Genetics and epigenetics in the obesity phenotyping scenario (original) (raw)
National Health and Nutrition Examination. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes, https://doi.org/10.15620/cdc:106273 (2021).
Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and Cancer — viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8. ArticlePubMedPubMed Central Google Scholar
Bliddal H, Leeds AR, Christensen R. Osteoarthritis, obesity and weight loss: evidence, hypotheses and horizons - a scoping review. Obes Rev. 2014;15(7):578–86. ArticleCASPubMedPubMed Central Google Scholar
Jehan S, Zizi F, Pandi-Perumal SR et al. Obstructive Sleep Apnea and Obesity: Implications for Public Health.Sleep Med Disord, 1(4) (2017).
Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020;369:m1966. ArticlePubMed Central Google Scholar
Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–70. ArticleCASPubMedPubMed Central Google Scholar
Zhao X, Gang X, He G, et al. Obesity increases the severity and mortality of influenza and COVID-19: a systematic review and meta-analysis. Front Endocrinol. 2020;11:595109. Article Google Scholar
Bhattacharya I, Ghayor C, Pérez Dominguez A, Weber FE. From Influenza Virus to Novel Corona Virus (SARS-CoV-2)-The contribution of obesity. Front Endocrinol (Lausanne). 2020;11:556962. ArticlePubMed Google Scholar
Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–33. ArticleCASPubMed Google Scholar
Katzmarzyk PT, Pérusse L, Rao DC, Bouchard C. Familial risk of overweight and obesity in the Canadian Population using the WHO/NIH Criteria. Obes Res. 2000;8(2):194–7. ArticleCASPubMed Google Scholar
Pietiläinen KH, Kaprio J, Rissanen A, et al. Distribution and heritability of BMI in finnish adolescents aged 16 y and 17 y: a study of 4884 twins and 2509 singletons. Int J Obes. 1999;23(2):107–15. Article Google Scholar
Allison DB, Kaprio J, Korkeila M, Koskenvuo M, Neale MC, Hayakawa K. The heritability of body mass index among an international sample of monozygotic twins reared apart. Int J Obes. 1996;20(6):501–6. CAS Google Scholar
Feinleib M, Garrison RJ, Fabsitz R, et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol. 1977;106(4):284–95. ArticleCASPubMed Google Scholar
Stunkard AJ, Harris JR, Pedersen NL, McClearn GE. The Body-Mass Index of Twins who have been reared apart. N Engl J Med. 1990;322(21):1483–7. ArticleCASPubMed Google Scholar
Stunkard AJ, Sørensen TIA, Hanis C, et al. An adoption study of human obesity. N Engl J Med. 1986;314(4):193–8. ArticleCASPubMed Google Scholar
Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. ArticleCASPubMedPubMed Central Google Scholar
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. ArticleCASPubMedPubMed Central Google Scholar
Yengo L, Vedantam S, Marouli E, et al. A saturated map of common genetic variants associated with human height. Nature. 2022;610(7933):704–12. ArticleCASPubMedPubMed Central Google Scholar
Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3(4):1020–7. ArticleCASPubMed Google Scholar
Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metabolism. 2017;6(1):86–100. ArticleCAS Google Scholar
Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and Differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63(9):2962–76. ArticlePubMed Google Scholar
Wahl S, Drong A, Lehne B, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541(7635):81–6. ArticleCASPubMed Google Scholar
Snijder MB, Zimmet PZ, Visser M, Dekker JM, Seidell JC, Shaw JE. Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study. Int J Obes Relat Metab Disord. 2004;28(3):402–9. ArticleCASPubMed Google Scholar
Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. The Lancet. 2005;366(9497):1640–9. Article Google Scholar
