dbo:abstract |
En algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. (fr) In mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the category of rings. Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings. For example, the Chinese remainder theorem may be stated as: if m and n are coprime integers, the quotient ring is the product of and (en) 数学において、いくつかの環を1つの大きい直積環、積環 (product ring) に合併することができる。これは次のようにされる: I がある添え字集合で Ri が I のすべての i に対して環であれば、カルテジアン積 Πi ∈ I Ri は演算を 成分ごとの演算として定義することによって環にできる。 得られる環は環 Ri の直積 (direct product) と呼ばれる。有限個の環の直積は環の直和 (direct sum) と一致する。 (ja) In de ringtheorie, een deelgebied van de wiskunde, is het mogelijk om verschillende ringen te combineren tot een grotere productring. Het directe product van de samenstellende ringen. Het directe product van de ringen , met een willekeurige indexverzameling wordt gevormd door het cartesisch product met als bewerkingen de coördinaatsgewijze uitgevoerde bewerkingen van de samenstellende ringen. Dat houdt in dat voor de elementen en geldt: en (nl) |
dbo:wikiPageExternalLink |
https://archive.org/details/noncommutativeri0000hers |
dbo:wikiPageID |
25063 (xsd:integer) |
dbo:wikiPageLength |
5738 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1083592571 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Cambridge_University_Press dbr:Cartesian_product dbr:Prime_ideal dbr:Prime_power dbr:Ring_isomorphism dbr:Unit_(ring_theory) dbr:Quotient_ring dbc:Ring_theory dbr:Mathematics dbr:Fundamental_theorem_of_arithmetic dbr:Converse_(logic) dbr:Coprime_integers dbr:Coproduct dbr:Ideal_(ring_theory) dbr:Maximal_ideal dbr:A_fortiori dbc:Operations_on_structures dbr:Direct_product dbr:Direct_sum dbr:Direct_sum_of_modules dbr:Isomorphism dbr:Product_(category_theory) dbr:Ring_(mathematics) dbr:Prime_number dbr:Surjective dbr:Chinese_remainder_theorem dbr:Tensor_product_of_algebras dbr:Zero_divisors dbr:Direct_product_of_groups dbr:Axiom_of_choice dbr:Group_of_units dbr:If_and_only_if dbr:Algebra_over_a_commutative_ring dbr:Category_(mathematics) dbr:Category_of_rings dbr:Category_theory dbr:Up_to dbr:Universal_property dbr:Ring_homomorphism dbr:Free_product_of_algebras dbr:Ring_of_integers_modulo_n dbr:Commutative_algebra_(structure) dbr:Componentwise_operation dbr:Trivial_ring |
dbp:edition |
3 (xsd:integer) |
dbp:page |
91 (xsd:integer) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Mvar dbt:Ring_theory_sidebar dbt:Short_description dbt:Lang_Algebra |
dcterms:subject |
dbc:Ring_theory dbc:Operations_on_structures |
rdf:type |
yago:WikicatBinaryOperations yago:BooleanOperation113440935 yago:DataProcessing113455487 yago:Operation113524925 yago:PhysicalEntity100001930 yago:Process100029677 yago:Processing113541167 |
rdfs:comment |
En algèbre générale, il est possible de combiner plusieurs anneaux pour former un anneau appelé anneau produit. (fr) In mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the category of rings. Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings. For example, the Chinese remainder theorem may be stated as: if m and n are coprime integers, the quotient ring is the product of and (en) 数学において、いくつかの環を1つの大きい直積環、積環 (product ring) に合併することができる。これは次のようにされる: I がある添え字集合で Ri が I のすべての i に対して環であれば、カルテジアン積 Πi ∈ I Ri は演算を 成分ごとの演算として定義することによって環にできる。 得られる環は環 Ri の直積 (direct product) と呼ばれる。有限個の環の直積は環の直和 (direct sum) と一致する。 (ja) In de ringtheorie, een deelgebied van de wiskunde, is het mogelijk om verschillende ringen te combineren tot een grotere productring. Het directe product van de samenstellende ringen. Het directe product van de ringen , met een willekeurige indexverzameling wordt gevormd door het cartesisch product met als bewerkingen de coördinaatsgewijze uitgevoerde bewerkingen van de samenstellende ringen. Dat houdt in dat voor de elementen en geldt: en (nl) |
rdfs:label |
Produit d'anneaux (fr) 環の直積 (ja) Product van ringen (nl) Product of rings (en) |
owl:sameAs |
freebase:Product of rings yago-res:Product of rings wikidata:Product of rings dbpedia-fr:Product of rings dbpedia-ja:Product of rings dbpedia-nl:Product of rings https://global.dbpedia.org/id/38vrc |
prov:wasDerivedFrom |
wikipedia-en:Product_of_rings?oldid=1083592571&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Product_of_rings |
is dbo:wikiPageDisambiguates of |
dbr:Product |
is dbo:wikiPageRedirects of |
dbr:Product_ring dbr:Direct_product_(ring_theory) dbr:Direct_product_of_rings dbr:Direct_product_ring dbr:Direct_sum_of_rings dbr:Product_of_ring dbr:Complete_direct_sum |
is dbo:wikiPageWikiLink of |
dbr:Product_ring dbr:List_of_abstract_algebra_topics dbr:List_of_commutative_algebra_topics dbr:Quotient_ring dbr:Zero_divisor dbr:Frobenius_algebra dbr:Idempotent_(ring_theory) dbr:Matrix_ring dbr:Wedderburn–Artin_theorem dbr:Noncommutative_ring dbr:Fourier_transform_on_finite_groups dbr:Product dbr:Product_(mathematics) dbr:Chinese_remainder_theorem dbr:Bimodule dbr:Henselian_ring dbr:Artinian_ring dbr:Square-free_integer dbr:Group_ring dbr:Multiplicative_group_of_integers_modulo_n dbr:Weak_dimension dbr:Direct_product_(ring_theory) dbr:Direct_product_of_rings dbr:Direct_product_ring dbr:Direct_sum_of_rings dbr:Product_of_ring dbr:Complete_direct_sum |
is foaf:primaryTopic of |
wikipedia-en:Product_of_rings |