had a NaN values in a MultiIndex (GH 46783) - Bug in
DataFrameGroupBy.resample()
raisesKeyError
when getting the result from a key list which misses the resample key (GH 47362) - Bug in DataFrame.groupby() would lose index columns when the DataFrame is empty for transforms, like fillna (GH 47787)
- Bug in DataFrame.groupby() and Series.groupby() with
dropna=False
andsort=False
would put any null groups at the end instead the order that they are encountered (GH 46584)
Reshaping#
- Bug in concat() between a Series with integer dtype and another with CategoricalDtype with integer categories and containing
NaN
values casting to object dtype instead offloat64
(GH 45359) - Bug in get_dummies() that selected object and categorical dtypes but not string (GH 44965)
- Bug in DataFrame.align() when aligning a MultiIndex to a Series with another MultiIndex (GH 46001)
- Bug in concatenation with
IntegerDtype
, orFloatingDtype
arrays where the resulting dtype did not mirror the behavior of the non-nullable dtypes (GH 46379) - Bug in concat() losing dtype of columns when
join="outer"
andsort=True
(GH 47329) - Bug in concat() not sorting the column names when
None
is included (GH 47331) - Bug in concat() with identical key leads to error when indexing MultiIndex (GH 46519)
- Bug in pivot_table() raising
TypeError
whendropna=True
and aggregation column has extension array dtype (GH 47477) - Bug in merge() raising error for
how="cross"
when usingFIPS
mode in ssl library (GH 48024) - Bug in DataFrame.join() with a list when using suffixes to join DataFrames with duplicate column names (GH 46396)
- Bug in DataFrame.pivot_table() with
sort=False
results in sorted index (GH 17041) - Bug in concat() when
axis=1
andsort=False
where the resulting Index was aInt64Index
instead of a RangeIndex (GH 46675) - Bug in wide_to_long() raises when
stubnames
is missing in columns andi
contains string dtype column (GH 46044) - Bug in DataFrame.join() with categorical index results in unexpected reordering (GH 47812)
Sparse#
- Bug in Series.where() and DataFrame.where() with
SparseDtype
failing to retain the array’sfill_value
(GH 45691) - Bug in
SparseArray.unique()
fails to keep original elements order (GH 47809)
ExtensionArray#
- Bug in
IntegerArray.searchsorted()
andFloatingArray.searchsorted()
returning inconsistent results when acting onnp.nan
(GH 45255)
Styler#
- Bug when attempting to apply styling functions to an empty DataFrame subset (GH 45313)
- Bug in
CSSToExcelConverter
leading toTypeError
when border color provided without border style forxlsxwriter
engine (GH 42276) - Bug in
Styler.set_sticky()
leading to white text on white background in dark mode (GH 46984) - Bug in
Styler.to_latex()
causingUnboundLocalError
whenclines="all;data"
and theDataFrame
has no rows. (GH 47203) - Bug in
Styler.to_excel()
when usingvertical-align: middle;
withxlsxwriter
engine (GH 30107) - Bug when applying styles to a DataFrame with boolean column labels (GH 47838)
Metadata#
- Fixed metadata propagation in DataFrame.melt() (GH 28283)
- Fixed metadata propagation in DataFrame.explode() (GH 28283)
Other#
- Bug in assert_index_equal() with
names=True
andcheck_order=False
not checking names (GH 47328)
Contributors#
A total of 271 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- Aadharsh Acharya +
- Aadharsh-Acharya +
- Aadhi Manivannan +
- Adam Bowden
- Aditya Agarwal +
- Ahmed Ibrahim +
- Alastair Porter +
- Alex Povel +
- Alex-Blade
- Alexandra Sciocchetti +
- AlonMenczer +
- Andras Deak +
- Andrew Hawyrluk
- Andy Grigg +
- Aneta Kahleová +
- Anthony Givans +
- Anton Shevtsov +
- B. J. Potter +
- BarkotBeyene +
- Ben Beasley +
- Ben Wozniak +
- Bernhard Wagner +
- Boris Rumyantsev
- Brian Gollop +
- CCXXXI +
- Chandrasekaran Anirudh Bhardwaj +
- Charles Blackmon-Luca +
- Chris Moradi +
- ChrisAlbertsen +
- Compro Prasad +
- DaPy15
- Damian Barabonkov +
