System of polynomial equations (original) (raw)

About DBpedia

En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices.

thumbnail

Property Value
dbo:abstract En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. En un sistema de ecuaciones algebraicas, las incógnitas son valores numéricos menores a la constante (o más generalmente elementos de un cuerpo sobre el que se plantean las ecuaciones), mientras que en una ecuación diferencial las incógnitas son funciones o distribuciones de un cierto conjunto definido de antemano. Una solución de dicho sistema es por tanto, un valor o una función que substituida en las ecuaciones del sistema hace que éstas se cumplan automáticamente sin que se llegue a una contradicción. En otras palabras el valor que reemplazamos en las incógnitas debe hacer cumplir la igualdad del sistema. Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices. (es) Sistem persamaan polinomial (terkadang hanya sistem polinomial) adalah himpunan persamaan simultan f1 = 0, ..., fh = 0 dimana fi adalah polinomial dalam beberapa variabel, misalnya x1, ..., xn, atas beberapa bidang k. Solusi dari sistem polinomial adalah sekumpulan nilai untuk xi yang termasuk dalam beberapa ekstensi bidang K dari k , dan membuat semua persamaan menjadi benar. Jika k adalah bidang bilangan rasional, K umumnya diasumsikan sebagai bidang bilangan kompleks, karena setiap solusi milik ekstensi bidang dari k , yang isomorfik ke subkolom dari bilangan kompleks. Artikel ini adalah tentang metode untuk memecahkan, yaitu menemukan semua solusi atau menjelaskannya. Karena metode ini dirancang untuk diimplementasikan di komputer, Penekanan diberikan pada bidang k yang komputasi (termasuk pengujian persamaan) mudah dan efisien, yaitu bidang bilangan rasional s dan . Mencari solusi yang termasuk dalam rangkaian tertentu merupakan masalah yang umumnya jauh lebih sulit, dan berada di luar cakupan artikel ini, kecuali untuk kasus solusi di medan hingga tertentu. Untuk kasus solusi yang semua komponennya adalah bilangan bulat atau bilangan rasional, lihat . * l * * s (in) En mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0, ..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1, ..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau). L'étude de l'ensemble des solutions des systèmes algébriques forme la branche des mathématiques appelée géométrie algébrique. (fr) A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers. This article is about the methods for solving, that is, finding all solutions or describing them. As these methods are designed for being implemented in a computer, emphasis is given on fields k in which computation (including equality testing) is easy and efficient, that is the field of rational numbers and finite fields. Searching for solutions that belong to a specific set is a problem which is generally much more difficult, and is outside the scope of this article, except for the case of the solutions in a given finite field. For the case of solutions of which all components are integers or rational numbers, see Diophantine equation. (en)
dbo:thumbnail wiki-commons:Special:FilePath/BarthSextic.png?width=300
dbo:wikiPageID 27420015 (xsd:integer)
dbo:wikiPageLength 33641 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1120311132 (xsd:integer)
dbo:wikiPageWikiLink dbr:Elimination_theory dbr:Multiplicity_(mathematics) dbr:MPSolve dbr:Monomial_order dbr:Algebraic_closure dbr:Algebraic_number_field dbr:Algebraically_closed_field dbc:Equations dbr:Cylindrical_algebraic_decomposition dbr:Descartes'_rule_of_signs dbr:Double_exponential_function dbr:Indeterminate_(variable) dbr:Complex_number dbr:Connected_component_(topology) dbr:Optimization_(mathematics) dbr:Fundamental_theorem_of_algebra dbr:Modular_arithmetic dbr:Underdetermined_system dbr:System_of_nonlinear_equations dbr:Closed-form_expression dbr:Commutative_algebra dbr:Computational_complexity dbr:Krull's_principal_ideal_theorem dbr:Overdetermined_system dbr:Bézout's_theorem dbr:Triangular_decomposition dbr:Trigonometric_functions dbr:Tuple dbr:Linear_combination dbr:Algebraic_geometry dbr:Algebraic_variety dbc:Algebra dbr:Field_(mathematics) dbr:Finite_field dbr:Barth_surface dbr:Dimension_of_an_algebraic_variety dbr:Formal_derivative dbr:Floating_point dbr:Primary_decomposition dbr:Radical_of_an_ideal dbr:Regular_chain dbr:Regular_semi-algebraic_system dbr:Gröbner_basis dbr:Hilbert's_Nullstellensatz dbr:Wu's_method_of_characteristic_set dbr:Abel–Ruffini_theorem dbr:Aberth_method dbc:Polynomials dbc:Algebraic_geometry dbc:Computer_algebra dbr:Systems_of_polynomial_inequalities dbr:Homotopy dbr:Zero-dimensional_space dbr:Diophantine_equation dbr:Maple_(software) dbr:Polynomial dbr:Field_extension dbr:Algebraically_closed dbr:Newton's_method dbr:Rational_number dbr:Real_number dbr:Trigonometric_polynomial dbr:Singular_point_of_an_algebraic_variety dbr:Simultaneous_equations dbr:Characteristic_zero dbr:Inconsistent_equations dbr:File:BarthSextic.png