Zhou Jy, Ge H, Zhu Mf, et al. Neck circumference as an independent predictive contributor to cardio-metabolic syndrome. Cardiovasc Diabetol. 2013;12(1):76. ArticleCASPubMedPubMed Central Google Scholar
Ashwell M, Gunn P, Gibson S. Waist-to‐height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta‐analysis. Obes Rev. 2012;13(3):275–86. ArticleCASPubMed Google Scholar
Carmienke S, Freitag M, Pischon T, et al. General and abdominal obesity parameters and their combination in relation to mortality: a systematic review and meta-regression analysis. Eur J Clin Nutr. 2013;67(6):573–85. ArticleCASPubMed Google Scholar
Correa MM, Thumé E, De Oliveira ERA, Tomasi E. Performance of the waist-to-height ratio in identifying obesity and predicting non-communicable diseases in the elderly population: a systematic literature review. Arch Gerontol Geriatr. 2016;65:174–82. ArticlePubMed Google Scholar
Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22(12):1164–71. ArticleCASPubMed Google Scholar
Ponti F, Santoro A, Mercatelli D, et al. Aging and Imaging Assessment of body composition: from Fat to facts. Front Endocrinol (Lausanne). 2019;10:861. ArticlePubMed Google Scholar
Staiano AE, Bouchard C, Katzmarzyk PT. BMI-specific waist circumference thresholds to discriminate elevated cardiometabolic risk in White and African American adults. Obes Facts. 2013;6(4):317–24. ArticlePubMedPubMed Central Google Scholar
Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19(7):597–604. ArticlePubMed Google Scholar
Chami N, Preuss M, Walker RW, Moscati A, Loos RJF. The role of polygenic susceptibility to obesity among carriers of pathogenic mutations in MC4R in the UK Biobank population. PLoS Med. 2020;17(7):e1003196. ArticleCASPubMedPubMed Central Google Scholar
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev. 2017;18(6):603–34. ArticleCASPubMed Google Scholar
Bonnefond A, Raimondo A, Stutzmann F, et al. Loss-of-function mutations in SIM1 contribute to obesity and prader-willi–like features. J Clin Investig. 2013;123(7):3037–41. ArticleCASPubMedPubMed Central Google Scholar
Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clinical science (London, England: 1979), 130(12), 943–986 (2016).
Blackett PR, Li S, Mulvihill JJ. Ring chromosome 4 in a patient with early onset type 2 diabetes, deafness, and developmental delay. Am J Med Genet: A. 2005;137(2):213–6. ArticlePubMed Google Scholar
Novas R, Cardenas-Rodriguez M, Irigoín F, Badano JL. Bardet–Biedl syndrome: is it only cilia dysfunction? FEBS Lett. 2015;589(22):3479–91. ArticleCASPubMed Google Scholar
Schaefer E, Stoetzel C, Scheidecker S, et al. Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet-Biedl syndrome. J Hum Genet. 2016;61(5):447–50. ArticleCASPubMed Google Scholar
Castronovo P, Delahaye-Duriez A, Gervasini C, et al. Somatic mosaicism in Cornelia de Lange syndrome: a further contributor to the wide clinical expressivity? Clin Genet. 2010;78(6):560–4. ArticleCASPubMed Google Scholar
Whitman BY, Myers SE, Carrel AL, Allen DB. The behavioral impact of growth hormone treatment for children and adolescents with Prader-Willi Syndrome: a 2-Year, controlled study. Pediatrics. 2002;109(2):E35–e35. ArticlePubMed Google Scholar
Patwari PP, Rand CM, Berry-Kravis E, Ize-Ludlow D, Weese-Mayer DE. Monozygotic twins discordant for ROHHAD phenotype. Pediatrics. 2011;128(3):e711–715. ArticlePubMed Google Scholar
Milani D, Cerutti M, Pezzani L, Maffei P, Milan G, Esposito S. Syndromic obesity: clinical implications of a correct diagnosis. Ital J Pediatr. 2014;40(1):33–3. ArticlePubMedPubMed Central Google Scholar
Turner CLS, Lachlan K, Amerasinghe N, et al. Kabuki syndrome: new ocular findings but no evidence of 8p22-p23.1 duplications in a clinically defined cohort. Eur J Hum genetics: EJHG. 2005;13(6):716–20. ArticleCASPubMed Google Scholar
