Imaginary number (original) (raw)
العدد التخيلي (بالإنجليزية: Imaginary number) هو عدد مركب يمكن أن يكتب على شكل جداء عدد حقيقي من جهة والوحدة التخيلية من جهة ثانية. وبتعبير آخر، هو أي عدد سالب داخل الجذور ذات الدليل الزوجي.يُرمز للوحدة التخيلية بـت في العربية وi في الإنجليزية وتساوي الوحدة التخيلية الجذر التربيعي لسالب واحد.
Property | Value |
---|---|
dbo:abstract | Un nombre imaginari és un nombre que elevat al quadrat resulta un nombre real més petit o igual que zero. Els nombres imaginaris van ser definits l'any 1572 per Rafael Bombelli. Inicialment, molts matemàtics eren reticents a considerar-los com a nombres, entre ells René Descartes, que va encunyar el terme amb propòsit despectiu. Tots els nombres imaginaris poden ser expressats com a bi, en què b és un nombre real, i representem com a i la unitat imaginària, definida de forma que i² = -1. Com que qualsevol nombre negatiu -n es pot expressar com a -1·n, resulta que de manera que:. Amb el conjunt de nombres imaginaris es pot estendre el conjunt dels reals fins al conjunt dels nombres complexos. Tenint-ho en compte, podem definir també els nombres imaginaris com aquells complexos de forma a+bi que tenen com a part real a=0. Els nombres imaginaris juguen un paper fonamental en diverses disciplines matemàtiques com l'anàlisi complexa o l'àlgebra, així com en diferents branques de la física, com ara l'electrònica o la mecànica quàntica. En electrònica, així com en moltes altres disciplines, per no confondre la i sovint utilitzada per expressar les intensitats o altres magnituds físiques, es fa servir la j com a indicador de la unitat imaginària. (ca) العدد التخيلي (بالإنجليزية: Imaginary number) هو عدد مركب يمكن أن يكتب على شكل جداء عدد حقيقي من جهة والوحدة التخيلية من جهة ثانية. وبتعبير آخر، هو أي عدد سالب داخل الجذور ذات الدليل الزوجي.يُرمز للوحدة التخيلية بـت في العربية وi في الإنجليزية وتساوي الوحدة التخيلية الجذر التربيعي لسالب واحد. (ar) Στα μαθηματικά, ένας φανταστικός αριθμός (ή καθαροφανταστικός αριθμός) είναι ένας μιγαδικός αριθμός, το τετράγωνο του οποίου είναι αρνητικός πραγματικός αριθμός. Ο όρος πλάστηκε από τον Ρενέ Ντεκάρτ το 1637 στο έργο του "" (La Géométrie) και είχε κάπως υποτιμητική σημασία. Το τετράγωνο κάθε πραγματικού αριθμού, είναι πάντα ένας μη αρνητικός αριθμός. Συνεπώς, αριθμοί με τις ιδιότητες των φανταστικών αριθμών θεωρούνταν εκείνη την εποχή ότι δεν μπορεί να "υπάρχουν" πραγματικά, όπως άλλωστε και το μηδέν και οι αρνητικοί αριθμοί θεωρήθηκαν κατά καιρούς από κάποιους ως πλασματικοί ή άχρηστοι. Μπορεί κανείς να θεωρήσει τους φανταστικούς αριθμούς ως μια επέκταση του συνόλου των πραγματικών αριθμών. (el) Imaginara nombro estas multipliko de reela nombro kun imaginara unuo . Ĉar la imaginara unuo estas difinita per la ekvacio , la kvadrato de imaginara nombro estas , do ĝi ĉiam estas nepozitiva. La nura nombro kiu estas kaj reela kaj imaginara estas nulo. Reela nombro plus imaginara nombro estas la kompleksa nombro . Oni povas prezenti kompleksajn nombrojn kiel la kompleksa ebeno. Tiam la reelaj nombroj estas la horizontala akso, kaj la imaginaraj nombroj estas la vertikala akso. Iam, oni nomis imaginarajn nombrojn pura imaginara nombro por emfazo. (eo) Eine (rein) imaginäre Zahl (auch Imaginärzahl, lat. numerus imaginarius) ist eine komplexe Zahl, deren Quadrat eine nichtpositive reelle Zahl ist. Äquivalent dazu kann man die imaginären Zahlen als diejenigen komplexen Zahlen definieren, deren Realteil null ist. Die Bezeichnung „imaginär“ wurde zuerst 1637 von René Descartes benutzt, allerdings für nichtreelle Lösungen von algebraischen Gleichungen. (de) An imaginary number is a real number multiplied by the imaginary unit i, which is defined by its property i2 = −1. The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. By definition, zero is considered to be both real and imaginary. Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century). An imaginary number bi can be combined to a real number a using a plus sign (+) to form a complex number of the form a + bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the complex number. (en) Zenbaki irudikaria zenbaki erreal negatibo baten erro karratua da. Zenbaki irudikariek itxura daukate, non zero ez den zenbaki erreal bat den eta unitate irudikaria, dena. Beraz: Ingeniaritza elektrikoa, elektronikoa eta hauei lotutako beste arloetan, unitate irudikaria j hizkiaz adierazten da korronte elektrikoaren intentsitatearekin ez nahasteko, i hizkiaz idazten ohi dena. Zenbaki konplexuak, adierabakarrean, zenbaki erreal baten eta zenbaki irudikari baten batuera moduan idatz daiteke, honela: i zenbaki irudikariari konstante irudikari ere deitzen zaio. Zenbaki hauek zenbaki errealen mutzoa zabaltzen dute Zenbaki konplexuen multzora. Gottfried Leibnizek, XVII. mendean, esaten zuen urlehortar moduko bat dela biziaren eta ezerezaren artean. (eu) En matemáticas, particularmente en álgebra, un número imaginario es un número complejo cuya parte real es igual a cero. Por ejemplo, es un número imaginario, así como o son también números imaginarios. En general un número imaginario es de la forma , donde es un número real. (es) Bilangan imajiner (bahasa Inggris: imaginary number) adalah bilangan yang mempunyai sifat i 2 = −1. Bilangan ini biasanya merupakan bagian dari bilangan kompleks. Secara definisi, (bagian) bilangan imajiner ini diperoleh dari penyelesaian persamaan kuadratik: atau secara ekuivalen atau juga sering dituliskan sebagai . Bilangan imajiner dan/atau bilangan kompleks ini sering dipakai di bidang teknik elektro dan elektronika untuk menggambarkan sifat arus AC (listrik arus bolak-balik) atau untuk menganalisis gelombang fisika yang menjalar ke arah sumbu x mengikuti: ), dengan j = −i. (in) Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle. L'ensemble des imaginaires purs est donc égal à iℝ (aussi noté iR). Le carré d'un nombre imaginaire pur est un nombre réel négatif ou nul, et les racines carrées d'un nombre réel négatif sont des imaginaires purs. Au XVIe siècle, les travaux de Cardan et de Raphaël Bombelli ont montré l'intérêt d'utiliser des racines carrées de nombres négatifs dans les calculs. Considérés dans un premier temps comme « imaginaires » ou « inconcevables », ils ont fini par être considérés comme des nombres à part entière au cours du XIXe siècle. (fr) 虚数(きょすう、英: imaginary number)とは、実数ではない複素数のことである。すなわち、虚数単位 i = √−1 を用いて表すと、 z = a + bi(a, b は実数、b ≠ 0) と表される数のことである。 実数直線上にはないため、感覚的には存在しない数ととらえられがちであるが、実数の対、実二次正方行列、多項式環の剰余環の元として実現できる(複素数#形式的構成を参照)。 複素数平面上では、虚数全体は複素数平面から実軸を除いた部分である。 実係数の三次方程式を解の公式により解くと、相異なる3個の実数解をもつ場合、虚数の立方根が現れ、係数の加減乗除と冪根だけでは表せない()。虚数はこの過程で認識されるようになった。ルネ・デカルトは1637年に、複素数の虚部を 仏: "nombre imaginaire"(「想像上の数」)と名付けた。 「虚数」と訳したのは、1873年の中国数学書『代数術』(John Fryer(zh:傅兰雅), 華蘅芳著)である。 日本では、東京数学物理学会が1885年に記事で "Impossible or Imaginary Quantity" を「虚数」と訳している。 ただし、「虚数」と訳されている英語の "imaginary number" は、しばしば「2乗した値が 0 以下の実数になる複素数」を意味する場合がある。 (ja) ( 다른 뜻에 대해서는 허수 (동음이의) 문서를 참고하십시오.) 허수(虛數, imaginary number)는 실수가 아닌 복소수를 뜻한다. 기호는 를 사용한다. 실수의 특성상, 제곱하면 무조건 0 또는 양수가 되기 때문에 이차방정식 에서는 실수의 범위에서 해를 전혀 구할 수가 없다. 또한 수직선에 모든 실수를 하나하나 대응시키면, 수직선은 빈틈없이 채워지는 것으로 볼 때, 우리가 존재한다고 느낄 수 있는 수는 실수밖에 없다는 것은 필연코 부정할 수 없는 사실이다. 여기서 꼴과 같이 실수 범위에서 전혀 구할 수 없는 해를 구하기 위해 무엇인가를 만들어야 할 필요성을 느낀다. 실수의 성질로는 불가능한 제곱해서 음수가 되는 수를 만들어내기 위해 제곱하여 -1이 되는 수 를 만들어내면, 위의 이차방정식의 해는 또는이 되므로 이 수는 우리가 존재한다고 느끼는 수가 아님에도 불구하고, 이차방정식의 해가 되기 때문에 수학자들은 이 수가 수학적 가치가 있음을 인정하고 허수로 정의했고, 만 있으면 모든 허수들을 나타낼 수 있으므로 이 수를 imaginary number의 앞글자를 따서 허수 단위 라고 정의했다. 복소수는 실수와 허수를 포괄하는 수이며, (단, a, b는 실수)로 나타낼 수 있고, 이때 a를 실수부, b를 허수부라고 한다. 또한, 허수는 기존에 있었던 수직선, 실수축(가로)에 허수축(세로)를 덧붙여 복소수평면을 만든 결정적인 계기가 되었다. 허수가 정의되기 전까지만 해도, 수의 개념은 1차원적이었다. 즉, 수의 개념은 오직 수직선으로만 표현되었다. 그러나 허수가 정의된 후, 수의 개념은 2차원으로 확장되었다. 즉, 수의 개념은 복소평면으로 표현된 것이다. 