Redheffer matrix (original) (raw)
In mathematics, a Redheffer matrix, often denoted as studied by , is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix.
Property | Value |
---|---|
dbo:abstract | In mathematics, a Redheffer matrix, often denoted as studied by , is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix. (en) In algebra lineare con matrice di Redheffer si indica una matrice binaria il cui elemento è 1 se j=1 oppure i divide j (incluso il caso in cui i=1). Prende il nome dal matematico americano . Per esempio, la matrice di Redheffer 12x12 è la seguente: La matrice di Redheffer può essere definita per qualunque dimensione mxn, non necessariamente quadrata. Tuttavia, di solito si fa riferimento solo a matrici quadrate, indicando con matrice di Redheffer di ordine n la matrice di dimensione nxn. (it) In de wiskunde, is een Redheffer-matrix, bestudeerd door (1977), een (0,1)-matrix waarvan de elementen aij gelijk aan 1 zijn als i door j deelt of als j=1; anders geldt aij=0. De determinant van de n x n vierkante Redheffer-matrix wordt gegeven door de Mertens-functie M(n) (nl) 수학에서 레드헤퍼 행렬(Redheffer matrix, Redheffer 1977)은 행렬이며, 가 인 경우이거나 가 로 나누어 떨어진다면 가 이다. 그렇지 않으면 이다. 레드헤퍼(Redheffer) 정사각행렬의 행렬식은 메르텐스 함수 에 의해 주어진다. 레드헤퍼행렬은 행렬이자 이진 행렬이다. (ko) В математике матрица Редхеффера, изученная - это (0,1)-матрица, элементы aij которой равны 1, если i делит j или если j = 1, в остальных случаях aij = 0. (ru) |
dbo:wikiPageExternalLink | https://postimg.cc/bSdYFr5J https://ac.els-cdn.com/S0022314X09001723/1-s2.0-S0022314X09001723-main.pdf%3F_tid=7ae089eb-b00a-4cd3-a6d0-59f6d625178a&acdnat=1544629359_9caf1dc5b5ea630462558327be101556 https://www.researchgate.net/publication/222820191 |
dbo:wikiPageID | 22113019 (xsd:integer) |
dbo:wikiPageLength | 27998 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1114872929 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Mertens_function dbr:Euler's_phi_function dbr:Euler_phi_function dbr:Determinant dbr:Pentagonal_number_theorem dbr:Riemann_Hypothesis dbr:Riemann_zeta_function dbr:Characteristic_polynomial dbr:Generating_function_transformation dbr:Prime_omega_function dbr:Q-Pochhammer_symbol dbr:Eigenspace dbr:Eigenvalue dbr:Eigenvector dbr:Mobius_function dbr:Mobius_inversion_formula dbr:Arithmetic_function dbr:Singular_matrix dbr:Spectrum dbc:Matrices dbr:Transpose dbr:Cyclotomic_polynomials dbr:Lambert_series dbr:Square_matrix dbc:Number_theory dbr:Euler–Mascheroni_constant dbr:Partition_function_(number_theory) dbr:Dirichlet_convolution dbr:Dirichlet_series dbr:Graph_theory dbr:Jordan_normal_form dbr:Invertible_matrix dbr:Arithmetic_functions dbr:Binomial_transform dbr:Toeplitz_matrix dbr:Redheffer_star_product dbr:Divisor_sum_identities dbr:Spectral_radius dbr:Orthogonal_polynomials dbr:Diagonalizable dbr:Moebius_inversion dbr:Stirling_transform dbr:Ramanujan_sum dbr:Dirichlet_generating_function dbr:Dirichlet_inverse dbr:(0,1)_matrix dbr:Mobius_inversion dbr:Moebius_function dbr:Anderson-Apostol_divisor_sums |
dbp:title | Redheffer matrix (en) |
dbp:urlname | RedhefferMatrix (en) |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Cite_journal dbt:Cite_web dbt:Harvtxt dbt:MathWorld dbt:Reflist dbt:Matrix_classes |
dcterms:subject | dbc:Matrices dbc:Number_theory |
gold:hypernym | dbr:Matrix |
rdf:type | dbo:AnatomicalStructure yago:WikicatMatrices yago:Abstraction100002137 yago:Arrangement107938773 yago:Array107939382 yago:Group100031264 yago:Matrix108267640 |
rdfs:comment | In mathematics, a Redheffer matrix, often denoted as studied by , is a square (0,1) matrix whose entries aij are 1 if i divides j or if j = 1; otherwise, aij = 0. It is useful in some contexts to express Dirichlet convolution, or convolved divisors sums, in terms of matrix products involving the transpose of the Redheffer matrix. (en) In algebra lineare con matrice di Redheffer si indica una matrice binaria il cui elemento è 1 se j=1 oppure i divide j (incluso il caso in cui i=1). Prende il nome dal matematico americano . Per esempio, la matrice di Redheffer 12x12 è la seguente: La matrice di Redheffer può essere definita per qualunque dimensione mxn, non necessariamente quadrata. Tuttavia, di solito si fa riferimento solo a matrici quadrate, indicando con matrice di Redheffer di ordine n la matrice di dimensione nxn. (it) In de wiskunde, is een Redheffer-matrix, bestudeerd door (1977), een (0,1)-matrix waarvan de elementen aij gelijk aan 1 zijn als i door j deelt of als j=1; anders geldt aij=0. De determinant van de n x n vierkante Redheffer-matrix wordt gegeven door de Mertens-functie M(n) (nl) 수학에서 레드헤퍼 행렬(Redheffer matrix, Redheffer 1977)은 행렬이며, 가 인 경우이거나 가 로 나누어 떨어진다면 가 이다. 그렇지 않으면 이다. 레드헤퍼(Redheffer) 정사각행렬의 행렬식은 메르텐스 함수 에 의해 주어진다. 레드헤퍼행렬은 행렬이자 이진 행렬이다. (ko) В математике матрица Редхеффера, изученная - это (0,1)-матрица, элементы aij которой равны 1, если i делит j или если j = 1, в остальных случаях aij = 0. (ru) |
rdfs:label | Matrice di Redheffer (it) 레드헤퍼 행렬 (ko) Redheffer-matrix (nl) Redheffer matrix (en) Матрица Редхеффера (ru) |
owl:sameAs | freebase:Redheffer matrix yago-res:Redheffer matrix wikidata:Redheffer matrix dbpedia-it:Redheffer matrix dbpedia-ko:Redheffer matrix dbpedia-nl:Redheffer matrix dbpedia-ru:Redheffer matrix dbpedia-sl:Redheffer matrix https://global.dbpedia.org/id/3Z2Pz |
prov:wasDerivedFrom | wikipedia-en:Redheffer_matrix?oldid=1114872929&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Redheffer_matrix |
is dbo:wikiPageWikiLink of | dbr:Mertens_function dbr:Riemann_hypothesis dbr:List_of_named_matrices dbr:Logical_matrix dbr:Raymond_Redheffer |
is foaf:primaryTopic of | wikipedia-en:Redheffer_matrix |