Di Donato N, Riess A, Hackmann K, et al. Macrocephaly, obesity, mental (intellectual) disability, and ocular abnormalities: alternative definition and further delineation of MOMO syndrome. Am J Med Genet: A. 2012;158(11):2857–62. Article Google Scholar
Bougnères P, Pantalone L, Linglart A, Rothenbuhler A, Le Stunff C. Endocrine manifestations of the Rapid-Onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in Childhood. J Clin Endocrinol Metab. 2008;93(10):3971–80. ArticlePubMed Google Scholar
Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA. Acrocephalopolysyndactyly type II–Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summit syndromes. Am J Med Genet. 1987;28(2):311–24. ArticleCASPubMed Google Scholar
Rodríguez-López R, Pérez JMC, Balsera AM, et al. The modifier effect of the BDNF gene in the phenotype of the WAGRO syndrome. Gene. 2012;516(2):285–90. ArticlePubMed Google Scholar
Han JC, Liu Q-R, Jones M, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359(9):918–27. ArticleCASPubMedPubMed Central Google Scholar
Dodé C, Teixeira LA, Levilliers J, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2(10):1648–52. Article Google Scholar
Katsanis N, Ansley SJ, Badano JL, et al. Triallelic inheritance in Bardet-Biedl Syndrome, a mendelian recessive disorder. Sci (New York N Y). 2001;293(5538):2256–9. ArticleCAS Google Scholar
Katsanis N, Eichers ER, Ansley SJ, et al. BBS4 is a minor contributor to Bardet-Biedl Syndrome and May also participate in triallelic inheritance. Am J Hum Genet. 2002;71(1):22–9. ArticleCASPubMedPubMed Central Google Scholar
Rio M, Royer G, Gobin S, et al. Monozygotic twins discordant for submicroscopic chromosomal anomalies in 2p25.3 region detected by array CGH. Clin Genet. 2012;84(1):31–6. ArticlePubMed Google Scholar
Matsuo K, Murano I, Kajii T. Borjeson-Forssman-Lehmann syndrome in a girl. Jinrui idengaku zasshi The Japanese journal of human genetics. 1984;29(2):121–6. CASPubMed Google Scholar
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. ArticleCASPubMed Google Scholar
Chen H, Charlat O, Tartaglia LA, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84(3):491–5. ArticleCASPubMed Google Scholar
Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8. ArticleCASPubMed Google Scholar
Ozata M, Ozdemir IC, Licinio J. Human Leptin Deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and Immune System Dysfunction Indicate New targets for Leptin Action, Greater Central than Peripheral Resistance to the Effects of Leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;84(10):3686–95. ArticleCASPubMed Google Scholar
Rau H, Reaves BJ, O’Rahilly S, Whitehead JP. Truncated human leptin (delta133) associated with extreme obesity undergoes proteasomal degradation after defective intracellular transport. Endocrinology. 1999;140(4):1718–23. ArticleCASPubMed Google Scholar
Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet. 1998;18(3):213–5. ArticleCASPubMed Google Scholar
Gibson WT, Pissios P, Trombly DJ, et al. Melanin-concentrating hormone receptor mutations and human obesity: functional analysis. Obes Res. 2004;12(5):743–9. ArticleCASPubMed Google Scholar
Mazen I, El-Gammal M, Abdel-Hamid MS, Amr K. A novel homozygous missense mutation of the leptin gene (N103K) in an obese egyptian patient. Mol Genet Metab. 2009;97(4):305–8. ArticleCASPubMed Google Scholar
Fischer-Posovszky P, von Schnurbein J, Moepps B, et al. A new missense mutation in the Leptin Gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab. 2010;95(6):2836–40. ArticleCASPubMed Google Scholar
Fatima W, Shahid A, Imran M, et al. Leptin deficiency and leptin gene mutations in obese children from Pakistan. Int J Pediatr obesity. 2011;6(5–6):419–27. Article Google Scholar
Zhao Y, Hong N, Liu X et al. A Novel Mutation in Leptin Gene Is Associated with Severe Obesity in Chinese Individuals. BioMed research international, 2014(NA), 912052–912052 (2014).