수의 틀을 직선에서 평면으로 확장시킨 것은 모두 허수의 덕택임을 알 수 있다. (ko) In de wiskunde is een imaginair getal een complex getal waarvan het kwadraat een negatief reëel getal is. Een imaginair getal kan geschreven worden als bi, waarin b een reëel getal is en i de imaginaire eenheid voorstelt waarvoor geldt: . Dus. Door gebruik te maken van imaginaire getallen en reële getallen, wordt de verzameling van complexe getallen gedefinieerd als: Het werken met complexe getallen is in de 16e eeuw ontwikkeld door Gerolamo Cardano. Veel wiskundigen wilden er echter niet aan. Dit valt te verklaren uit het feit dat de wiskunde lang is gedomineerd door de meetkunde. De reële getallen hebben daarin een directe interpretatie (namelijk als de waarden van afstanden tussen punten), maar complexe getallen in het algemeen niet. René Descartes noemde ze in zijn werk ("de meetkunde") uit 1637 dan ook schamper "imaginaire" (= denkbeeldige) getallen, en deze naam is blijven hangen. Sindsdien zijn er echter veel toepassingsgebieden gevonden, namelijk bij de beschrijving van trillingen en golven. (nl) Liczba urojona – liczba zespolona, która podniesiona do kwadratu daje wartość rzeczywistą ujemną. Pierwiastek kwadratowy z liczb ujemnych, jako rozwiązanie niektórych równań kwadratowych, był najprawdopodobniej po raz pierwszy rozważany przez Herona z Aleksandrii. Samo pojęcie zostało wprowadzone przez Girolama Cardana w XVI wieku (jako liczby fikcyjne), obecną nazwę nadał im Kartezjusz w 1637 roku. Liczby urojone nie zostały szerzej zaakceptowane aż do prac Eulera (1707–1783) i Gaussa (1777–1855). Każda liczba urojona może zostać zapisana jako gdzie: * jest liczbą rzeczywistą, * jest jednostką urojoną spełniającą równanie Liczbą zespoloną (pojęcie wprowadzone przez Gaussa) nazywamy zaś liczbę gdzie oraz są liczbami rzeczywistymi, więc każda liczba zespolona może zostać zapisana jako suma liczby rzeczywistej i liczby urojonej. (pl) Уявне число — це комплексне число, яке може бути записане як дійсне число, помножене на уявну одиницю і, що визначається властивістю Квадрат числа b*i дорівнює −b2. Наприклад, 5*і — це уявне число, що при піднесенні до квадрата дає -25. За винятком 0 (що є як реальним, так і уявним числом) уявні числа при піднесенні до квадрата дають від'ємні числа. Якщо уявне число b*i додати до дійсного числа а, то отримаємо комплексне число виду а+b*i, де числа а і b називаються відповідно дійсна та уявна частини комплексного числа. Таким чином, уявні числа можна розглядати як комплексні, у яких дійсна частина дорівнює нулю. Зараз термін «уявне число» означає комплексне число, у якого дійсна частина дорівнює нулю, тобто число виду b*i. Деякі автори використовують термін «чисто уявне число», аби вказати на уявне число, а термін «уявне число», щоб позначити будь-яке комплексне число, що не є дійсним (тобто має ненульову уявну частину). (uk) Em Matemática, um número imaginário é um número complexo com parte real igual a zero, ou seja, um número da forma b i, em que i é a unidade imaginária. Em alguns contextos, exige-se que b seja diferente de zero. O termo foi inventado por René Descartes em 1637 no seu La Géométrie para designar os números complexos em geral, e tem esse nome pelo objetivo inicialmente pejorativo: na época, acreditava-se que tais números não existissem. (pt) Ett imaginärt tal är ett komplext tal, som avbildas på det komplexa talplanets vertikala axel och kan skrivas som ett reellt tal multiplicerat med den imaginära enheten , vilken är definierad av egenskapen . Exempelvis är kvadraten på ett imaginärt tal För att bilda kvadratroten ur ett negativt tal k, kan man först bilda kvadratroten ur -k (vilket är ett positivt tal) och sedan multiplicera med : Termen användes först av René Descartes på 1600-talet och syftar på att man då menade att sådana tal var onödiga eller inte kan existera. Det finns dock ofta behov av att