The Role of Probiotics and Prebiotics in Inducing Gut Immunity (original) (raw)

1. Pabst R, Russell MW, Brandtzaeg P.Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol (2008) 29:206–8 10.1016/j.it.2008.02.006 [PubMed] [CrossRef] [Google Scholar]

2. Hooper LV, Macpherson AJ.Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol (2010) 10:159–69 10.1038/nri2710 [PubMed] [CrossRef] [Google Scholar]

3. Hooper LV, Littman DR, Macpherson AJ.Interactions between the microbiota and the immune system. Science (2012) 336:1268–73 10.1126/science.1223490 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al.A human gut microbial gene catalogue established by metagenomic sequencing. Nature (2010) 464:59–65 10.1038/nature08821 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Louis P, O’Byrne CP.Life in the gut: microbial responses to stress in the gastrointestinal tract. Sci Prog (2010) 93:7–36 10.3184/003685009X12605525292307 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Kamada N, Chen GY, Inohara N, Nunez G.Control of pathogens and pathobionts by the gut microbiota. Nat Immunol (2013) 14:685–90 10.1038/ni.2608ni.2608 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Artis D.Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol (2008) 8:411–20 10.1038/nri2316 [PubMed] [CrossRef] [Google Scholar]

8. Wells JM, Rossi O, Meijerink M, van Baarlen P.Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A (2011) 108(Suppl 1):4607–14 10.1073/pnas.10000921071000092107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Duerr CU, Hornef MW.The mammalian intestinal epithelium as integral player in the establishment and maintenance of host-microbial homeostasis. Semin Immunol (2012) 24:25–35 10.1016/j.smim.2011.11.002 [PubMed] [CrossRef] [Google Scholar]

10. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al.Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature (2012) 482:179–85 10.1038/nature10809nature10809 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al.Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med (2013) 5:193ra191. 10.1126/scitranslmed.30064385/193/193ra91 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al.Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science (2013) 339:548–54 10.1126/science.1229000 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Turnbaugh PJ, Gordon JI.The core gut microbiome, energy balance and obesity. J Physiol (2009) 587:4153–8 10.1113/jphysiol.2009.174136 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al.A core gut microbiome in obese and lean twins. Nature (2009) 457:480–4 10.1038/nature07540 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, De Vos WM, et al.Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med (2013) 368:407–15 10.1056/NEJMoa1205037 [PubMed] [CrossRef] [Google Scholar]

16. Blottiere HM, De Vos WM, Ehrlich SD, Dore J.Human intestinal metagenomics: state of the art and future. Curr Opin Microbiol (2013) 16:232–9 10.1016/j.mib.2013.06.006S1369-5 [PubMed] [CrossRef] [Google Scholar]

17. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al.Richness of human gut microbiome correlates with metabolic markers. Nature (2013) 500:541–6 10.1038/nature12506 [PubMed] [CrossRef] [Google Scholar]

18. Tlaskalova-Hogenova H, Stepankova R, Hudcovic T, Tuckova L, Cukrowska B, Lodinova-Zadnikova R, et al.Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett (2004) 93:97–108 10.1016/j.imlet.2004.02.005 [PubMed] [CrossRef] [Google Scholar]

19. Kamada N, Nunez G.Role of the gut microbiota in the development and function of lymphoid cells. J Immunol (2013) 190:1389–95 10.4049/jimmunol.1203100190/4/1389 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Gordon HA.Morphological and physiological characterization of germfree life. Ann N Y Acad Sci (1959) 78:208–20 10.1111/j.1749-6632.1959.tb53104.x [PubMed] [CrossRef] [Google Scholar]

21. Glaister JR.Factors affecting the lymphoid cells in the small intestinal epithelium of the mouse. Int Arch Allergy Appl Immunol (1973) 45:719–30 10.1159/000231071 [PubMed] [CrossRef] [Google Scholar]

22. Cebra JJ, Periwal SB, Lee G, Lee F, Shroff KE.Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev Immunol (1998) 6:13–8 10.1155/1998/68382 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Wagner M, Wostmann BS.Serum protein fractions and antibody studies in gnotobiotic animals reared germfree or monocontaminated. Ann N Y Acad Sci (1961) 94:210–7 10.1111/j.1749-6632.1961.tb35542.x [PubMed] [CrossRef] [Google Scholar]

24. Sell S, Fahey JL.Relationship between gamma-globulin metabolism and low serum gamma-globulin in germfree mice. J Immunol (1964) 93:81–7 [PubMed] [Google Scholar]

25. Moreau MC, Ducluzeau R, Guy-Grand D, Muller MC.Increase in the population of duodenal immunoglobulin A plasmocytes in axenic mice associated with different living or dead bacterial strains of intestinal origin. Infect Immun (1978) 21:532–9 [PMC free article] [PubMed] [Google Scholar]

26. Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, et al.Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut (2003) 52:237–42 10.1136/gut.52.2.237 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EM, et al.An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut (2012) 61:997–1006 10.1136/gutjnl-2011-301501 [PubMed] [CrossRef] [Google Scholar]

28. Kamada N, Seo SU, Chen GY, Nunez G.Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol (2013) 13:321–35 10.1038/nri3430 [PubMed] [CrossRef] [Google Scholar]

29. Simren M, Barbara G, Flint HJ, Spiegel BM, Spiller RC, Vanner S, et al.Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut (2013) 62:159–76 10.1136/gutjnl-2012-302167 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G, et al.Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol (2011) 128(646–652):e641–5 10.1016/j.jaci.2011.04.060 [PubMed] [CrossRef] [Google Scholar]