- Daniel I +
- Daniel Isaac +
- Daniel Schmidt
- Danil Iashchenko +
- Dare Adewumi
- Dennis Chukwunta +
- Dennis J. Gray +
- Derek Sharp +
- Dhruv Samdani +
- Dimitra Karadima +
- Dmitry Savostyanov +
- Dmytro Litvinov +
- Do Young Kim +
- Dries Schaumont +
- Edward Huang +
- Eirik +
- Ekaterina +
- Eli Dourado +
- Ezra Brauner +
- Fabian Gabel +
- FactorizeD +
- Fangchen Li
- Francesco Romandini +
- Greg Gandenberger +
- Guo Ci +
- Hiroaki Ogasawara
- Hood Chatham +
- Ian Alexander Joiner +
- Irv Lustig
- Ivan Ng +
- JHM Darbyshire
- JHM Darbyshire (MBP)
- JHM Darbyshire (iMac)
- JMBurley
- Jack Goldsmith +
- James Freeman +
- James Lamb
- James Moro +
- Janosh Riebesell
- Jarrod Millman
- Jason Jia +
- Jeff Reback
- Jeremy Tuloup +
- Johannes Mueller
- John Bencina +
- John Mantios +
- John Zangwill
- Jon Bramley +
- Jonas Haag
- Jordan Hicks
- Joris Van den Bossche
- Jose Ortiz +
- JosephParampathu +
- José Duarte
- Julian Steger +
- Kai Priester +
- Kapil E. Iyer +
- Karthik Velayutham +
- Kashif Khan
- Kazuki Igeta +
- Kevin Jan Anker +
- Kevin Sheppard
- Khor Chean Wei
- Kian Eliasi
- Kian S +
- Kim, KwonHyun +
- Kinza-Raza +
- Konjeti Maruthi +
- Leonardus Chen
- Linxiao Francis Cong +
- Loïc Estève
- LucasG0 +
- Lucy Jiménez +
- Luis Pinto
- Luke Manley
- Marc Garcia
- Marco Edward Gorelli
- Marco Gorelli
- MarcoGorelli
- Margarete Dippel +
- Mariam-ke +
- Martin Fleischmann
- Marvin John Walter +
- Marvin Walter +
- Mateusz
- Matilda M +
- Matthew Roeschke
- Matthias Bussonnier
- MeeseeksMachine
- Mehgarg +
- Melissa Weber Mendonça +
- Michael Milton +
- Michael Wang
- Mike McCarty +
- Miloni Atal +
- Mitlasóczki Bence +
- Moritz Schreiber +
- Morten Canth Hels +
- Nick Crews +
- NickFillot +
- Nicolas Hug +
- Nima Sarang
- Noa Tamir +
- Pandas Development Team
- Parfait Gasana
- Parthi +
- Partho +
- Patrick Hoefler
- Peter
- Peter Hawkins +
- Philipp A
- Philipp Schaefer +
- Pierrot +
- Pratik Patel +
- Prithvijit
- Purna Chandra Mansingh +
- Radoslaw Lemiec +
- RaphSku +
- Reinert Huseby Karlsen +
- Richard Shadrach
- Richard Shadrach +
- Robbie Palmer
- Robert de Vries
- Roger +
- Roger Murray +
- Ruizhe Deng +
- SELEE +
- Sachin Yadav +
- Saiwing Yeung +
- Sam Rao +
- Sandro Casagrande +
- Sebastiaan Vermeulen +
- Shaghayegh +
- Shantanu +
- Shashank Shet +
- Shawn Zhong +
- Shuangchi He +
- Simon Hawkins
- Simon Knott +
- Solomon Song +
- Somtochi Umeh +
- Stefan Krawczyk +
- Stefanie Molin
- Steffen Rehberg
- Steven Bamford +
- Steven Rotondo +
- Steven Schaerer
- Sylvain MARIE +
- Sylvain Marié
- Tarun Raghunandan Kaushik +
- Taylor Packard +
- Terji Petersen
- Thierry Moisan
- Thomas Grainger
- Thomas Hunter +
- Thomas Li
- Tim McFarland +
- Tim Swast
- Tim Yang +
- Tobias Pitters
- Tom Aarsen +
- Tom Augspurger
- Torsten Wörtwein
- TraverseTowner +
- Tyler Reddy
- Valentin Iovene
- Varun Sharma +
- Vasily Litvinov
- Venaturum
- Vinicius Akira Imaizumi +
- Vladimir Fokow +
- Wenjun Si
- Will Lachance +
- William Andrea
- Wolfgang F. Riedl +
- Xingrong Chen
- Yago González
- Yikun Jiang +
- Yuanhao Geng
- Yuval +
- Zero
- Zhengfei Wang +
- abmyii
- alexondor +
- alm
- andjhall +
- anilbey +
- arnaudlegout +
- asv-bot +
- ateki +
- auderson +
- bherwerth +
- bicarlsen +
- carbonleakage +
- charles +
- charlogazzo +
- code-review-doctor +
- dataxerik +
- deponovo
- dimitra-karadima +
- dospix +
- ehallam +
- ehsan shirvanian +
- ember91 +
- eshirvana
- fractionalhare +
- gaotian98 +
- gesoos
- github-actions[bot]
- gunghub +
- hasan-yaman
- iansheng +
- iasoon +
- jbrockmendel
- joshuabello2550 +
- jyuv +
- kouya takahashi +
- mariana-LJ +
- matt +
- mattB1989 +
- nealxm +
- partev
- poloso +
- realead
- roib20 +
- rtpsw
- ryangilmour +
- shourya5 +
- srotondo +
- stanleycai95 +
- staticdev +
- tehunter +
- theidexisted +
- tobias.pitters +
- uncjackg +
- vernetya
- wany-oh +
- wfr +
- z3c0 +