räkna med en storhet, som har två från varandra oberoende (ortogonala) egenskaper, vilka kan representeras av ett komplext tal vilket består av en real del och en imaginär del. Med hjälp av komplexa tal går det till exempel att samtidigt behandla en storhets amplitud och fas (se j-omega-metoden). Benämningen imaginärt tal har dock behållits av historiska skäl. Inom elektrotekniken och närliggande områden skrivs den imaginära enheten oftast som för att undvika sammanblandning med som vanligtvis betecknar en elektrisk ström. (sv) Чи́сто мни́мое число́ — комплексное число с нулевой действительной частью. Иногда только такие числа называются мнимыми числами, но этот термин также используется для обозначения произвольных комплексных чисел с ненулевой мнимой частью. Термин «мнимое число» предложил в XVII веке французский математик Рене Декарт, изначально этот термин носил уничижительный смысл, поскольку такие числа считались вымышленными или бесполезными, и лишь после работ Леонарда Эйлера и Карла Гаусса это понятие получило признание в научном сообществе. (ru) 虛數是指可以写作实数与虚数单位乘积的複數,並定義其性質為,以此定義,0可視為同時是實數也是虛數。 17世纪著名數學家笛卡爾所著《幾何學》(法語:La Géométrie)一書中,命名其為nombre imaginaire(虛構的數),成為了虛數(imaginary number)一詞的由來。 後來在歐拉和高斯的研究之後,發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。虛數軸和實數軸構成的平面稱複數平面,複數平面上每一點對應着一個複數。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Complex_conjugate_picture.svg?width=300 |
dbo:wikiPageExternalLink | http://www2.dsu.nodak.edu/users/mberg/Imaginary/imaginary.htm https://www.math.toronto.edu/mathnet/answers/imagexist.html https://archive.org/details/imaginarytales00nahi https://www.bbc.co.uk/radio4/science/5numbers4.shtml |
dbo:wikiPageID | 14554 (xsd:integer) |
dbo:wikiPageLength | 12411 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1117108353 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Carl_Friedrich_Gauss dbr:Caspar_Wessel dbr:Quaternion dbr:Root_of_unity dbr:Argument_(complex_analysis) dbr:Perpendicular dbr:René_Descartes dbr:−1 dbr:Number_line dbr:0 dbr:Complex_number dbr:Complex_plane dbr:Engineer dbr:Gerolamo_Cardano dbr:La_Géométrie dbr:Leonhard_Euler dbr:Principal_value dbr:Mathematical_fallacy dbr:Mathematician dbr:Augustin-Louis_Cauchy dbr:William_Rowan_Hamilton dbr:Hero_of_Alexandria dbr:Square_(algebra) dbr:Square_root dbr:Imaginary_unit dbr:Negative_number dbr:Octonion dbc:Complex_numbers dbr:Real_number dbr:Rafael_Bombelli dbr:Rotation dbr:File:Complex_conjugate_picture.svg dbr:File:Rotations_on_the_complex_plane.svg |
dbp:wikiPageUsesTemplate | dbt:Pp-pc1 dbt:Authority_control dbt:Cite_book dbt:Main dbt:Math dbt:Mvar dbt:Redirect dbt:Reflist dbt:Short_description dbt:Wiktionary dbt:Number_systems dbt:Complex_numbers dbt:Classification_of_numbers |
dct:subject | dbc:Complex_numbers |
gold:hypernym | dbr:Number |
rdf:type | owl:Thing |
rdfs:comment | العدد التخيلي (بالإنجليزية: Imaginary number) هو عدد مركب يمكن أن يكتب على شكل جداء عدد حقيقي من جهة والوحدة التخيلية من جهة ثانية. وبتعبير آخر، هو أي عدد سالب داخل الجذور ذات الدليل الزوجي.يُرمز للوحدة التخيلية بـت في العربية وi في الإنجليزية وتساوي الوحدة التخيلية الجذر التربيعي لسالب واحد. (ar) Imaginara nombro estas multipliko de reela nombro kun imaginara unuo . Ĉar la imaginara unuo estas difinita per la ekvacio , la kvadrato de imaginara nombro estas , do ĝi ĉiam estas nepozitiva. La nura nombro kiu estas kaj reela kaj imaginara estas nulo. Reela nombro plus imaginara nombro estas la kompleksa nombro . Oni povas prezenti kompleksajn nombrojn kiel la kompleksa ebeno. Tiam la reelaj nombroj estas la horizontala akso, kaj la imaginaraj nombroj estas la vertikala akso. Iam, oni nomis imaginarajn nombrojn pura imaginara nombro por emfazo. (eo) Eine (rein) imaginäre Zahl (auch Imaginärzahl, lat. numerus imaginarius) ist eine komplexe Zahl, deren Quadrat eine nichtpositive reelle Zahl ist. Äquivalent dazu kann