31. Kalliomaki M, Isolauri E.Pandemic of atopic diseases – a lack of microbial exposure in early infancy? Curr Drug Targets Infect Disord (2002) 2:193–9 10.2174/1568005023342452 [PubMed] [CrossRef] [Google Scholar]

32. Rautava S, Kalliomaki M, Isolauri E.Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J Allergy Clin Immunol (2002) 109:119–21 10.1067/mai.2002.120273 [PubMed] [CrossRef] [Google Scholar]

33. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, et al.Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol (2007) 119:192–8 10.1016/j.jaci.2006.09.009 [PubMed] [CrossRef] [Google Scholar]

34. Barker DJ.The origins of the developmental origins theory. J Intern Med (2007) 261:412–7 10.1111/j.1365-2796.2007.01809.x [PubMed] [CrossRef] [Google Scholar]

35. Boyle RJ, Mah LJ, Chen A, Kivivuori S, Robins-Browne RM, Tang ML.Effects of Lactobacillus GG treatment during pregnancy on the development of fetal antigen-specific immune responses. Clin Exp Allergy (2008) 38:1882–90 10.1111/j.1365-2222.2008.03100.x [PubMed] [CrossRef] [Google Scholar]

36. Laitinen K, Poussa T, Isolauri E.Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomised controlled trial. Br J Nutr (2009) 101:1679–87 10.1017/S0007114508111461 [PubMed] [CrossRef] [Google Scholar]

37. Podolsky S.Cultural divergence: Elie Metchnikoff’s Bacillus bulgaricus therapy and his underlying concept of health. Bull Hist Med (1998) 72:1–27 10.1353/bhm.1998.0056 [PubMed] [CrossRef] [Google Scholar]

38. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R.Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell (2004) 118:229–41 10.1016/j.cell.2004.07.002 [PubMed] [CrossRef] [Google Scholar]

39. Eberl G, Boneca IG.Bacteria and MAMP-induced morphogenesis of the immune system. Curr Opin Immunol (2010) 22:448–54 10.1016/j.coi.2010.06.002 [PubMed] [CrossRef] [Google Scholar]

40. Abreu MT.Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol (2010) 10:131–44 10.1038/nri2707nri2707 [PubMed] [CrossRef] [Google Scholar]

41. Yeretssian G.Effector functions of NLRs in the intestine: innate sensing, cell death, and disease. Immunol Res (2012) 54:25–36 10.1007/s12026-012-8317-3 [PubMed] [CrossRef] [Google Scholar]

42. Lavelle EC, Murphy C, O’Neill LA, Creagh EM.The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol (2010) 3:17–28 10.1038/mi.2009.124 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Maynard CL, Elson CO, Hatton RD, Weaver CT.Reciprocal interactions of the intestinal microbiota and immune system. Nature (2012) 489:231–41 10.1038/nature11551 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Allen SJ, Okoko B, Martinez E, Gregorio G, Dans LF.Probiotics for treating infectious diarrhoea. Cochrane Database Syst Rev (2004) 2:CD003048. 10.1002/14651858.CD003048.pub2 [PubMed] [CrossRef] [Google Scholar]

45. Guandalini S.Probiotics for prevention and treatment of diarrhea. J Clin Gastroenterol (2011) 45(Suppl):S149–53 10.1097/MCG.0b013e3182257e98 [PubMed] [CrossRef] [Google Scholar]

46. Szajewska H, Wanke M, Patro B.Meta-analysis: the effects of Lactobacillus rhamnosus GG supplementation for the prevention of healthcare-associated diarrhoea in children. Aliment Pharmacol Ther (2011) 34:1079–87 10.1111/j.1365-2036.2011.04837.x [PubMed] [CrossRef] [Google Scholar]

47. Szajewska H, Mrukowicz J.Meta-analysis: non-pathogenic yeast Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther (2005) 22:365–72 10.1111/j.1365-2036.2005.02624.x [PubMed] [CrossRef] [Google Scholar]

48. Correa NB, Peret Filho LA, Penna FJ, Lima FM, Nicoli JR.A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J Clin Gastroenterol (2005) 39:385–9 10.1097/01.mcg.0000159217.47419.5b [PubMed] [CrossRef] [Google Scholar]

49. Morais MB, Jacob CM.The role of probiotics and prebiotics in pediatric practice. J Pediatr (Rio J) (2006) 82:S189–97 10.2223/JPED.1559 [PubMed] [CrossRef] [Google Scholar]

50. Wenus C, Goll R, Loken EB, Biong AS, Halvorsen DS, Florholmen J.Prevention of antibiotic-associated diarrhoea by a fermented probiotic milk drink. Eur J Clin Nutr (2008) 62:299–301 10.1038/sj.ejcn.1602718 [PubMed] [CrossRef] [Google Scholar]

51. Savard P, Lamarche B, Paradis ME, Thiboutot H, Laurin E, Roy D.Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol (2011) 149:50–7 10.1016/j.ijfoodmicro.2010.12.026 [PubMed] [CrossRef] [Google Scholar]

52. Taipale T, Pienihakkinen K, Isolauri E, Larsen C, Brockmann E, Alanen P, et al.Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy. Br J Nutr (2011) 105:409–16 10.1017/S0007114510003685 [PubMed] [CrossRef] [Google Scholar]

53. Dinleyici EC, Eren M, Ozen M, Yargic ZA, Vandenplas Y.Effectiveness and safety of Saccharomyces boulardii for acute infectious diarrhea. Expert Opin Biol Ther (2012) 12:395–410 10.1517/14712598.2012.664129 [PubMed] [CrossRef] [Google Scholar]

