Mock modular form (original) (raw)
En matemáticas, una forma modular simulada es la parte holomórfica de una débil armónica, y una función theta simulada es esencialmente una forma modular simulada de peso 1/2. Srinivasa Ramanujan describió los primeros ejemplos de funciones theta simuladas en su última carta de 1920 a G. H. Hardy y en su cuaderno perdido. Sander Zwegers descubrió que agregarles ciertas funciones no holomorfas las convierte en formas armónicas débiles de Maass.
Property | Value |
---|---|
dbo:abstract | En matemáticas, una forma modular simulada es la parte holomórfica de una débil armónica, y una función theta simulada es esencialmente una forma modular simulada de peso 1/2. Srinivasa Ramanujan describió los primeros ejemplos de funciones theta simuladas en su última carta de 1920 a G. H. Hardy y en su cuaderno perdido. Sander Zwegers descubrió que agregarles ciertas funciones no holomorfas las convierte en formas armónicas débiles de Maass. (es) In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms. (en) En mathématiques, et plus précisément en analyse, une fausse forme modulaire est la partie holomorphe d'une (en) harmonique, et une fausse fonction thêta est essentiellement une fausse forme modulaire de poids 1/2. Les premiers exemples de fausses fonctions thêta furent décrits par Srinivasa Ramanujan dans sa dernière lettre à Godfrey Harold Hardy (en 1920) et dans son cahier perdu ; il a découvert alors que ces fonctions se comportent en partie comme les fonctions thêta, d'où leur nom (mock theta functions en anglais). (en) découvrit en 2001 la relation entre les fausses fonctions thêta et les formes de Maas. (fr) Le funzioni mock theta fanno parte di un insieme di funzioni, nominate da Srinivasa Ramanujan, nel campo della teoria dei numeri e delle funzioni modulari, in una lettera scritta in punto di morte a G. H. Hardy e probabilmente descritte in un suo quaderno di appunti andato perduto. Della lettera si sono però perse le prime pagine. Per questa ragione del lavoro di Ramanujan rimangono solo 17 esempi, e mancano una definizione formale e il procedimento di come possano essere derivate. Le funzioni mock theta costituiscono una serie infinita di numeri, probabilmente correlate alle funzioni theta, note da secoli e usate in un gran numero di problemi e analisi matematiche. In particolare, comportamenti descrivibili con funzioni mock theta sono oggi stati individuati in diversi campi: nei calcoli matematici, fisici, chimici ed anche nelle ricerche sul cancro. (it) Inom matematiken är en falsk modulär form den analytiska delen av en harmonisk svag Maassform och en falsk thetafunktion är en falsk modulär form av vikt 1/2. De första exemplen av falska thetafunktioner beskrevs av Srinivasa Ramanujan i hans sista brev till G. H. Hardy, skickat 1920. upptäckte 2002 att genom att addera vissa icke-analytiska funktioner till dem förvandlar dem till harmoniska svaga Maassformer. (sv) |
dbo:wikiPageExternalLink | http://igitur-archive.library.uu.nl/dissertations/2003-0127-094324/inhoud.htm http://mathsci.ucd.ie/~zwegers/presentations/002.pdf https://afolsom.people.amherst.edu/BringmannFolsomOno-Compositio.pdf https://uva.theopenscholar.com/files/ken-ono/files/098_8.pdf https://uva.theopenscholar.com/files/ken-ono/files/100_8.pdf http://www.mi.uni-koeln.de/~kbringma/papers.html http://people.mpim-bonn.mpg.de/zagier/files/aster/326/fulltext.pdf http://mathsci.ucd.ie/~zwegers/papers/001.pdf http://journals.cambridge.org/action/displayAbstract%3Faid=63263 https://web.archive.org/web/20081023234404/http:/mathsci.ucd.ie/~zwegers/ https://web.archive.org/web/20081204111537/http:/www.math.psu.edu/andrews/biblio.html https://web.archive.org/web/20081221143605/http:/www.mpim-bonn.mpg.de/Events/This+Year+and+Prospect/Mock+theta+functions/ https://web.archive.org/web/20100620082612/http:/www.math.wisc.edu/~ono/reprints/index.html |