Thakur S, Kumar A, Dubey S, Saxena R, Peters A, Singhal A. A novel mutation of the leptin gene in an indian patient. Clin Genet. 2013;86(4):391–3. ArticlePubMed Google Scholar
Chekhranova MK, Karpova SK, Iatsyshina SB, Pankov IA. A new mutation c.422 C > G (p.S141C) in homo- and heterozygous forms of the human leptin gene. Bioorg Khim. 2008;34(6):854–6. CAS Google Scholar
Wabitsch M, Funcke J-B, Lennerz B, et al. Biologically inactive leptin and early-onset Extreme obesity. N Engl J Med. 2015;372(1):48–54. ArticlePubMed Google Scholar
Funcke J-B, von Schnurbein J, Lennerz B, et al. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol Cell Pediatr. 2014;1(1):3–3. ArticlePubMedPubMed Central Google Scholar
Farooqi IS, Jebb SA, Langmack G, et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. 1999;341(12):879–84. ArticleCASPubMed Google Scholar
Farooqi IS, Wangensteen T, Collins SC, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237–47. ArticleCASPubMedPubMed Central Google Scholar
Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7. ArticleCASPubMed Google Scholar
Lee YS, Challis B, Thompson DA, et al. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metabol. 2006;3(2):135–40. Article Google Scholar
Challis BG, Pritchard LE, Creemers JWM, et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet. 2002;11(17):1997–2004. ArticleCASPubMed Google Scholar
Kühnen P, Clément K, Wiegand S, et al. Proopiomelanocortin Deficiency treated with a Melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6. ArticlePubMed Google Scholar
Farooqi IS, Yeo GSH, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Investig. 2000;106(2):271–9. ArticleCASPubMedPubMed Central Google Scholar
Farooqi IS, Keogh JM, Yeo GSH, Lank E, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med. 2003;348(12):1085–95. ArticleCASPubMed Google Scholar
Vaisse C, Clément K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Investig. 2000;106(2):253–62. ArticleCASPubMedPubMed Central Google Scholar
van den Berg LH, van Beekum O, Heutink P, et al. Melanocortin-4 receptor gene mutations in a dutch cohort of obese children. Obes (Silver Spring Md). 2010;19(3):604–11. Article Google Scholar
Xi B, Chandak GR, Shen Y, Wang Q, Zhou D. Association between Common Polymorphism near the MC4R gene and obesity risk: a systematic review and Meta-analysis. PLoS ONE. 2012;7(9):e45731. ArticleCASPubMedPubMed Central Google Scholar
Dwivedi OP, Tabassum R, Chauhan G, et al. Strong influence of variants near MC4R on adiposity in children and adults: a cross-sectional study in indian population. J Hum Genet. 2012;58(1):27–32. ArticlePubMed Google Scholar
Fani L, Bak S, Delhanty PJD, van Rossum EFC, van den Akker ELT. The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int J Obes. 2013;38(2):163–9. Article Google Scholar
Skowronski AA, Morabito MV, Mueller BR, et al. Effects of a novel MC4R agonist on maintenance of reduced body weight in diet-induced obese mice. Obes (Silver Spring Md). 2014;22(5):1287–95. ArticleCAS Google Scholar
Chen KY, Muniyappa R, Abel BS, et al. RM-493, a Melanocortin-4 receptor (MC4R) agonist, increases resting energy expenditure in obese individuals. J Clin Endocrinol Metab. 2015;100(4):1639–45. ArticleCASPubMedPubMed Central Google Scholar
Saeed S, Bonnefond A, Tamanini F, et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat Genet. 2018;50(2):175–9. ArticleCASPubMed Google Scholar
Michaud JL, Rosenquist T, May NR, Fan C-M. Development of neuroendocrine lineages requires the bHLH–PAS transcription factor SIM1. Genes Dev. 1998;12(20):3264–75. ArticleCASPubMedPubMed Central Google Scholar
Stanikova D, Buzga M, Krumpolec P, et al. Genetic analysis of single-minded 1 gene in early-onset severely obese children and adolescents. PLoS ONE. 2017;12(5):e0177222. ArticlePubMedPubMed Central Google Scholar
Yeo GSH, Connie Hung CC, Rochford JJ, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004;7(11):1187–9. ArticleCASPubMed Google Scholar
Wang P, Loh KH, Wu MKY, et al. A leptin–BDNF pathway regulating sympathetic innervation of adipose tissue. Nature. 2020;583(7818):839–44. ArticleCASPubMed Google Scholar
Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocr. 2004;25(2):77–107. ArticleCAS Google Scholar