54. Holscher HD, Czerkies LA, Cekola P, Litov R, Benbow M, Santema S, et al.Bifidobacterium lactis Bb12 enhances intestinal antibody response in formula-fed infants: a randomized, double-blind, controlled trial. JPEN J Parenter Enteral Nutr (2012) 36:106S–17S 10.1177/014860711143081736/1_suppl/106S [PubMed] [CrossRef] [Google Scholar]

55. Guandalini S, Pensabene L, Zikri MA, Dias JA, Casali LG, Hoekstra H, et al.Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: a multicenter European trial. J Pediatr Gastroenterol Nutr (2000) 30:54–60 10.1097/00005176-200001000-00018 [PubMed] [CrossRef] [Google Scholar]

56. Canani RB, Cirillo P, Terrin G, Cesarano L, Spagnuolo MI, De Vincenzo A, et al.Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ (2007) 335:340. 10.1136/bmj.39272.581736.55 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Szajewska H, Skorka A, Ruszczynski M, Gieruszczak-Bialek D.Meta-analysis: Lactobacillus GG for treating acute gastroenteritis in children – updated analysis of randomised controlled trials. Aliment Pharmacol Ther (2013) 38(5):467–76 10.1111/apt.12403 [PubMed] [CrossRef] [Google Scholar]

58. Vanderhoof JA, Whitney DB, Antonson DL, Hanner TL, Lupo JV, Young RJ.Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. J Pediatr (1999) 135:564–8 10.1016/S0022-3476(99)70053-3 [PubMed] [CrossRef] [Google Scholar]

59. Horvath A, Dziechciarz P, Szajewska H.Meta-analysis: Lactobacillus rhamnosus GG for abdominal pain-related functional gastrointestinal disorders in childhood. Aliment Pharmacol Ther (2011) 33:1302–10 10.1111/j.1365-2036.2011.04665.x [PubMed] [CrossRef] [Google Scholar]

60. Piescik-Lech M, Urbanska M, Szajewska H.Lactobacillus GG (LGG) and smectite versus LGG alone for acute gastroenteritis: a double-blind, randomized controlled trial. Eur J Pediatr (2013) 172:247–53 10.1007/s00431-012-1878-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Hatakka K, Savilahti E, Ponka A, Meurman JH, Poussa T, Nase L, et al.Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial. BMJ (2001) 322:1327. 10.1136/bmj.322.7298.1327 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hojsak I, Snovak N, Abdovic S, Szajewska H, Misak Z, Kolacek S.Lactobacillus GG in the prevention of gastrointestinal and respiratory tract infections in children who attend day care centers: a randomized, double-blind, placebo-controlled trial. Clin Nutr (2010) 29:312–6 10.1016/j.clnu.2009.09.008 [PubMed] [CrossRef] [Google Scholar]

63. Liu S, Hu P, Du X, Zhou T, Pei X.Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: a meta-analysis of randomized, placebo-controlled trials. Indian Pediatr (2013) 50:377–81 10.1007/s13312-013-0123-z [PubMed] [CrossRef] [Google Scholar]

64. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E.Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet (2001) 357:1076–9 10.1016/S0140-6736(00)04259-8 [PubMed] [CrossRef] [Google Scholar]

65. Kalliomaki M, Salminen S, Poussa T, Isolauri E.Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol (2007) 119:1019–21 10.1016/j.jaci.2006.12.608 [PubMed] [CrossRef] [Google Scholar]

66. Nista EC, Candelli M, Cremonini F, Cazzato IA, Zocco MA, Franceschi F, et al.Bacillus clausii therapy to reduce side-effects of anti-helicobacter pylori treatment: randomized, double-blind, placebo controlled trial. Aliment Pharmacol Ther (2004) 20:1181–8 10.1111/j.1365-2036.2004.02274.x [PubMed] [CrossRef] [Google Scholar]

67. Wilhelm SM, Johnson JL, Kale-Pradhan PB.Treating bugs with bugs: the role of probiotics as adjunctive therapy for Helicobacter pylori. Ann Pharmacother (2011) 45:960–6 10.1345/aph.1Q104 [PubMed] [CrossRef] [Google Scholar]

68. Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, et al.Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag (2007) 3:13–7 10.2147/tcrm.2007.3.1.13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Szajewska H, Skorka A, Dylag M.Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children. Aliment Pharmacol Ther (2007) 25:257–64 10.1111/j.1365-2036.2006.03202.x [PubMed] [CrossRef] [Google Scholar]

70. Piescik-Lech M, Shamir R, Guarino A, Szajewska H.Review article: the management of acute gastroenteritis in children. Aliment Pharmacol Ther (2013) 37:289–303 10.1111/apt.12163 [PubMed] [CrossRef] [Google Scholar]

71. McFarland LV.Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol (2006) 101:812–22 10.1111/j.1572-0241.2006.00465.x [PubMed] [CrossRef] [Google Scholar]

72. Segarra-Newnham M.Probiotics for _Clostridium difficile_-associated diarrhea: focus on Lactobacillus rhamnosus GG and Saccharomyces boulardii. Ann Pharmacother (2007) 41:1212–21 10.1345/aph.1K110 [PubMed] [CrossRef] [Google Scholar]

73. Szajewska H, Ruszczynski M, Radzikowski A.Probiotics in the prevention of antibiotic-associated diarrhea in children: a meta-analysis of randomized controlled trials. J Pediatr (2006) 149:367–72 10.1016/j.jpeds.2006.04.053 [PubMed] [CrossRef] [Google Scholar]

74. Doron SI, Hibberd PL, Gorbach SL.Probiotics for prevention of antibiotic-associated diarrhea. J Clin Gastroenterol (2008) 42(Suppl 2):S58–63 10.1097/MCG.0b013e3181618ab7 [PubMed] [CrossRef] [Google Scholar]

