Dirichlet convolution (original) (raw)
- في الرياضيات، التواء دركليه عملية ثنائية معرفة للدوال الحسابية، ذات أهمية في نظرية الأعداد. سميت لمطورها يوهان بيتر غوستاف لوجون دركليه عالم الرياضيات الألماني. (ar)
- In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. (en)
- En matemática, la convolución de Dirichlet es una operación binaria definida para funciones aritméticas; esta es importante en teoría de números. Fue desarrollada por Johann Peter Gustav Lejeune Dirichlet, un matemático alemán. (es)
- En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement. Dirichlet développe ce produit en 1837 pour démontrer le théorème de la progression arithmétique. (fr)
- In matematica, la convoluzione di Dirichlet (o prodotto di convoluzione), il cui nome si deve a Johann Peter Gustav Lejeune Dirichlet, è un'operazione binaria definita per le funzioni aritmetiche; la sua importanza è dovuta alle numerose applicazioni in teoria dei numeri. La convoluzione di Dirichlet di due funzioni aritmetiche e è definita come: dove la somma si intende estesa a tutti i divisori d di n. Una scrittura equivalente è la seguente: (it)
- 디리클레 합성곱(Dirichlet convolution) 혹은 디리클레 포갬은 수론적 함수(arithmetic function)의 집합에서 정의되는 이항연산(binary operation)으로, 수론에서 중요하게 다뤄진다. 독일 수학자 르죈 디리클레의 이름에서 유래하였다. (ko)
- Splot Dirichleta – dla funkcji arytmetycznych f i g jest to funkcja określona wzorem gdzie suma rozciąga się po wszystkich dodatnich dzielnikach d liczby n. (pl)
- Dirichletfaltningen är en binär operator definierad för aritmetiska funktioner med användning inom talteorin. Om f och g är två aritmetiska funktioner (dvs funktioner från de positiva heltalen till de komplexa talen) så definieras den nya aritmetiska funktionen f * g, Dirichletfaltningen av f och g som där summan tas över alla positiva delare d till n. Några generalla egenskaper hos denna operator inkluderar: * Om både f och g är multiplikativa är även f * g multiplikativ (Notera dock att faltningen av två komplett multiplikativa funktioner inte nödvändigtvis är komplett multiplikativ). * f * g = g * f (kommutativitet) * (f * g) * h = f * (g * h) (associativitet) * f * (g + h) = f * g + f * h (distributivitet) * f * ε = ε * f = f, där ε är funktionen som definieras ε(n) = 1 om n = 1 och ε(n) = 0 om n > 1. * Till varje multiplikativ funktion f existerar det en multiplikativ funktion g så att f * g = ε. Med addition och Dirichletfaltning bildar mängden av de aritmetiska funktionerna en kommutativ ring med multiplikativ enhet ε kallad Dirichletringen. Enheterna i denna ring är de aritmetiska funktionerna f med f(1) ≠ 0. Vidare bildar de multiplikativa funktionerna med faltning en abelsk grupp med neutralt element ε. (sv)
- В математиці, згортка Діріхле — бінарна операція визначена для арифметичних функцій, що широко використовується в теорії чисел. Названа на честь німецького математика Діріхле. (uk)
- 在算術函數集上,可以定義一種二元運算,使得取這種運算為乘法,取普通函數加法為加法,使得算術函數集為一個交換環。其中一種這樣的運算便是狄利克雷摺積。它和一般的卷积有不少相類之處。 對於算術函數,定義其狄利克雷摺積。 取狄利克雷摺積為運算,積性函數集是算術函數集的子群。 (zh)
- Свёртка Дирихле — бинарная операция, определённая для арифметических функций, используемая в теории чисел, введена и исследована немецким математиком Дирихле. (ru)
- https://web.archive.org/web/20150222094526/http:/www.people.fas.harvard.edu/~sfinch/csolve/try.pdf
- http://www.people.fas.harvard.edu/~sfinch/csolve/try.pdf