Gray J, Yeo GSH, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity Associated with Functional loss of One Copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55(12):3366–71. ArticleCASPubMed Google Scholar
Serra-Juhé C, Martos-Moreno G, de Pieri FB, et al. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes. 2019;44(4):830–41. Article Google Scholar
da Fonseca ACP, Abreu MG, Palhinha L, et al. A rare potential pathogenic variant in the BDNF gene is found in a Brazilian patient with severe childhood-onset obesity. Diabetes Metab Syndr Obes. 2021;14:11–22. ArticlePubMedPubMed Central Google Scholar
Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab. 2006;18(1):38–45. ArticlePubMed Google Scholar
Doche ME, Bochukova EG, Su HW, et al. Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Investig. 2012;122(12):4732–6. ArticleCASPubMedPubMed Central Google Scholar
Pearce LR, Joe R, Doche ME, et al. Functional characterization of Obesity-Associated Variants Involving the α and β isoforms of human SH2B1. Endocrinology. 2014;155(9):3219–26. ArticlePubMedPubMed Central Google Scholar
Pearce LR, Atanassova N, Banton MC, et al. KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell. 2013;155(4):765–77. ArticleCASPubMedPubMed Central Google Scholar
O’Rahilly S, Gray H, Humphreys PJ, et al. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995;333(21):1386–90. ArticlePubMed Google Scholar
Borman AD, Pearce LR, Mackay DS, et al. A homozygous mutation in the TUB gene associated with retinal dystrophy and obesity. Hum Mutat. 2013;35(3):289–93. ArticlePubMedPubMed Central Google Scholar
Alsters SIM, Goldstone AP, Buxton JL, et al. Truncating homozygous mutation of carboxypeptidase E (CPE) in a morbidly obese female with type 2 diabetes Mellitus, Intellectual disability and Hypogonadotrophic Hypogonadism. PLoS ONE. 2015;10(6):e0131417. ArticlePubMedPubMed Central Google Scholar
Thaker VV, Esteves KM, Towne MC, et al. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD Syndrome. J Clin Endocrinol Metab. 2015;100(5):1723–30. ArticleCASPubMedPubMed Central Google Scholar
Baron M, Maillet J, Huyvaert M, et al. Loss-of-function mutations in MRAP2 are pathogenic in hyperphagic obesity with hyperglycemia and hypertension. Nat Med. 2019;25(11):1733–8. ArticleCASPubMedPubMed Central Google Scholar
Marenne G, Hendricks AE, Perdikari A, et al. Exome sequencing identifies genes and gene sets contributing to severe childhood obesity, linking PHIP variants to repressed POMC transcription. Cell Metabol. 2020;31(6):1107–1119.e12. ArticleCASPubMedPubMed Central Google Scholar
Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887. Article Google Scholar
Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab. 1996;81(9):3419–23. CASPubMed Google Scholar
Kolaczynski JW, Considine RV, Ohannesian JP, et al. Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not Ketones themselves. Diabetes. 1996;45(11):1511–5. ArticleCASPubMed Google Scholar
Cowley MA, Pronchuk N, Fan W, Dinulescu DM, Colmers WF, Cone RD. Integration of NPY, AGRP, and melanocortin signals in the hypothalamic paraventricular nucleus: evidence of a cellular basis for the adipostat. Neuron. 1999;24(1):155–63. ArticleCASPubMed Google Scholar
Bertagna X. Proopiomelanocortin-derived peptides. Endocrinol Metab Clin North Am. 1994;23(3):467–85. ArticleCASPubMed Google Scholar
Ollmann MM, Wilson BD, Yang YK, et al. Antagonism of central melanocortin receptors in vitro and in vivo by Agouti-related protein. Sci. 1997;278(5335):135–8. ArticleCAS Google Scholar
Mendes de Oliveira E, Keogh JM, Talbot F, et al. Obesity-associated GNAS mutations and the melanocortin pathway. N Engl J Med. 2021;385(17):1581–92. ArticleCAS Google Scholar
Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Sci. 2007;316(5826):889–94. ArticleCASPubMedPubMed Central Google Scholar
Shungin, D., Winkler, T., Croteau-Chonka, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–96. ArticleCASPubMedPubMed Central Google Scholar
Kilpeläinen TO, Zillikens MC, Stančáková A, et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nat Genet. 2011;43(8):753–60. ArticlePubMedPubMed Central Google Scholar
Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun. 2016;7(1):10495–5. ArticleCASPubMedPubMed Central Google Scholar
Kilpeläinen TO, Carli JFM, Skowronski AA, et al. Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun. 2016;7(1):10494–4. ArticlePubMedPubMed Central Google Scholar