dbo:wikiPageID | 5954264 (xsd:integer) |
dbo:wikiPageLength | 43570 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1122614834 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:American_Journal_of_Mathematics dbr:Umbral_moonshine dbr:Metaplectic_group dbr:Sander_Zwegers dbc:Modular_forms dbr:Annals_of_Mathematics dbr:Holomorphic_function dbr:Paul_Émile_Appell dbr:Cusp_form dbr:Duke_Mathematical_Journal dbr:Inventiones_Mathematicae dbr:Lie_superalgebra dbc:Srinivasa_Ramanujan dbr:Mathematics dbr:Q-Pochhammer_symbol dbr:Eigenvalue dbr:G._H._Hardy dbr:G._N._Watson dbr:Geodesic dbr:George_Andrews_(mathematician) dbr:Modular_form dbr:Modular_group dbr:Theta_function dbr:Quantum_invariant dbr:Proceedings_of_the_National_Academy_of_Sciences dbr:Maass_form dbr:Maass_wave_form dbr:Lambert_series dbr:American_Mathematical_Society dbr:Upper_half-plane dbr:Harmonic_Maass_form dbr:Asymptotic_expansion dbr:Atish_Dabholkar dbr:Academic_Press dbr:Advances_in_Mathematics dbc:Q-analogs dbr:Kathrin_Bringmann dbr:Ken_Ono dbr:Don_Zagier dbr:Srinivasa_Ramanujan dbr:Incomplete_gamma_function dbr:Canadian_Mathematical_Bulletin dbr:Special_linear_group dbr:Nebentypus_character dbr:Ramanujan's_lost_notebook dbr:Two-dimensional_conformal_field_theory dbr:Transactions_of_the_American_Mathematical_Society dbr:Basic_hypergeometric_function dbr:Springer-Verlag dbr:Hyperbolic_Laplacian dbr:Conductor_of_a_Dirichlet_character dbr:Lost_notebook dbr:Help:Shortened_footnotes dbr:Wikipedia:PARREF |
dbp:align | right (en) |
dbp:bot | InternetArchiveBot (en) |
dbp:date | January 2021 (en) February 2018 (en) |
dbp:fixAttempted | yes (en) |
dbp:quote | "Suppose there is a function in the Eulerian form and suppose that all or an infinity of points are exponential singularities, and also suppose that at these points the asymptotic form closes as neatly as in the cases of and . The question is: Is the function taken the sum of two functions one of which is an ordinary θ-function and the other a function which is O at all the points e2mi/n? ... When it is not so, I call the function a Mock θ-function." (en) |
dbp:reason | Parenthetical referencing has been deprecated; convert to shortened footnotes. (en) |
dbp:source | Ramanujan's original definition of a mock theta function (en) |
dbp:title | Mock Theta Function (en) |
dbp:urlname | MockThetaFunction (en) |
dbp:width | 33.0 (dbd:perCent) |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Cite_arXiv dbt:Cite_journal dbt:Dead_link dbt:Mathworld dbt:OEIS dbt:Pi dbt:Quote_box dbt:Refbegin dbt:Refend dbt:Reflist dbt:Sfn dbt:Sfrac dbt:Short_description dbt:Harvid dbt:Tau dbt:Format_footnotes dbt:Use_shortened_footnotes |
dct:subject | dbc:Modular_forms dbc:Srinivasa_Ramanujan dbc:Q-analogs |
gold:hypernym | dbr:Part |
rdf:type | yago:WikicatModularForms yago:Abstraction100002137 yago:Form106290637 yago:Function113783816 yago:LanguageUnit106284225 yago:MathematicalRelation113783581 yago:Part113809207 yago:Relation100031921 yago:WikicatFunctionsAndMappings yago:Word106286395 |