man die imaginären Zahlen als diejenigen komplexen Zahlen definieren, deren Realteil null ist. Die Bezeichnung „imaginär“ wurde zuerst 1637 von René Descartes benutzt, allerdings für nichtreelle Lösungen von algebraischen Gleichungen. (de) En matemáticas, particularmente en álgebra, un número imaginario es un número complejo cuya parte real es igual a cero. Por ejemplo, es un número imaginario, así como o son también números imaginarios. En general un número imaginario es de la forma , donde es un número real. (es) Bilangan imajiner (bahasa Inggris: imaginary number) adalah bilangan yang mempunyai sifat i 2 = −1. Bilangan ini biasanya merupakan bagian dari bilangan kompleks. Secara definisi, (bagian) bilangan imajiner ini diperoleh dari penyelesaian persamaan kuadratik: atau secara ekuivalen atau juga sering dituliskan sebagai . Bilangan imajiner dan/atau bilangan kompleks ini sering dipakai di bidang teknik elektro dan elektronika untuk menggambarkan sifat arus AC (listrik arus bolak-balik) atau untuk menganalisis gelombang fisika yang menjalar ke arah sumbu x mengikuti: ), dengan j = −i. (in) 虚数(きょすう、英: imaginary number)とは、実数ではない複素数のことである。すなわち、虚数単位 i = √−1 を用いて表すと、 z = a + bi(a, b は実数、b ≠ 0) と表される数のことである。 実数直線上にはないため、感覚的には存在しない数ととらえられがちであるが、実数の対、実二次正方行列、多項式環の剰余環の元として実現できる(複素数#形式的構成を参照)。 複素数平面上では、虚数全体は複素数平面から実軸を除いた部分である。 実係数の三次方程式を解の公式により解くと、相異なる3個の実数解をもつ場合、虚数の立方根が現れ、係数の加減乗除と冪根だけでは表せない()。虚数はこの過程で認識されるようになった。ルネ・デカルトは1637年に、複素数の虚部を 仏: "nombre imaginaire"(「想像上の数」)と名付けた。 「虚数」と訳したのは、1873年の中国数学書『代数術』(John Fryer(zh:傅兰雅), 華蘅芳著)である。 日本では、東京数学物理学会が1885年に記事で "Impossible or Imaginary Quantity" を「虚数」と訳している。 ただし、「虚数」と訳されている英語の "imaginary number" は、しばしば「2乗した値が 0 以下の実数になる複素数」を意味する場合がある。 (ja) Em Matemática, um número imaginário é um número complexo com parte real igual a zero, ou seja, um número da forma b i, em que i é a unidade imaginária. Em alguns contextos, exige-se que b seja diferente de zero. O termo foi inventado por René Descartes em 1637 no seu La Géométrie para designar os números complexos em geral, e tem esse nome pelo objetivo inicialmente pejorativo: na época, acreditava-se que tais números não existissem. (pt) Чи́сто мни́мое число́ — комплексное число с нулевой действительной частью. Иногда только такие числа называются мнимыми числами, но этот термин также используется для обозначения произвольных комплексных чисел с ненулевой мнимой частью. Термин «мнимое число» предложил в XVII веке французский математик Рене Декарт, изначально этот термин носил уничижительный смысл, поскольку такие числа считались вымышленными или бесполезными, и лишь после работ Леонарда Эйлера и Карла Гаусса это понятие получило признание в научном сообществе. (ru) 虛數是指可以写作实数与虚数单位乘积的複數,並定義其性質為,以此定義,0可視為同時是實數也是虛數。 17世纪著名數學家笛卡爾所著《幾何學》(法語:La Géométrie)一書中,命名其為nombre imaginaire(虛構的數),成為了虛數(imaginary number)一詞的由來。 後來在歐拉和高斯的研究之後,發現虛數可對應平面上的縱軸,與對應平面上橫軸的實數同樣真實。虛數軸和實數軸構成的平面稱複數平面,複數平面上每一點對應着一個複數。 (zh) Un nombre imaginari és un nombre que elevat al quadrat resulta un nombre real més petit o igual que zero. Els nombres imaginaris van ser definits l'any 1572 per Rafael Bombelli. Inicialment, molts matemàtics eren reticents a considerar-los com a nombres, entre ells René Descartes, que va encunyar el terme amb propòsit despectiu. Tots els nombres imaginaris poden ser expressats com a bi, en què b és un nombre real, i representem com a i la unitat imaginària, definida de forma que i² = -1. Com que qualsevol nombre negatiu -n es pot expressar com a -1·n, resulta que de manera que:. (ca) Στα μαθηματικά, ένας φανταστικός αριθμός (ή καθαροφανταστικός αριθμός) είναι ένας μιγαδικός αριθμός, το τετράγωνο του οποίου είναι αρνητικός πραγματικός αριθμός. Ο όρος πλάστηκε από τον Ρενέ Ντεκάρτ το 1637 στο έργο του "" (La Géométrie) και είχε κάπως υποτιμητική σημασία. Το τετράγωνο κάθε πραγματικού αριθμού, είναι πάντα ένας μη αρνητικός αριθμός. Συνεπώς, αριθμοί