Sun Q, Cornelis MC, Kraft P, et al. Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels. Hum Mol Genet. 2010;19(9):1846–55. ArticleCASPubMedPubMed Central Google Scholar
Heid IM, Jackson AU, Randall JC, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010;42(11):949–60. ArticleCASPubMedPubMed Central Google Scholar
Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–74. ArticleCASPubMed Google Scholar
Justice, A.E., Karaderi, T., Highland, H.M. et al. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet. 2019;51(3):452–69. ArticleCASPubMedPubMed Central Google Scholar
Rask-Andersen M, Karlsson T, Ek WE, Johansson Ã. Genome-wide association study of body fat distribution identifies adiposity loci and sex-specific genetic effects. Nat Commun. 2019;10(1):339–9. ArticleCASPubMedPubMed Central Google Scholar
Fox CS, Liu Y, White CC, et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 2012;8(5):e1002695. ArticleCASPubMedPubMed Central Google Scholar
Sung YJ, Pérusse L, Sarzynski MA, et al. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes. 2015;40(4):662–74. Article Google Scholar
Wu Y, Broadaway KA, Raulerson CK, et al. Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution. Hum Mol Genet. 2019;28(24):4161–72. ArticlePubMedPubMed Central Google Scholar
DiStefano JK, Kingsley C, Wood GC, et al. Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol. 2014;52(2):373–82. ArticlePubMedPubMed Central Google Scholar
Couto Alves A, De Silva NMG, Karhunen V, et al. GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI. Sci Adv. 2019;5(9):eaaw3095. ArticlePubMedPubMed Central Google Scholar
Randall JC, Winkler TW, Kutalik Z, et al. Sex-stratified genome-wide Association Studies Including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013;9(6):1003500. Article Google Scholar
Winkler TW, Justice AE, Graff M, et al. The influence of Age and Sex on Genetic Associations with adult body size and shape: a large-scale genome-wide Interaction Study. PLoS Genet. 2015;11(10):1–42. Article Google Scholar
Wen W, Zheng W, Okada Y, et al. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet. 2014;23(20):5492–504. ArticleCASPubMedPubMed Central Google Scholar
Wang T, Ma X, Peng D, et al. Effects of obesity related genetic variations on visceral and subcutaneous Fat distribution in a Chinese Population. Sci Rep. 2016;6:20691. ArticleCASPubMedPubMed Central Google Scholar
Ng MCY, Graff M, Lu Y, et al. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African ancestry Anthropometry Genetics Consortium. PLoS Genet. 2017;13(4):1006719–NA. Article Google Scholar
Akiyama M, Okada Y, Kanai M, et al. Genome-wide association study identifies 112 new loci for body mass index in the japanese population. Nat Genet. 2017;49(10):1458–67. ArticleCASPubMed Google Scholar
Gurdasani D, Carstensen T, Fatumo S, et al. Uganda Genome Resource enables insights into Population History and genomic Discovery in Africa. Cell. 2019;179(4):984–1002.e36. ArticleCASPubMedPubMed Central Google Scholar
Wojcik GL, Graff M, Nishimura KK, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–8. ArticleCASPubMedPubMed Central Google Scholar
Grarup N, Moltke I, Andersen MK, et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet. 2018;50(2):172–4. ArticleCASPubMedPubMed Central Google Scholar
Minster RL, Hawley NL, Su C-T, et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat Genet. 2016;48(9):1049–54. ArticleCASPubMedPubMed Central Google Scholar
Andersen MK, Jørsboe E, Skotte L, et al. The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders. PLoS Genet. 2020;16(1):e1008544–NA. ArticlePubMedPubMed Central Google Scholar
Auton A, Abecasis GR, Altshuler D, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. ArticlePubMed Google Scholar
Turcot V, Lu Y, Highland HM, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26–41. ArticleCASPubMed Google Scholar
Ndiaye FK, Huyvaert M, Ortalli A, et al. The expression of genes in top obesity-associated loci is enriched in insula and substantia nigra brain regions involved in addiction and reward. Int J Obes. 2019;44(2):539–43. Article Google Scholar
Finucane HK, Reshef YA, Anttila V, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50(4):621–9. ArticleCASPubMedPubMed Central Google Scholar