75. Johnston BC, Goldenberg JZ, Vandvik PO, Sun X, Guyatt GH.Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev (2011) 11:CD004827. 10.1002/14651858.CD004827.pub3 [PubMed] [CrossRef] [Google Scholar]

76. McFarland LV.Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol (2010) 16:2202–22 10.3748/wjg.v16.i18.2202 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Guslandi M, Mezzi G, Sorghi M, Testoni PA.Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci (2000) 45:1462–4 10.1023/A:1005588911207 [PubMed] [CrossRef] [Google Scholar]

78. Guslandi M, Giollo P, Testoni PA.A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol (2003) 15:697–8 10.1097/01.meg.0000059138.68845.06 [PubMed] [CrossRef] [Google Scholar]

79. Guslandi M.Saccharomyces boulardii plus rifaximin in mesalamine-intolerant ulcerative colitis. J Clin Gastroenterol (2010) 44:385. 10.1097/MCG.0b013e3181cb4233 [PubMed] [CrossRef] [Google Scholar]

80. Saint-Marc T, Rossello-Prats L, Touraine JL.[Efficacy of Saccharomyces boulardii in the treatment of diarrhea in AIDS]. Ann Med Interne (Paris) (1991) 142:64–5 [PubMed] [Google Scholar]

81. Cremonini F, Di Caro S, Covino M, Armuzzi A, Gabrielli M, Santarelli L, et al.Effect of different probiotic preparations on anti-helicobacter pylori therapy-related side effects: a parallel group, triple blind, placebo-controlled study. Am J Gastroenterol (2002) 97:2744–9 10.1111/j.1572-0241.2002.07063.x [PubMed] [CrossRef] [Google Scholar]

82. Szajewska H, Horvath A, Piwowarczyk A.Meta-analysis: the effects of Saccharomyces boulardii supplementation on Helicobacter pylori eradication rates and side effects during treatment. Aliment Pharmacol Ther (2010) 32:1069–79 10.1111/j.1365-2036.2010.04457.x [PubMed] [CrossRef] [Google Scholar]

83. Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, et al.Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr Int (2003) 45:86–90 10.1046/j.1442-200X.2003.01671.x [PubMed] [CrossRef] [Google Scholar]

84. Shimbo I, Yamaguchi T, Odaka T, Nakajima K, Koide A, Koyama H, et al.Effect of Clostridium butyricum on fecal flora in Helicobacter pylori eradication therapy. World J Gastroenterol (2005) 11:7520–4 [PMC free article] [PubMed] [Google Scholar]

85. Kruis W, Fric P, Pokrotnieks J, Lukas M, Fixa B, Kascak M, et al.Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut (2004) 53:1617–23 10.1136/gut.2003.037747 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Henker J, Muller S, Laass MW, Schreiner A, Schulze J.Probiotic Escherichia coli Nissle 1917 (EcN) for successful remission maintenance of ulcerative colitis in children and adolescents: an open-label pilot study. Z Gastroenterol (2008) 46:874–5 10.1055/s-2008-1027463 [PubMed] [CrossRef] [Google Scholar]

87. Matthes H, Krummenerl T, Giensch M, Wolff C, Schulze J.Clinical trial: probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN). BMC Complement Altern Med (2010) 10:13. 10.1186/1472-6882-10-13 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, et al.The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr (2007) 166:311–8 10.1007/s00431-007-0419-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Henker J, Laass MW, Blokhin BM, Maydannik VG, Bolbot YK, Elze M, et al.Probiotic Escherichia coli Nissle 1917 versus placebo for treating diarrhea of greater than 4 days duration in infants and toddlers. Pediatr Infect Dis J (2008) 27:494–9 10.1097/INF.0b013e318169034c [PubMed] [CrossRef] [Google Scholar]

90. Mollenbrink M, Bruckschen E.[Treatment of chronic constipation with physiologic Escherichia coli bacteria. Results of a clinical study of the effectiveness and tolerance of microbiological therapy with the E. coli Nissle 1917 strain (Mutaflor)]. Med Klin (Munich) (1994) 89:587–93 [PubMed] [Google Scholar]

91. Plassmann D, Schulte-Witte H.[Treatment of irritable bowel syndrome with Escherichia coli strain Nissle 1917 (EcN): a retrospective survey]. Med Klin (Munich) (2007) 102:888–92 10.1007/s00063-007-1116-2 [PubMed] [CrossRef] [Google Scholar]

92. Kruis W, Chrubasik S, Boehm S, Stange C, Schulze J.A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Colorectal Dis (2012) 27:467–74 10.1007/s00384-011-1363-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Chapman TM, Plosker GL, Figgitt DP.VSL#3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases. Drugs (2006) 66:1371–87 10.2165/00003495-200666100-00006 [PubMed] [CrossRef] [Google Scholar]

94. Jonkers D, Penders J, Masclee A, Pierik M.Probiotics in the management of inflammatory bowel disease: a systematic review of intervention studies in adult patients. Drugs (2012) 72:803–23 10.2165/11632710-000000000-000003 [PubMed] [CrossRef] [Google Scholar]

95. Holubar SD, Cima RR, Sandborn WJ, Pardi DS.Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst Rev (2010) 6:CD001176. 10.1002/14651858.CD001176.pub2 [PubMed] [CrossRef] [Google Scholar]

96. Wall GC, Schirmer LL, Anliker LE, Tigges AE.Pharmacotherapy for acute pouchitis. Ann Pharmacother (2011) 45:1127–37 10.1345/aph.1P790 [PubMed] [CrossRef] [Google Scholar]

