Regular singular point (original) (raw)

About DBpedia

In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.

Property Value
dbo:abstract In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different. (en) 복소 상미분 방정식 이론에서, 정칙 특이점(正則特異點, 영어: regular singularity)은 선형 상미분 방정식의 해가 유리형 함수를 이루는 특이점이다. 정칙 특이점 근처에서는 프로베니우스 방법을 적용하여 미분 방정식의 해를 구할 수 있다. (ko) In matematica, nella teoria delle equazioni differenziali lineari di variabile complessa, un punto fuchsiano, anche detto singolarità fucsiana o punto singolare regolare, è un tipo particolare di punto singolare in corrispondenza del quale le soluzioni dell'equazione crescono non più velocemente di un polinomio. Il nome si deve a Lazarus Fuchs. Un'equazione differenziale ordinaria lineare omogenea definita nel piano complesso, di cui i coefficienti sono funzioni analitiche, è detta equazione fuchsiana se tutti i punti singolari sono punti fuchsiani sulla sfera di Riemann. (it)
dbo:wikiPageExternalLink https://www.mat.univie.ac.at/~gerald/ftp/book-ode/ https://archive.org/details/functionsofcompl00macruoft https://archive.org/details/theoryofdifferen04forsuoft https://archive.org/details/theoryofordinary0000unse http://name.umdl.umich.edu/ABA9351.0003.001
dbo:wikiPageID 3166061 (xsd:integer)
dbo:wikiPageLength 10231 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123657886 (xsd:integer)
dbo:wikiPageWikiLink dbr:Providence,_Rhode_Island dbr:Quantum_harmonic_oscillator dbr:Schrödinger_equation dbr:Bessel_function dbr:Hypergeometric_function dbr:Riemann_surface dbr:Degree_of_a_polynomial dbr:Analytic_continuation dbr:Analytic_function dbr:Mathematics dbr:McGraw-Hill dbr:G._N._Watson dbr:Möbius_transformation dbr:Limiting_case_(mathematics) dbr:Singularity_(mathematics) dbr:Édouard_Goursat dbr:Frobenius_method dbr:Pole_(complex_analysis) dbr:Newton_polygon dbr:American_Mathematical_Society dbr:Cylindrical_coordinates dbr:E._T._Whittaker dbr:Branch_cut dbr:Henri_Poincaré dbr:Hermite_polynomials dbr:Riemann_sphere dbr:A_Course_of_Modern_Analysis dbc:Complex_analysis dbc:Ordinary_differential_equations dbr:Laplace's_equation dbr:Lazarus_Fuchs dbr:Spherical_coordinates dbr:Integer dbr:Meromorphic_functions dbr:Ordinary_differential_equation dbr:Point_at_infinity dbr:Hypergeometric_equation dbr:Indicial_equation dbr:Punctured_disc dbr:E._T._Copson dbr:Bessel_equation dbr:Monodromy_group
dbp:first M. V. (en) Yu. S. (en)
dbp:last Fedoryuk (en) Il'yashenko (en)
dbp:title Fuchsian equation (en) Regular singular point (en)
dbp:wikiPageUsesTemplate dbt:Anchor dbt:Cite_book dbt:Harvtxt dbt:Math dbt:Mvar dbt:No_footnotes dbt:Var dbt:SpringerEOM
dct:subject dbc:Complex_analysis dbc:Ordinary_differential_equations
rdf:type yago:WikicatOrdinaryDifferentialEquations yago:Abstraction100002137 yago:Communication100033020 yago:DifferentialEquation106670521 yago:Equation106669864 yago:MathematicalStatement106732169 yago:Message106598915 yago:Statement106722453
rdfs:comment In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different. (en) 복소 상미분 방정식 이론에서, 정칙 특이점(正則特異點, 영어: regular singularity)은 선형 상미분 방정식의 해가 유리형 함수를 이루는 특이점이다. 정칙 특이점 근처에서는 프로베니우스 방법을 적용하여 미분 방정식의 해를 구할 수 있다. (ko) In matematica, nella teoria delle equazioni differenziali lineari di variabile complessa, un punto fuchsiano, anche detto singolarità fucsiana o punto singolare regolare, è un tipo particolare di punto singolare in corrispondenza del quale le soluzioni dell'equazione crescono non più velocemente di un polinomio. Il nome si deve a Lazarus Fuchs. Un'equazione differenziale ordinaria lineare omogenea definita nel piano complesso, di cui i coefficienti sono funzioni analitiche, è detta equazione fuchsiana se tutti i punti singolari sono punti fuchsiani sulla sfera di Riemann. (it)
rdfs:label Punto fuchsiano (it) 정칙 특이점 (ko) Regular singular point (en)
owl:sameAs freebase:Regular singular point yago-res:Regular singular point wikidata:Regular singular point dbpedia-it:Regular singular point dbpedia-ko:Regular singular point https://global.dbpedia.org/id/3dXwf
prov:wasDerivedFrom wikipedia-en:Regular_singular_point?oldid=1123657886&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Regular_singular_point
is dbo:wikiPageDisambiguates of dbr:Regular
is dbo:wikiPageRedirects of dbr:Nonessential_singularity dbr:Fuchsian_differential_equation dbr:Fuchsian_equation dbr:Linear_differential_equation_of_the_Fuchsian_class dbr:Regular_differential_equation dbr:Regular_singular_points dbr:Regular_singularities dbr:Regular_singularity dbr:Irregular_singular_point dbr:Irregular_singularity
is dbo:wikiPageWikiLink of dbr:Nonessential_singularity dbr:Hypergeometric_function dbr:Representation_theory_of_the_Lorentz_group dbr:List_of_mathematical_properties_of_points dbr:Power_series_solution_of_differential_equations dbr:Confluent_hypergeometric_function dbr:Timeline_of_calculus_and_mathematical_analysis dbr:Timeline_of_mathematics dbr:Legendre_polynomials dbr:Ludwig_Schlesinger dbr:Frobenius_method dbr:Frobenius_solution_to_the_hypergeometric_equation dbr:Fuchs'_theorem dbr:Fuchs_relation dbr:Fuchsian_theory dbr:Fuchsian_differential_equation dbr:Riemann–Hilbert_correspondence dbr:Knizhnik–Zamolodchikov_equations dbr:Regular dbr:Baer_function dbr:Lazarus_Fuchs dbr:Heun_function dbr:List_of_things_named_after_Charles_Hermite dbr:Schwarz_triangle_function dbr:Virasoro_conformal_block dbr:Fuchsian_equation dbr:Linear_differential_equation_of_the_Fuchsian_class dbr:Regular_differential_equation dbr:Regular_singular_points dbr:Regular_singularities dbr:Regular_singularity dbr:Irregular_singular_point dbr:Irregular_singularity
is foaf:primaryTopic of wikipedia-en:Regular_singular_point