rdfs:comment | En matemáticas, una forma modular simulada es la parte holomórfica de una débil armónica, y una función theta simulada es esencialmente una forma modular simulada de peso 1/2. Srinivasa Ramanujan describió los primeros ejemplos de funciones theta simuladas en su última carta de 1920 a G. H. Hardy y en su cuaderno perdido. Sander Zwegers descubrió que agregarles ciertas funciones no holomorfas las convierte en formas armónicas débiles de Maass. (es) In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms. (en) En mathématiques, et plus précisément en analyse, une fausse forme modulaire est la partie holomorphe d'une (en) harmonique, et une fausse fonction thêta est essentiellement une fausse forme modulaire de poids 1/2. Les premiers exemples de fausses fonctions thêta furent décrits par Srinivasa Ramanujan dans sa dernière lettre à Godfrey Harold Hardy (en 1920) et dans son cahier perdu ; il a découvert alors que ces fonctions se comportent en partie comme les fonctions thêta, d'où leur nom (mock theta functions en anglais). (en) découvrit en 2001 la relation entre les fausses fonctions thêta et les formes de Maas. (fr) Inom matematiken är en falsk modulär form den analytiska delen av en harmonisk svag Maassform och en falsk thetafunktion är en falsk modulär form av vikt 1/2. De första exemplen av falska thetafunktioner beskrevs av Srinivasa Ramanujan i hans sista brev till G. H. Hardy, skickat 1920. upptäckte 2002 att genom att addera vissa icke-analytiska funktioner till dem förvandlar dem till harmoniska svaga Maassformer. (sv) Le funzioni mock theta fanno parte di un insieme di funzioni, nominate da Srinivasa Ramanujan, nel campo della teoria dei numeri e delle funzioni modulari, in una lettera scritta in punto di morte a G. H. Hardy e probabilmente descritte in un suo quaderno di appunti andato perduto. Della lettera si sono però perse le prime pagine. Per questa ragione del lavoro di Ramanujan rimangono solo 17 esempi, e mancano una definizione formale e il procedimento di come possano essere derivate. (it) |
rdfs:label | Forma modular simulada (es) Funzione mock theta (it) Fausse fonction thêta (fr) Mock modular form (en) Falsk modulär form (sv) |
owl:sameAs | freebase:Mock modular form yago-res:Mock modular form wikidata:Mock modular form dbpedia-es:Mock modular form dbpedia-fa:Mock modular form dbpedia-fr:Mock modular form dbpedia-it:Mock modular form dbpedia-sv:Mock modular form https://global.dbpedia.org/id/3U2eA |
prov:wasDerivedFrom | wikipedia-en:Mock_modular_form?oldid=1122614834&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Mock_modular_form |
is dbo:knownFor of | dbr:Paul_Émile_Appell |
is dbo:wikiPageRedirects of | dbr:Appell-Lerch_series dbr:Appell-Lerch_sum dbr:Appell–Lerch_series dbr:Appell–Lerch_sum dbr:Lerch-Appell_series dbr:Lerch-Appell_sum dbr:Lerch_series dbr:Lerch_sum dbr:Mock_theta_conjecture dbr:Mock_theta_conjectures dbr:Mock_theta_function dbr:Mock_theta_functions |
is dbo:wikiPageWikiLink of | dbr:Paul_Émile_Appell dbr:Jacobi_form dbr:Timeline_of_number_theory dbr:Monstrous_moonshine dbr:Maass_wave_form dbr:Amanda_Folsom dbr:Harmonic_Maass_form dbr:Hurwitz_class_number dbr:Appell-Lerch_series dbr:Appell-Lerch_sum dbr:Appell–Lerch_series dbr:Appell–Lerch_sum dbr:Spt_function dbr:Lerch-Appell_series dbr:Lerch-Appell_sum dbr:Lerch_series dbr:Lerch_sum dbr:Mock_theta_conjecture dbr:Mock_theta_conjectures dbr:Mock_theta_function dbr:Mock_theta_functions |
is dbp:knownFor of | dbr:Paul_Émile_Appell |
is foaf:primaryTopic of | wikipedia-en:Mock_modular_form |