97. Camilleri M.Probiotics and irritable bowel syndrome: rationale, putative mechanisms, and evidence of clinical efficacy. J Clin Gastroenterol (2006) 40:264–9 10.1097/00004836-200603000-00020 [PubMed] [CrossRef] [Google Scholar]

98. Mohan R, Koebnick C, Schildt J, Mueller M, Radke M, Blaut M.Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatr Res (2008) 64:418–22 10.1203/PDR.0b013e318181b7fa [PubMed] [CrossRef] [Google Scholar]

99. Wang Z, Wang J, Cheng Y, Liu X, Huang Y.Secreted factors from Bifidobacterium animalis subsp. lactis inhibit NF-kappaB-mediated interleukin-8 gene expression in Caco-2 cells. Appl Environ Microbiol (2011) 77:8171–4 10.1128/AEM.06145-11AEM.06145-11 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Ruiz PA, Hoffmann M, Szcesny S, Blaut M, Haller D.Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology (2005) 115:441–50 10.1111/j.1365-2567.2005.02176.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M, et al.Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol (2006) 44:4025–31 10.1128/JCM.00767-06 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Khailova L, Frank DN, Dominguez JA, Wischmeyer PE.Probiotic administration reduces mortality and improves intestinal epithelial homeostasis in experimental sepsis. Anesthesiology (2013) 119:166–77 10.1097/ALN.0b013e318291c2fc [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Giahi L, Aumueller E, Elmadfa I, Haslberger AG.Regulation of TLR4, p38 MAPkinase, IkappaB and miRNAs by inactivated strains of lactobacilli in human dendritic cells. Benef Microbes (2012) 3:91–8 10.3920/BM2011.0052 [PubMed] [CrossRef] [Google Scholar]

104. Kim SW, Park KY, Kim B, Kim E, Hyun CK.Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun (2013) 431:258–63 10.1016/j.bbrc.2012.12.121 [PubMed] [CrossRef] [Google Scholar]

105. Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al.Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest (2011) 121:2242–53 10.1172/JCI4403144031 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Lin PW, Myers LE, Ray L, Song SC, Nasr TR, Berardinelli AJ, et al.Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic Biol Med (2009) 47:1205–11 10.1016/j.freeradbiomed.2009.07.033 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Seth A, Yan F, Polk DB, Rao RK.Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol (2008) 294:G1060–9 10.1152/ajpgi.00202.2007 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Ciprandi G, Vizzaccaro A, Cirillo I, Tosca MA.Bacillus clausii exerts immuno-modulatory activity in allergic subjects: a pilot study. Eur Ann Allergy Clin Immunol (2005) 37:129–34 [PubMed] [Google Scholar]

109. Gabrielli M, Lauritano EC, Scarpellini E, Lupascu A, Ojetti V, Gasbarrini G, et al.Bacillus clausii as a treatment of small intestinal bacterial overgrowth. Am J Gastroenterol (2009) 104:1327–8 10.1038/ajg.2009.91ajg200991 [PubMed] [CrossRef] [Google Scholar]

110. Urdaci MC, Bressollier P, Pinchuk I.Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol (2004) 38:S86–90 10.1097/01.mcg.0000128925.06662.69 [PubMed] [CrossRef] [Google Scholar]

111. Castagliuolo I, Riegler MF, Valenick L, Lamont JT, Pothoulakis C.Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun (1999) 67:302–7 [PMC free article] [PubMed] [Google Scholar]

112. Qamar A, Aboudola S, Warny M, Michetti P, Pothoulakis C, Lamont JT, et al.Saccharomyces boulardii stimulates intestinal immunoglobulin A immune response to Clostridium difficile toxin A in mice. Infect Immun (2001) 69:2762–5 10.1128/IAI.69.4.2762-2765.2001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Pothoulakis C.Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment Pharmacol Ther (2009) 30:826–33 10.1111/j.1365-2036.2009.04102.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Buts JP, De Keyser N.Effects of Saccharomyces boulardii on intestinal mucosa. Dig Dis Sci (2006) 51:1485–92 10.1007/s10620-005-9016-x [PubMed] [CrossRef] [Google Scholar]

115. Dalmasso G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, et al.Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology (2006) 131:1812–25 10.1053/j.gastro.2006.10.001 [PubMed] [CrossRef] [Google Scholar]

116. Thomas S, Przesdzing I, Metzke D, Schmitz J, Radbruch A, Baumgart DC.Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation. Clin Exp Immunol (2009) 156:78–87 10.1111/j.1365-2249.2009.03878.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Rodrigues AC, Cara DC, Fretez SH, Cunha FQ, Vieira EC, Nicoli JR, et al.Saccharomyces boulardii stimulates sIgA production and the phagocytic system of gnotobiotic mice. J Appl Microbiol (2000) 89:404–14 10.1046/j.1365-2672.2000.01128.x [PubMed] [CrossRef] [Google Scholar]

118. Martins FS, Silva AA, Vieira AT, Barbosa FH, Arantes RM, Teixeira MM, et al.Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch Microbiol (2009) 191:623–30 10.1007/s00203-009-0491-x [PubMed] [CrossRef] [Google Scholar]

119. Buts JP, Bernasconi P, Van Craynest MP, Maldague P, De Meyer R.Response of human and rat small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr Res (1986) 20:192–6 10.1203/00006450-198602000-00020 [PubMed] [CrossRef] [Google Scholar]

120. Brandao RL, Castro IM, Bambirra EA, Amaral SC, Fietto LG, Tropia MJ, et al.Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl Environ Microbiol (1998) 64:564–8 [PMC free article] [PubMed] [Google Scholar]