με τις ιδιότητες των φανταστικών αριθμών θεωρούνταν εκείνη την εποχή ότι δεν μπορεί να "υπάρχουν" πραγματικά, όπως άλλωστε και το μηδέν και οι αρνητικοί αριθμοί θεωρήθηκαν κατά καιρούς από κάποιους ως πλασματικοί ή άχρηστοι. (el) An imaginary number is a real number multiplied by the imaginary unit i, which is defined by its property i2 = −1. The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. By definition, zero is considered to be both real and imaginary. Originally coined in the 17th century by René Descartes as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century). (en) Zenbaki irudikaria zenbaki erreal negatibo baten erro karratua da. Zenbaki irudikariek itxura daukate, non zero ez den zenbaki erreal bat den eta unitate irudikaria, dena. Beraz: Ingeniaritza elektrikoa, elektronikoa eta hauei lotutako beste arloetan, unitate irudikaria j hizkiaz adierazten da korronte elektrikoaren intentsitatearekin ez nahasteko, i hizkiaz idazten ohi dena. Zenbaki konplexuak, adierabakarrean, zenbaki erreal baten eta zenbaki irudikari baten batuera moduan idatz daiteke, honela: i zenbaki irudikariari konstante irudikari ere deitzen zaio. (eu) Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle. L'ensemble des imaginaires purs est donc égal à iℝ (aussi noté iR). (fr) ( 다른 뜻에 대해서는 허수 (동음이의) 문서를 참고하십시오.) 허수(虛數, imaginary number)는 실수가 아닌 복소수를 뜻한다. 기호는 를 사용한다. 실수의 특성상, 제곱하면 무조건 0 또는 양수가 되기 때문에 이차방정식 에서는 실수의 범위에서 해를 전혀 구할 수가 없다. 또한 수직선에 모든 실수를 하나하나 대응시키면, 수직선은 빈틈없이 채워지는 것으로 볼 때, 우리가 존재한다고 느낄 수 있는 수는 실수밖에 없다는 것은 필연코 부정할 수 없는 사실이다. 여기서 꼴과 같이 실수 범위에서 전혀 구할 수 없는 해를 구하기 위해 무엇인가를 만들어야 할 필요성을 느낀다. 실수의 성질로는 불가능한 제곱해서 음수가 되는 수를 만들어내기 위해 제곱하여 -1이 되는 수 를 만들어내면, 위의 이차방정식의 해는 또는이 되므로 이 수는 우리가 존재한다고 느끼는 수가 아님에도 불구하고, 이차방정식의 해가 되기 때문에 수학자들은 이 수가 수학적 가치가 있음을 인정하고 허수로 정의했고, 만 있으면 모든 허수들을 나타낼 수 있으므로 이 수를 imaginary number의 앞글자를 따서 허수 단위 라고 정의했다. (ko) In de wiskunde is een imaginair getal een complex getal waarvan het kwadraat een negatief reëel getal is. Een imaginair getal kan geschreven worden als bi, waarin b een reëel getal is en i de imaginaire eenheid voorstelt waarvoor geldt: . Dus. Door gebruik te maken van imaginaire getallen en reële getallen, wordt de verzameling van complexe getallen gedefinieerd als: (nl) Liczba urojona – liczba zespolona, która podniesiona do kwadratu daje wartość rzeczywistą ujemną. Pierwiastek kwadratowy z liczb ujemnych, jako rozwiązanie niektórych równań kwadratowych, był najprawdopodobniej po raz pierwszy rozważany przez Herona z Aleksandrii. Samo pojęcie zostało wprowadzone przez Girolama Cardana w XVI wieku (jako liczby fikcyjne), obecną nazwę nadał im Kartezjusz w 1637 roku. Liczby urojone nie zostały szerzej zaakceptowane aż do prac Eulera (1707–1783) i Gaussa (1777–1855). Każda liczba urojona może zostać zapisana jako gdzie: (pl) Ett imaginärt tal är ett komplext tal, som avbildas på det komplexa talplanets vertikala axel och kan skrivas som ett reellt tal multiplicerat med den imaginära enheten , vilken är definierad av egenskapen . Exempelvis är kvadraten på ett imaginärt tal För att bilda kvadratroten ur ett negativt tal k, kan man först bilda kvadratroten ur -k (vilket är ett positivt tal) och sedan multiplicera med : Inom elektrotekniken och närliggande områden skrivs den imaginära enheten oftast som för att undvika sammanblandning med som vanligtvis betecknar en elektrisk ström. (sv) Уявне число — це комплексне число, яке може бути записане як дійсне число, помножене на уявну одиницю і, що визначається властивістю Квадрат числа b*i дорівнює −b2. Наприклад, 5*і — це уявне число, що при піднесенні до квадрата дає -25. За винятком 0 (що є як реальним, так і уявним числом) уявні числа при піднесенні до квадрата дають від'ємні числа. Деякі автори використовують термін «чисто уявне число», аби вказати на уявне число, а термін «уявне число», щоб позначити будь-яке комплексне число, що не є дійсним (тобто має ненульову уявну частину). (uk) |