Claussnitzer M, Dankel SN, Kim K-H, et al. FTO obesity variant circuitry and Adipocyte Browning in humans. N Engl J Med. 2015;373(10):895–907. ArticleCASPubMedPubMed Central Google Scholar
Thorleifsson G, Walters GB, Gudbjartsson DF, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2008;41(1):18–24. ArticlePubMed Google Scholar
Willer CJ, Speliotes EK, Loos RJF, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2008;41(1):25–34. PubMedPubMed Central Google Scholar
Wiemerslage L, Gohel PA, Maestri G, et al. The Drosophila ortholog of TMEM18 regulates insulin and glucagon-like signaling. J Endocrinol. 2016;229(3):233–43. ArticleCASPubMed Google Scholar
Larder R, Sim MFM, Gulati P, et al. Obesity-associated gene TMEM18 has a role in the central control of appetite and body weight regulation. Proc Natl Acad Sci USA. 2017;114(35):9421–6. ArticleCASPubMedPubMed Central Google Scholar
Rathjen T, Yan X, Kononenko NL, et al. Regulation of body weight and energy homeostasis by neuronal cell adhesion molecule 1. Nat Neurosci. 2017;20(8):1096–103. ArticleCASPubMedPubMed Central Google Scholar
Yan X, Wang Z, Schmidt V, et al. Cadm2 regulates body weight and energy homeostasis in mice. Mol metab. 2018;8:180–8. ArticleCASPubMed Google Scholar
Lee AWS, Hengstler H, Schwald K, et al. Functional inactivation of the genome-wide Association study obesity gene neuronal growth Regulator 1 in mice causes a body Mass phenotype. PLoS ONE. 2012;7(7):e41537. ArticleCASPubMedPubMed Central Google Scholar
Joo Y, Kim HJ, Lee SJ, Lee S. Neuronal growth regulator 1-deficient mice show increased adiposity and decreased muscle mass. Int J Obes. 2019;43(9):1769–82. ArticleCAS Google Scholar
Boender AJ, van Gestel MA, Garner KM, Luijendijk MCM, Adan RAH. The obesity-associated gene Negr1 regulates aspects of energy balance in rat hypothalamic areas. Physiological Rep. 2014;2(7):e12083. Article Google Scholar
Su L, Wang Y-b, Wnag C-g, Wei H. Network analysis identifies common genes associated with obesity in six obesity-related diseases. J Zhejiang Univ Sci B. 2017;18(8):727–32. ArticlePubMedPubMed Central Google Scholar
Chambers JC, Elliott P, Zabaneh D, et al. Common genetic variation near MC4R is associated with waist circumference and insulin resistance. Nat Genet. 2008;40(6):716–8. ArticleCASPubMed Google Scholar
Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48. ArticleCASPubMedPubMed Central Google Scholar
Dolinoy DC. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev. 2008;66(8):7–11. Article Google Scholar
Sadashiv, Modi A, Khokhar M, et al. Leptin DNA methylation and its association with metabolic risk factors in a Northwest Indian obese population. J Obes Metab Syndr. 2021;30(3):304–11. ArticleCASPubMedPubMed Central Google Scholar
Houshmand-Oeregaard A, Hansen NS, Hjort L, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy. Clin Epigenetics. 2017;9:37. ArticlePubMedPubMed Central Google Scholar
Ott R, Stupin JH, Melchior K, et al. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome. Clin epigenetics. 2018;10(1):131–1. ArticleCASPubMedPubMed Central Google Scholar
Kim AY, Park YJ, Pan X, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6(1):7585–5. ArticlePubMed Google Scholar
de Souza Pinhel MA, Noronha NY, Nicoletti CF, et al. Changes in DNA methylation and gene expression of insulin and obesity-related gene PIK3R1 after Roux-en-Y gastric bypass. Int J Mol Sci. 2020;21(12):4476. Article Google Scholar
Crujeiras AB, Campión J, Diaz-Lagares A, et al. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept. 2013;186:1–6. ArticleCASPubMed Google Scholar
Funato H, Oda S, Yokofujita J, Igarashi H, Kuroda M. Fasting and High-Fat Diet alter histone deacetylase expression in the Medial Hypothalamus. PLoS ONE. 2011;6(4):e18950. ArticleCASPubMedPubMed Central Google Scholar
Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature. 2009;458(7239):757–61. ArticleCASPubMedPubMed Central Google Scholar
Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylations at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med. 2014;34(6):1647–54. ArticleCASPubMed Google Scholar
Butler MG, Wang K, Marshall JD et al. Coding and noncoding expression patterns associated with rare obesity-related disorders: Prader-Willi and Alström syndromes. Adv Genomics Genet, 2015(5), 53–75 (2015).