- 179017 (xsd:integer)
- 15305 (xsd:nonNegativeInteger)
- 1123707581 (xsd:integer)
- dbr:Prime-counting_function
- dbr:Mertens_function
- dbr:Multiplicative_function
- dbr:Peter_Gustav_Lejeune_Dirichlet
- dbr:Riemann_zeta_function
- dbr:Unit_(ring_theory)
- dbr:Von_Mangoldt_function
- dbr:Incidence_algebra
- dbr:Commutativity
- dbr:Complex_number
- dbr:Convolution
- dbr:Convolution_theorem
- dbr:Mathematics
- dbr:Mathematische_Zeitschrift
- dbr:Prime_omega_function
- dbr:Generating_function
- dbr:Möbius_function
- dbr:Möbius_inversion_formula
- dbr:Arithmetic_function
- dbr:Commutative_ring
- dbr:Completely_multiplicative_function
- dbc:Arithmetic_functions
- dbr:Divisor
- dbr:Divisor_function
- dbr:Jordan's_totient_function
- dbr:American_Mathematical_Monthly
- dbr:Euler's_totient_function
- dbr:Fourier_transform
- dbr:Number_theory
- dbr:Dirichlet_series
- dbr:Associativity
- dbc:Bilinear_maps
- dbr:Binary_operation
- dbr:Distributivity
- dbr:Divisor_sum_identities
- dbr:Indicator_function
- dbr:Integer
- dbr:Unitary_divisor
- dbr:Unit_function
- dbr:Liouville's_function
- dbr:Bi-unitary_divisor
- dbr:Arithmetical_function
- dbr:Pointwise_addition
- dbr:Sum_of_divisors
- dbr:Partition_theory
- dbr:Completely_multiplicative
- p/d130150 (en)
- Dirichlet convolution (en)
- dbt:Springer
- dbt:Cite_book
- dbt:Cite_journal
- dbt:Cite_news
- dbt:Cite_web
- dbt:More_footnotes
- dbt:Reflist
- dbt:Visible_anchor
- dbt:Apostol_IANT
- dbt:Abs
- dbt:Peter_Gustav_Lejeune_Dirichlet
- yago:WikicatArithmeticFunctions
- yago:WikicatBilinearOperators
- yago:Abstraction100002137
- yago:Function113783816
- yago:MathematicalRelation113783581
- yago:Operator113786413
- yago:Relation100031921
- dbo:MilitaryConflict
- في الرياضيات، التواء دركليه عملية ثنائية معرفة للدوال الحسابية، ذات أهمية في نظرية الأعداد. سميت لمطورها يوهان بيتر غوستاف لوجون دركليه عالم الرياضيات الألماني. (ar)
- In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. (en)
- En matemática, la convolución de Dirichlet es una operación binaria definida para funciones aritméticas; esta es importante en teoría de números. Fue desarrollada por Johann Peter Gustav Lejeune Dirichlet, un matemático alemán. (es)
- En mathématiques, la convolution de Dirichlet, encore appelée produit de convolution de Dirichlet ou produit de Dirichlet est une loi de composition interne définie sur l'ensemble des fonctions arithmétiques, c'est-à-dire des fonctions définies sur les entiers strictement positifs et à valeurs dans les nombres complexes. Cette loi de convolution est utilisée en arithmétique, aussi bien algébrique qu'analytique. On la trouve aussi pour résoudre des questions de dénombrement. Dirichlet développe ce produit en 1837 pour démontrer le théorème de la progression arithmétique. (fr)
- In matematica, la convoluzione di Dirichlet (o prodotto di convoluzione), il cui nome si deve a Johann Peter Gustav Lejeune Dirichlet, è un'operazione binaria definita per le funzioni aritmetiche; la sua importanza è dovuta alle numerose applicazioni in teoria dei numeri. La convoluzione di Dirichlet di due funzioni aritmetiche e è definita come: dove la somma si intende estesa a tutti i divisori d di n. Una scrittura equivalente è la seguente: (it)
- 디리클레 합성곱(Dirichlet convolution) 혹은 디리클레 포갬은 수론적 함수(arithmetic function)의 집합에서 정의되는 이항연산(binary operation)으로, 수론에서 중요하게 다뤄진다. 독일 수학자 르죈 디리클레의 이름에서 유래하였다. (ko)