rdfs:label | عدد تخيلي (ar) Nombre imaginari (ca) Imaginární číslo (cs) Imaginäre Zahl (de) Φανταστικός αριθμός (el) Imaginara nombro (eo) Número imaginario (es) Zenbaki irudikari (eu) Bilangan imajiner (in) Imaginary number (en) Nombre imaginaire pur (fr) 虚数 (ja) 허수 (ko) Imaginair getal (nl) Liczby urojone (pl) Número imaginário (pt) Чисто мнимое число (ru) Imaginära tal (sv) Уявне число (uk) 虚数 (zh) |
owl:sameAs | freebase:Imaginary number http://d-nb.info/gnd/4588957-0 wikidata:Imaginary number dbpedia-af:Imaginary number dbpedia-ar:Imaginary number http://ast.dbpedia.org/resource/Númberu_imaxinariu http://ba.dbpedia.org/resource/Уйланма_һан dbpedia-bg:Imaginary number http://bn.dbpedia.org/resource/অবাস্তব_সংখ্যা http://bs.dbpedia.org/resource/Imaginarni_broj dbpedia-ca:Imaginary number http://ckb.dbpedia.org/resource/ژمارەی_خەیاڵی dbpedia-cs:Imaginary number http://cv.dbpedia.org/resource/Таса_ытарлă_хисеп dbpedia-cy:Imaginary number dbpedia-da:Imaginary number dbpedia-de:Imaginary number dbpedia-el:Imaginary number dbpedia-eo:Imaginary number dbpedia-es:Imaginary number dbpedia-et:Imaginary number dbpedia-eu:Imaginary number dbpedia-fa:Imaginary number dbpedia-fi:Imaginary number dbpedia-fr:Imaginary number dbpedia-gl:Imaginary number dbpedia-he:Imaginary number http://hi.dbpedia.org/resource/काल्पनिक_संख्या dbpedia-hr:Imaginary number http://hy.dbpedia.org/resource/Բացարձակ_կեղծ_թիվ dbpedia-id:Imaginary number dbpedia-is:Imaginary number dbpedia-ja:Imaginary number dbpedia-ka:Imaginary number dbpedia-kk:Imaginary number dbpedia-ko:Imaginary number dbpedia-la:Imaginary number dbpedia-lmo:Imaginary number http://lv.dbpedia.org/resource/Imaginārs_skaitlis dbpedia-mk:Imaginary number http://ml.dbpedia.org/resource/അവാസ്തവികസംഖ്യ dbpedia-mr:Imaginary number dbpedia-nl:Imaginary number dbpedia-nn:Imaginary number dbpedia-no:Imaginary number http://pa.dbpedia.org/resource/ਕਾਲਪਨਿਕ_ਸੰਖਿਆ dbpedia-pl:Imaginary number dbpedia-pt:Imaginary number dbpedia-ro:Imaginary number dbpedia-ru:Imaginary number http://si.dbpedia.org/resource/අතාත්වික_සංඛ්යා dbpedia-simple:Imaginary number dbpedia-sr:Imaginary number dbpedia-sv:Imaginary number http://ta.dbpedia.org/resource/கற்பனை_எண் dbpedia-th:Imaginary number dbpedia-tr:Imaginary number dbpedia-uk:Imaginary number dbpedia-vi:Imaginary number dbpedia-yo:Imaginary number dbpedia-zh:Imaginary number https://global.dbpedia.org/id/54RCL |
prov:wasDerivedFrom | wikipedia-en:Imaginary_number?oldid=1117108353&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Complex_conjugate_picture.svg wiki-commons:Special:FilePath/Rotations_on_the_complex_plane.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Imaginary_number |
is dbo:notableIdea of | dbr:René_Descartes |
is dbo:wikiPageDisambiguates of | dbr:Imaginary |
is dbo:wikiPageRedirects of | dbr:Lateral_number dbr:Imaginary_Number dbr:Square_roots_of_negative_numbers dbr:Purely_imaginary_number dbr:Imaginary_Numbers dbr:Imaginary_axis dbr:Imaginary_nubers dbr:Imaginary_numbers dbr:Imaginary_value dbr:J_number dbr:Negative_Square_roots dbr:Negative_square_root dbr:Powers_of_i dbr:Square_root_of_negative_numbers dbr:The_Imaginary_Number |
is dbo:wikiPageWikiLink of | dbr:Casus_irreducibilis dbr:Pseudo-Euclidean_space dbr:Quadratic_integer dbr:Scientific_law dbr:Metamaterial dbr:Definition dbr:All-pass_filter dbr:Hyperbolic_angle dbr:List_of_Dutch_discoveries dbr:Paul_Émile_Appell dbr:Pencil_(geometry) dbr:Pendulum_(mechanics) dbr:Perfect_matching dbr:Phase-shift_keying dbr:René_Descartes dbr:Residue_theorem dbr:Rindler_coordinates dbr:Induction_motor dbr:Infinite-valued_logic dbr:Mandelbrot_set dbr:Number dbr:List_of_letters_used_in_mathematics_and_science dbr:List_of_mathematical_uses_of_Latin_letters dbr:Number_line dbr:Numerical_tower dbr:Propagation_constant