121. Gedek BR.Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses (1999) 42:261–4 10.1046/j.1439-0507.1999.00449.x [PubMed] [CrossRef] [Google Scholar]

122. Martins FS, Vieira AT, Elian SD, Arantes RM, Tiago FC, Sousa LP, et al.Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect (2013) 15:270–9 10.1016/j.micinf.2012.12.007 [PubMed] [CrossRef] [Google Scholar]

123. Chen X, Kokkotou EG, Mustafa N, Bhaskar KR, Sougioultzis S, O’Brien M, et al.Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem (2006) 281:24449–54 10.1074/jbc.M605200200 [PubMed] [CrossRef] [Google Scholar]

124. Martins FS, Dalmasso G, Arantes RM, Doye A, Lemichez E, Lagadec P, et al.Interaction of Saccharomyces boulardii with Salmonella enterica serovar typhimurium protects mice and modifies T84 cell response to the infection. PLoS One (2010) 5:e8925. 10.1371/journal.pone.0008925 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Wu X, Vallance BA, Boyer L, Bergstrom KS, Walker J, Madsen K, et al.Saccharomyces boulardii ameliorates _Citrobacter rodentium_-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol (2008) 294:G295–306 10.1152/ajpgi.00173.2007 [PubMed] [CrossRef] [Google Scholar]

126. Pontier-Bres R, Prodon F, Munro P, Rampal P, Lemichez E, Peyron JF, et al.Modification of Salmonella typhimurium motility by the probiotic yeast strain Saccharomyces boulardii. PLoS One (2012) 7:e33796. 10.1371/journal.pone.0033796 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Generoso SV, Viana ML, Santos RG, Arantes RM, Martins FS, Nicoli JR, et al.Protection against increased intestinal permeability and bacterial translocation induced by intestinal obstruction in mice treated with viable and heat-killed Saccharomyces boulardii. Eur J Nutr (2011) 50:261–9 10.1007/s00394-010-0134-7 [PubMed] [CrossRef] [Google Scholar]

128. Imase K, Takahashi M, Tanaka A, Tokunaga K, Sugano H, Tanaka M, et al.Efficacy of Clostridium butyricum preparation concomitantly with Helicobacter pylori eradication therapy in relation to changes in the intestinal microbiota. Microbiol Immunol (2008) 52:156–61 10.1111/j.1348-0421.2008.00026.x [PubMed] [CrossRef] [Google Scholar]

129. Woo TD, Oka K, Takahashi M, Hojo F, Osaki T, Hanawa T, et al.Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. J Med Microbiol (2011) 60:1617–25 10.1099/jmm.0.033423-0 [PubMed] [CrossRef] [Google Scholar]

130. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S.The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol (2004) 41:219–26 10.1016/j.femsim.2004.03.010 [PubMed] [CrossRef] [Google Scholar]

131. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al.A Single Strain of Clostridium butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host Microbe (2013) 13:711–22 10.1016/j.chom.2013.05.013 [PubMed] [CrossRef] [Google Scholar]

132. Schultz M.Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis (2008) 14:1012–8 10.1002/ibd.20377 [PubMed] [CrossRef] [Google Scholar]

133. Troge A, Scheppach W, Schroeder BO, Rund SA, Heuner K, Wehkamp J, et al.More than a marine propeller – the flagellum of the probiotic Escherichia coli strain Nissle 1917 is the major adhesin mediating binding to human mucus. Int J Med Microbiol (2012) 302:304–14 10.1016/j.ijmm.2012.09.004 [PubMed] [CrossRef] [Google Scholar]

134. Schierack P, Kleta S, Tedin K, Babila JT, Oswald S, Oelschlaeger TA, et al.E. coli Nissle 1917 affects Salmonella adhesion to porcine intestinal epithelial cells. PLoS One (2011) 6:e14712. 10.1371/journal.pone.0014712 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, et al.The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol (2004) 40:223–9 10.1016/S0928-8244(03)00368-7 [PubMed] [CrossRef] [Google Scholar]

136. Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA.Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol (2007) 9:804–16 10.1111/j.1462-5822.2006.00836.x [PubMed] [CrossRef] [Google Scholar]

137. Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M.VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-kappaB pathway in rat model of DSS-induced colitis. Mol Cell Biochem (2013) 374:1–11 10.1007/s11010-012-1488-3 [PubMed] [CrossRef] [Google Scholar]

138. Soo I, Madsen KL, Tejpar Q, Sydora BC, Sherbaniuk R, Cinque B, et al.VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation. Can J Gastroenterol (2008) 22:237–42 [PMC free article] [PubMed] [Google Scholar]

139. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, et al.Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol (2009) 296:G1140–9 10.1152/ajpgi.90534.2008 [PubMed] [CrossRef] [Google Scholar]

140. Dai C, Zhao DH, Jiang M.VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int J Mol Med (2012) 29:202–8 10.3892/ijmm.2011.839 [PubMed] [CrossRef] [Google Scholar]

141. Dharmani P, De Simone C, Chadee K.The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS One (2013) 8:e58671. 10.1371/journal.pone.0058671 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Uronis JM, Arthur JC, Keku T, Fodor A, Carroll IM, Cruz ML, et al.Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm Bowel Dis (2011) 17:289–97 10.1002/ibd.21366 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Vitali B, Ndagijimana M, Maccaferri S, Biagi E, Guerzoni ME, Brigidi P.An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe (2012) 18:386–91 10.1016/j.anaerobe.2012.04.014 [PubMed] [CrossRef] [Google Scholar]

144. Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G.Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy (2011) 66:499–508 10.1111/j.1398-9995.2010.02501.x [PubMed] [CrossRef] [Google Scholar]