- Splot Dirichleta – dla funkcji arytmetycznych f i g jest to funkcja określona wzorem gdzie suma rozciąga się po wszystkich dodatnich dzielnikach d liczby n. (pl)
- В математиці, згортка Діріхле — бінарна операція визначена для арифметичних функцій, що широко використовується в теорії чисел. Названа на честь німецького математика Діріхле. (uk)
- 在算術函數集上,可以定義一種二元運算,使得取這種運算為乘法,取普通函數加法為加法,使得算術函數集為一個交換環。其中一種這樣的運算便是狄利克雷摺積。它和一般的卷积有不少相類之處。 對於算術函數,定義其狄利克雷摺積。 取狄利克雷摺積為運算,積性函數集是算術函數集的子群。 (zh)
- Свёртка Дирихле — бинарная операция, определённая для арифметических функций, используемая в теории чисел, введена и исследована немецким математиком Дирихле. (ru)
- Dirichletfaltningen är en binär operator definierad för aritmetiska funktioner med användning inom talteorin. Om f och g är två aritmetiska funktioner (dvs funktioner från de positiva heltalen till de komplexa talen) så definieras den nya aritmetiska funktionen f * g, Dirichletfaltningen av f och g som där summan tas över alla positiva delare d till n. Några generalla egenskaper hos denna operator inkluderar: Vidare bildar de multiplikativa funktionerna med faltning en abelsk grupp med neutralt element ε. (sv)
- التفاف دركليه (ar)
- Dirichlet convolution (en)
- Convolució de Dirichlet (ca)
- Convolución de Dirichlet (es)
- Convoluzione di Dirichlet (it)
- Convolution de Dirichlet (fr)
- 디리클레 합성곱 (ko)
- Splot Dirichleta (pl)
- Dirichletfaltning (sv)
- Свёртка Дирихле (ru)
- Згортка Діріхле (uk)
- 狄利克雷摺積 (zh)
- freebase:Dirichlet convolution
- yago-res:Dirichlet convolution
- wikidata:Dirichlet convolution
- dbpedia-ar:Dirichlet convolution
- dbpedia-ca:Dirichlet convolution
- dbpedia-es:Dirichlet convolution
- dbpedia-fa:Dirichlet convolution
- dbpedia-fi:Dirichlet convolution
- dbpedia-fr:Dirichlet convolution
- dbpedia-he:Dirichlet convolution
- dbpedia-hu:Dirichlet convolution
- dbpedia-it:Dirichlet convolution
- dbpedia-ko:Dirichlet convolution
- dbpedia-pl:Dirichlet convolution
- dbpedia-ru:Dirichlet convolution
- dbpedia-sv:Dirichlet convolution
- dbpedia-uk:Dirichlet convolution
- dbpedia-vi:Dirichlet convolution
- dbpedia-zh:Dirichlet convolution
- https://global.dbpedia.org/id/4pniv
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
- dbr:Dirichlet_ring
- dbr:Dirichlet_inverse
- dbr:Dirichlet_multiplication
- dbr:Dirichlet_product
- dbr:Multiplicative_convolution
is dbo:wikiPageWikiLink of
- dbr:Bell_series
- dbr:Multiplicative_function
- dbr:Dedekind_psi_function
- dbr:Incidence_algebra
- dbr:List_of_named_matrices
- dbr:List_of_number_theory_topics
- dbr:Convolution
- dbr:Prime_omega_function
- dbr:Möbius_function
- dbr:Möbius_inversion_formula
- dbr:Arithmetic_function
- dbr:Completely_multiplicative_function
- dbr:Hall_word
- dbr:Jordan's_totient_function
- dbr:Lambert_series
- dbr:Dirichlet_hyperbola_method
- dbr:Dirichlet_series
- dbr:Dirichlet_series_inversion
- dbr:List_of_things_named_after_Peter_Gustav_Lejeune_Dirichlet
- dbr:Redheffer_matrix
- dbr:Divisor_sum_identities
- dbr:Convolution_(disambiguation)
- dbr:Necklace_polynomial
- dbr:Dirichlet_ring
- dbr:Root_of_unity_modulo_n
- dbr:Unit_function
- dbr:Dirichlet_inverse
- dbr:Dirichlet_multiplication
- dbr:Dirichlet_product
- dbr:Multiplicative_convolution
is foaf:primaryTopic of