Liu Y, Ji Y, Li M, et al. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis. Sci Rep. 2018;8(1):8750–0. ArticlePubMedPubMed Central Google Scholar
Sun J, Ruan Y, Wang M-m, et al. Differentially expressed circulating LncRNAs and mRNA identified by microarray analysis in obese patients. Sci Rep. 2016;6(1):35421–1. ArticleCASPubMedPubMed Central Google Scholar
Ding C, Lim YC, Chia SY, et al. De novo reconstruction of human adipose transcriptome reveals conserved lncRNAs as regulators of brown adipogenesis. Nat Commun. 2018;9(1):1329–9. ArticlePubMedPubMed Central Google Scholar
Stapleton K, Das S, Reddy MA, et al. Novel long noncoding RNA, macrophage inflammation-suppressing transcript (MIST), regulates macrophage activation during obesity. Arterioscler Thromb Vasc Biol. 2020;40(4):914–28. ArticleCASPubMedPubMed Central Google Scholar
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife_. 2020;_9:e59053
Catalán V, Avilés-Olmos I, Rodríguez A, et al. Time to Consider the “Exposome Hypothesis” in the Development of the Obesity Pandemic. Nutrients. 2022;14(8):1597.
Veenendaal MVE, Painter RC, de Rooij SR, et al. Transgenerational effects of prenatal exposure to the 1944-45 dutch famine. BJOG. 2013;120(5):548–54. ArticleCASPubMed Google Scholar
Ajslev TA, Angquist L, Silventoinen K, et al. Assortative marriages by body mass index have increased simultaneously with the obesity epidemic. Front Genet. 2012;3:125. ArticlePubMedPubMed Central Google Scholar
Ou X-H, Zhu C-C, Sun S-C. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol. 2018;234(6):7847–55. ArticlePubMed Google Scholar
Ge Z-J, Luo S-M, Lin F, et al. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect. 2013;122(2):159–64. ArticlePubMedPubMed Central Google Scholar
Hou YJ, Zhu CC, Duan X, Liu HL, Wang Q, Sun S-C. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6(1):18858–8. ArticleCASPubMedPubMed Central Google Scholar
Klastrup LK, Bak ST, Nielsen AL. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol Genet genomics. 2018;294(1):1–11. ArticlePubMed Google Scholar
Donkin I, Versteyhe S, Ingerslev LR, et al. Obesity and bariatric surgery drive epigenetic variation of Spermatozoa in humans. Cell Metabol. 2015;23(2):369–78. Article Google Scholar
Roberts DJ, Post MD. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol. 2008;61(12):1254–60. ArticleCASPubMed Google Scholar
Amir H, Weintraub A, Aricha-Tamir B, Apel-Sarid L, Holcberg G, Sheiner E. A piece in the puzzle of intrauterine fetal death: pathological findings in placentas from term and preterm intrauterine fetal death pregnancies. J Matern Fetal Neonatal Med. 2009;22(9):759–64. ArticlePubMed Google Scholar
Chavira-Suárez E, Ramírez-Mendieta AJ, Martínez-Gutiérrez S, et al. Influence of pre-pregnancy body mass index (p-BMI) and gestational weight gain (GWG) on DNA methylation and protein expression of obesogenic genes in umbilical vein. PLoS ONE. 2019;14(12):e0226010. ArticlePubMedPubMed Central Google Scholar
Zhang FF, Morabia A, Carroll JF, et al. Dietary patterns are Associated with levels of global genomic DNA methylation in a Cancer-Free Population. J Nutr. 2011;141(6):1165–71. ArticleCASPubMedPubMed Central Google Scholar
Zheng S, Rollet M, Pan YX. Maternal protein restriction during pregnancy induces CCAAT/enhancer-binding protein (C/EBPβ) expression through the regulation of histone modification at its promoter region in female offspring rat skeletal muscle. Epigenetics. 2011;6(2):161–70. ArticleCASPubMed Google Scholar
Sohi G, Marchand K, Revesz A, Arany E, Hardy DB. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol. 2011;25(5):785–98. ArticleCAS Google Scholar
Perdomo CM, Cohen RV, Sumithran P, Clément K, Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet. 2023;401(10382):1116-1130