145. Thang CL, Boye JI, Zhao X.Low doses of allergen and probiotic supplementation separately or in combination alleviate allergic reactions to cow beta-lactoglobulin in mice. J Nutr (2013) 143:136–41 10.3945/jn.112.169466 [PubMed] [CrossRef] [Google Scholar]

146. Madsen KL.The use of probiotics in gastrointestinal disease. Can J Gastroenterol (2001) 15:817–22 [PubMed] [Google Scholar]

147. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M, et al.VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol (2005) 100:1539–46 10.1111/j.1572-0241.2005.41794.x [PubMed] [CrossRef] [Google Scholar]

148. Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hormannsperger G, et al.Safety assessment of probiotics for human use. Gut Microbes (2010) 1:164–85 10.4161/gmic.1.3.12127 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Fukuda S, Toh H, Taylor TD, Ohno H, Hattori M.Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes (2012) 3:449–54 10.4161/gmic.21214 [PubMed] [CrossRef] [Google Scholar]

150. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al.Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature (2011) 469:543–7 10.1038/nature [PubMed] [CrossRef] [Google Scholar]

151. Martins FS, Rodrigues AC, Tiago FC, Penna FJ, Rosa CA, Arantes RM, et al.Saccharomyces cerevisiae strain 905 reduces the translocation of Salmonella enterica serotype typhimurium and stimulates the immune system in gnotobiotic and conventional mice. J Med Microbiol (2007) 56:352–9 10.1099/jmm.0.46525-0 [PubMed] [CrossRef] [Google Scholar]

152. Martins FS, Elian SD, Vieira AT, Tiago FC, Martins AK, Silva FC, et al.Oral treatment with Saccharomyces cerevisiae strain UFMG 905 modulates immune responses and interferes with signal pathways involved in the activation of inflammation in a murine model of typhoid fever. Int J Med Microbiol (2011) 301:359–64 10.1016/j.ijmm.2010.11.002 [PubMed] [CrossRef] [Google Scholar]

153. Martins AK, Martins FS, Gomes DA, Elian SD, Vieira AT, Teixeira MM, et al.Evaluation of in vitro antagonism and of in vivo immune modulation and protection against pathogenic experimental challenge of two probiotic strains of Bifidobacterium animalis var. lactis. Arch Microbiol (2010) 192:995–1003 10.1007/s00203-010-0626-0 [PubMed] [CrossRef] [Google Scholar]

154. Tiago FC, Martins FS, Souza EL, Pimenta PF, Araujo HR, Castro IM, et al.Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol (2012) 61:1194–207 10.1099/jmm.0.042283-0 [PubMed] [CrossRef] [Google Scholar]

155. Theodorakopoulou M, Perros E, Giamarellos-Bourboulis EJ, Dimopoulos G.Controversies in the management of the critically ill: the role of probiotics. Int J Antimicrob Agents (2013) 42(Suppl):S41–4 10.1016/j.ijantimicag.2013.04.010 [PubMed] [CrossRef] [Google Scholar]

156. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB.Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev (2004) 17:259–75 10.1079/NRR200479 [PubMed] [CrossRef] [Google Scholar]

157. Gloux K, Berteau O, El Oumami H, Beguet F, Leclerc M, Dore J.A metagenomic beta-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A (2011) 108(Suppl 1):4539–46 10.1073/pnas.10000661071000066107 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. McNeil NI, Cummings JH, James WP.Short chain fatty acid absorption by the human large intestine. Gut (1978) 19:819–22 10.1136/gut.19.9.819 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH.The influence of diet on the gut microbiota. Pharmacol Res (2013) 69:52–60 10.1016/j.phrs.2012.10.020 [PubMed] [CrossRef] [Google Scholar]

160. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al.Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A (2009) 106:5859–64 10.1073/pnas.0901529106 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al.Enterotypes of the human gut microbiome. Nature (2011) 473:174–80 10.1038/nature09944 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Emilia H, Viktoria S, Jana S, Gabriela H.Chemopreventive and metabolic effects of inulin in colon cancer development. J Vet Sci (2013). [PMC free article] [PubMed] [Google Scholar]

163. Macfarlane GT, Steed H, Macfarlane S.Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol (2008) 104:305–44 10.1111/j.1365-2672.2007.03520.x [PubMed] [CrossRef] [Google Scholar]

164. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P.Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr (2009) 101:541–50 10.1017/S0007114508019880 [PubMed] [CrossRef] [Google Scholar]

165. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G.Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr (2010) 140:68–74 10.3945/jn.109.112441 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Costabile A, Kolida S, Klinder A, Gietl E, Bauerlein M, Frohberg C, et al.A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. Br J Nutr (2010) 104:1007–17 10.1017/S0007114510001571 [PubMed] [CrossRef] [Google Scholar]

167. Ramnani P, Gaudier E, Bingham M, van Bruggen P, Tuohy KM, Gibson GR.Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: a human intervention study. Br J Nutr (2010) 104:233–40 10.1017/S000711451000036X [PubMed] [CrossRef] [Google Scholar]

168. Scholtens PA, Alles MS, Bindels JG, van der Linde EG, Tolboom JJ, Knol J.Bifidogenic effects of solid weaning foods with added prebiotic oligosaccharides: a randomised controlled clinical trial. J Pediatr Gastroenterol Nutr (2006) 42:553–9 10.1097/01.mpg.0000221887.28877.c7 [PubMed] [CrossRef] [Google Scholar]

169. Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al.Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut (2011) 60:923–9 10.1136/gut.2010.232025gut [PubMed] [CrossRef] [Google Scholar]