dbp:wikiPageUsesTemplate dbt:Anchor dbt:As_of dbt:Citation_needed dbt:Cite_book dbt:Main dbt:Math dbt:Mvar dbt:Pi dbt:Refbegin dbt:Refend dbt:Reflist dbt:Sfrac dbt:Short_description dbt:Sub dbt:Sup
dcterms:subject dbc:Equations dbc:Algebra dbc:Polynomials dbc:Algebraic_geometry dbc:Computer_algebra
gold:hypernym dbr:Set
rdf:type yago:Abstraction100002137 yago:Communication100033020 yago:Equation106669864 yago:Function113783816 yago:MathematicalRelation113783581 yago:MathematicalStatement106732169 yago:Message106598915 yago:Polynomial105861855 yago:Relation100031921 yago:Statement106722453 yago:WikicatEquations yago:WikicatPolynomials
rdfs:comment En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices. (es) Sistem persamaan polinomial (terkadang hanya sistem polinomial) adalah himpunan persamaan simultan f1 = 0, ..., fh = 0 dimana fi adalah polinomial dalam beberapa variabel, misalnya x1, ..., xn, atas beberapa bidang k. Solusi dari sistem polinomial adalah sekumpulan nilai untuk xi yang termasuk dalam beberapa ekstensi bidang K dari k , dan membuat semua persamaan menjadi benar. Jika k adalah bidang bilangan rasional, K umumnya diasumsikan sebagai bidang bilangan kompleks, karena setiap solusi milik ekstensi bidang dari k , yang isomorfik ke subkolom dari bilangan kompleks. (in) A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers. (en) En mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0, ..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1, ..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau). (fr)
rdfs:label Sistema de ecuaciones algebraicas (es) Système d'équations algébriques (fr) Sistem persamaan polinomial (in) System of polynomial equations (en)
owl:sameAs freebase:System of polynomial equations yago-res:System of polynomial equations wikidata:System of polynomial equations wikidata:System of polynomial equations dbpedia-es:System of polynomial equations dbpedia-fr:System of polynomial equations dbpedia-id:System of polynomial equations https://global.dbpedia.org/id/4vzTd
prov:wasDerivedFrom wikipedia-en:System_of_polynomial_equations?oldid=1120311132&ns=0
foaf:depiction wiki-commons:Special:FilePath/BarthSextic.png
foaf:isPrimaryTopicOf wikipedia-en:System_of_polynomial_equations
is dbo:wikiPageRedirects of dbr:Nonlinear_equation_system dbr:Numerical_algorithms_for_solving_polynomial_systems dbr:Systems_of_polynomial_equations dbr:Solving_systems_of_polynomial_equations dbr:Solvers_for_polynomial_systems dbr:Algorithms_for_numerically_solving_systems_of_polynomial_equations dbr:Algorithms_for_solving_systems_of_polynomial_equations dbr:Methods_for_numerically_solving_systems_of_polynomial_equations dbr:Methods_for_solving_systems_of_polynomial_equations dbr:Polynomial_equation_system dbr:Polynomial_system dbr:Polynomial_system_of_equations dbr:Polynomial_system_solving dbr:Polynomial_systems_of_equations dbr:Software_for_solving_polynomial_systems
is dbo:wikiPageWikiLink of dbr:Nonlinear_equation_system dbr:Algebraic_equation dbr:Resultant dbr:Intersection_(geometry) dbr:Numerical_algebraic_geometry dbr:Numerical_algorithms_for_solving_polynomial_systems dbr:Critical_point_(mathematics) dbr:Equation dbr:GAUSS_(software) dbr:Underdetermined_system dbr:Systems_of_polynomial_equations dbr:Arithmetic_geometry dbr:Computational_complexity dbr:Main_theorem_of_elimination_theory dbr:System_of_equations dbr:Algebraic_variety dbr:Dimension_of_an_algebraic_variety dbr:Regular_chain dbr:Gröbner_basis dbr:Wu's_method_of_characteristic_set dbr:Solving_systems_of_polynomial_equations dbr:Diophantine_equation dbr:Polynomial dbr:Solvers_for_polynomial_systems dbr:Free_abelian_group dbr:Algorithms_for_numerically_solving_systems_of_polynomial_equations dbr:Algorithms_for_solving_systems_of_polynomial_equations dbr:Methods_for_numerically_solving_systems_of_polynomial_equations dbr:Methods_for_solving_systems_of_polynomial_equations dbr:Variety_(universal_algebra) dbr:System_of_bilinear_equations dbr:Tensor_rank_decomposition dbr:Theory_of_equations dbr:Multi-homogeneous_Bézout_theorem dbr:Teo_Mora dbr:Polynomial_equation_system dbr:Polynomial_system dbr:Polynomial_system_of_equations dbr:Polynomial_system_solving dbr:Polynomial_systems_of_equations dbr:Software_for_solving_polynomial_systems
is rdfs:seeAlso of dbr:Numerical_algebraic_geometry dbr:Equation_solving
is foaf:primaryTopic of wikipedia-en:System_of_polynomial_equations