dbr:Timeline_of_algebra dbr:1572 dbr:1572_in_science dbr:1728_(number) dbr:1980_eruption_of_Mount_St._Helens dbr:Complex_analysis dbr:Complex_number dbr:Complex_plane dbr:Complex_polytope dbr:Contour_integration dbr:Mass dbr:Matching_(graph_theory) dbr:Mathematical_analysis dbr:Mathematical_constant dbr:Mathematical_joke dbr:Matrix_representation_of_conic_sections dbr:Gaussian_rational dbr:Generalized_inverse_Gaussian_distribution dbr:Pulsatile_flow dbr:Quaternionic_polytope dbr:Timeline_of_mathematics dbr:173_(number) dbr:Electrical_impedance dbr:Elementary_algebra dbr:Function_of_several_real_variables dbr:Georgii_Polozii dbr:Gerolamo_Cardano dbr:Glossary_of_calculus dbr:Constant_k_filter dbr:Constellation_diagram dbr:Control_theory dbr:Optical_phase_space dbr:Orthogonality_(mathematics) dbr:Angels_in_Neon_Genesis_Evangelion dbr:LibreOffice_Calc dbr:Line_(geometry) dbr:Complex-base_system dbr:Complex_conjugate dbr:Complex_polygon dbr:Yukawa_interaction dbr:Cmath dbr:Housing_at_the_Massachusetts_Institute_of_Technology dbr:Kramers–Kronig_relations dbr:Polygon dbr:Space dbr:Tachyon dbr:Tachyon_condensation dbr:Tachyonic_field dbr:McCullagh's_parametrization_of_the_Cauchy_distributions dbr:Silicon_photonics dbr:Admittance dbr:Wick_rotation dbr:Wigner_D-matrix dbr:Gabor_filter dbr:Irrational_number dbr:Laser_beam_profiler dbr:5 dbr:Cube_(algebra) dbr:Alpha_max_plus_beta_min_algorithm dbr:Euler's_formula dbr:Extended_periodic_table dbr:Fourier_transform dbr:Anelasticity dbr:Normal_matrix dbr:Nth_root dbr:Cauchy_index dbr:Foster's_reactance_theorem dbr:History_of_mathematical_notation dbr:History_of_mathematics dbr:History_of_special_relativity dbr:Kodama_state dbr:Kontorovich–Lebedev_transform dbr:List_of_Ig_Nobel_Prize_winners dbr:List_of_Italian_inventions_and_discoveries dbr:List_of_Martin_Gardner_Mathematical_Games_columns dbr:Radical_symbol dbr:Rayleigh_fading dbr:Happily_Ever_After_(Lost) dbr:Heat_equation dbr:Hermitian_matrix dbr:Smith_chart dbr:Abstract_algebra dbr:Accounting_scandals dbr:Advection dbr:Language_of_mathematics dbr:Lateral_number dbr:Bicycle_and_motorcycle_dynamics dbr:TI_calculator_character_sets dbr:Seismic_trace dbr:Mobility_analogy dbr:Modulational_instability dbr:Imaginary_Number dbr:Regular_complex_polygon dbr:Ashtekar_variables dbr:Bosonic_string_theory dbr:CCR_and_CAR_algebras dbr:CPT_symmetry dbr:Philosophy_of_mathematics dbr:Pomeranchuk_instability dbr:Special_relativity dbr:Spheroid dbr:Square_root_of_5 dbr:Square_roots_of_negative_numbers dbr:Greek_letters_used_in_mathematics,_science,_and_engineering dbr:Purely_imaginary_number dbr:Z-HIT dbr:Imaginary_unit dbr:Negative_base dbr:Campbell's_theorem_(probability) dbr:Rational_number dbr:Real_number dbr:Rafael_Bombelli dbr:Imaginary dbr:Refractive_index dbr:Skew-Hermitian_matrix dbr:Skew-symmetric_matrix dbr:Euclidean_quantum_gravity dbr:Euler's_three-body_problem dbr:ISO/IEC_10967 dbr:Imaginary_line_(mathematics) dbr:Imaginary_time dbr:Impedance_analogy dbr:Impedance_matching dbr:List_of_types_of_numbers dbr:Lateral dbr:Solving_quadratic_equations_with_continued_fractions dbr:The_Housekeeper_and_the_Professor dbr:Theory_of_equations dbr:Evanescent_field dbr:Taylor–Goldstein_equation dbr:U-bit dbr:Quater-imaginary_base dbr:Polytope dbr:Sesquilinear_form dbr:Sinusoidal_plane_wave dbr:Schwarzschild_geodesics dbr:Spin–statistics_theorem dbr:Outline_of_mathematics dbr:The_Number_Devil dbr:Spiric_section dbr:Spherical_wave_transformation dbr:Stokes'_paradox dbr:Math_symbol_i dbr:Imaginary_Numbers dbr:Imaginary_axis dbr:Imaginary_nubers dbr:Imaginary_numbers dbr:Imaginary_value dbr:J_number dbr:Negative_Square_roots dbr:Negative_square_root dbr:Powers_of_i dbr:Square_root_of_negative_numbers dbr:The_Imaginary_Number |
is owl:differentFrom of | dbr:Mythical_number |
is foaf:primaryTopic of | wikipedia-en:Imaginary_number |