170. de Luis DA, de la Fuente B, Izaola O, Conde R, Gutierrez S, Morillo M, et al.Double blind randomized clinical trial controlled by placebo with an alpha linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in obese patients. Nutr Hosp (2011) 26:827–33 10.1590/S0212-16112011000400024 [PubMed] [CrossRef] [Google Scholar]

171. Cummings JH, Christie S, Cole TJ.A study of fructo oligosaccharides in the prevention of travellers’ diarrhoea. Aliment Pharmacol Ther (2001) 15:1139–45 10.1046/j.1365-2036.2001.01043.x [PubMed] [CrossRef] [Google Scholar]

172. Arslanoglu S, Moro GE, Schmitt J, Tandoi L, Rizzardi S, Boehm G.Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life. J Nutr (2008) 138:1091–5 [PubMed] [Google Scholar]

173. Boutron-Ruault MC, Marteau P, Lavergne-Slove A, Myara A, Gerhardt MF, Franchisseur C, et al.Effects of a 3-mo consumption of short-chain fructo-oligosaccharides on parameters of colorectal carcinogenesis in patients with or without small or large colorectal adenomas. Nutr Cancer (2005) 53:160–8 10.1207/s15327914nc5302_5 [PubMed] [CrossRef] [Google Scholar]

174. Saavedra JM, Tschernia A.Human studies with probiotics and prebiotics: clinical implications. Br J Nutr (2002) 87(Suppl 2):S241–6 10.1079/BJNBJN/2002543 [PubMed] [CrossRef] [Google Scholar]

175. Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR.A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr (2010) 64:146–52 10.1038/ejcn.2009.120 [PubMed] [CrossRef] [Google Scholar]

176. Peng X, Li S, Luo J, Wu X, Liu L.Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct (2013) 4:932–8 10.1039/c3fo60052a [PubMed] [CrossRef] [Google Scholar]

178. Chen H, Mao X, He J, Yu B, Huang Z, Yu J, et al.Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr (2013) 110:1837–48 10.1017/S0007114513001293 [PubMed] [CrossRef] [Google Scholar]

179. Hu GX, Chen GR, Xu H, Ge RS, Lin J.Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses (2010) 74:123–6 10.1016/j.mehy.2009.07.022 [PubMed] [CrossRef] [Google Scholar]

180. Cao Y, Gao X, Zhang W, Zhang G, Nguyen AK, Liu X, et al.Dietary fiber enhances TGF-beta signaling and growth inhibition in the gut. Am J Physiol Gastrointest Liver Physiol (2011) 301:G156–64 10.1152/ajpgi.00362 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Slavin JL.Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc (2008) 108:1716–31 10.1016/j.jada.2008.08.007 [PubMed] [CrossRef] [Google Scholar]

182. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR.Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A (2007) 104:13780–5 10.1073/pnas.0706625104 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al.Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature (2009) 461:1282–6 10.1038/nature08530 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Hamer HM, Jonkers DM, Vanhoutvin SA, Troost FJ, Rijkers G, De Bruine A, et al.Effect of butyrate enemas on inflammation and antioxidant status in the colonic mucosa of patients with ulcerative colitis in remission. Clin Nutr (2010) 29:738–44 10.1016/j.clnu.2010.04.002 [PubMed] [CrossRef] [Google Scholar]

185. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M, Yazid AM, et al.The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem J (2010) 4:53–8 10.2174/1874091X01004010053 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Gibson PR, Rosella O, Wilson AJ, Mariadason JM, Rickard K, Byron K, et al.Colonic epithelial cell activation and the paradoxical effects of butyrate. Carcinogenesis (1999) 20:539–44 10.1093/carcin/20.4.539 [PubMed] [CrossRef] [Google Scholar]

187. Wang HB, Wang PY, Wang X, Wan YL, Liu YC.Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci (2012) 57:3126–35 10.1007/s10620-012-2259-4 [PubMed] [CrossRef] [Google Scholar]

188. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP.Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J Physiol (1998) 513(Pt 3):719–32 10.1111/j.1469-7793.1998.719ba.x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Davie JR.Inhibition of histone deacetylase activity by butyrate. J Nutr (2003) 133:2485S–93S [PubMed] [Google Scholar]

190. Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L.Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res (2003) 1:855–62 [PubMed] [Google Scholar]

191. Luhrs H, Gerke T, Muller JG, Melcher R, Schauber J, Boxberge F, et al.Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol (2002) 37:458–66 10.1080/003655202317316105 [PubMed] [CrossRef] [Google Scholar]

192. Schwab M, Reynders V, Ulrich S, Zahn N, Stein J, Schroder O.PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis (2006) 11:1801–11 10.1007/s10495-006-9788-2 [PubMed] [CrossRef] [Google Scholar]

193. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, et al.A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest (1999) 104:383–9 10.1172/JCI7145 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH.Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology (2013) 145:396–406 10.1053/j.gastro.2013.04.056S0016-5085(13)00708-7 [PubMed] [CrossRef] [Google Scholar]

195. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al.The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science (2013) 341(6145):569–73 10.1126/science.1241165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al.The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem (2003) 278:11312–9 10.1074/jbc.M211609200 [PubMed] [CrossRef] [Google Scholar]

197. Gibson GR, Roberfroid MB.Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr (1995) 125:1401–12 [PubMed] [Google Scholar]

198. Aslam MN, Bergin I, Naik M, Paruchuri T, Hampton A, Rehman M, et al.A multimineral natural product from red marine algae reduces colon polyp formation in C57BL/6 mice. Nutr Cancer (2012) 64:1020–8 10.1080/01635581.2012.713160 [PMC free article] [PubMed] [CrossRef] [Google Scholar]