Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907. doi:10.1038/nature06309 ArticlePubMedCAS Google Scholar
Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M et al (2007) In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA 104:12457–12461. doi:10.1073/pnas.0704460104 ArticlePubMedCAS Google Scholar
Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26:585–626 ArticlePubMedCAS Google Scholar
Germain RN, Bajenoff M, Castellino F, Chieppa M, Egen JG, Huang AY et al (2008) Making friends in out-of-the-way places: how cells of the immune system get together and how they conduct their business as revealed by intravital imaging. Immunol Rev 221:163–181. doi:10.1111/j.1600-065X.2008.00591.x ArticlePubMedCAS Google Scholar
Malpighi M (1661) De Pulmonibus. Observationes Anatomicae, Bologna Google Scholar
Leeuwenhoek A (1939–1999) Collected letters. Edited and annotated by a committee of Dutch scientists. Swets and Zeitlinger, Amsterdam
Cohnheim J (1889) Lectures on general pathology: a handbook for practitioners and students. The New Sydenham Society, London Google Scholar
Cohnheim J (1867) Über Entzündung und Eiterung. Virchows Arch 40:1–79 Article Google Scholar
Metchnikoff E (1883) Untersuchungen über die Mesodermalen Phagozyten einiger Wirbeltiere. Biol Zent Bl 3:560–565 Google Scholar
Gowans JL, Knight EJ (1964) The route of re-circulation of lymphocytes in the rat. Proc R Soc Lond B Biol Sci 159:257–282 ArticlePubMedCAS Google Scholar
Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880. doi:10.1038/nri935 ArticlePubMedCAS Google Scholar
Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024. doi:10.1364/OL.28.001022 ArticlePubMedCAS Google Scholar
Saetzler RK, Jallo J, Lehr HA, Philips CM, Vasthare U, Arfors KE et al (1997) Intravital fluorescence microscopy: impact of light-induced phototoxicity on adhesion of fluorescently labeled leukocytes. J Histochem Cytochem 45:505–513 PubMedCAS Google Scholar
Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA 100:2604–2609. doi:10.1073/pnas.2628040100 ArticlePubMedCAS Google Scholar
Mempel TR, Henrickson SE, von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159. doi:10.1038/nature02238 ArticlePubMedCAS Google Scholar
Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S (2004) Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5:1235–1242. doi:10.1038/ni1134 ArticlePubMedCAS Google Scholar
Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250. doi:10.1038/ni1139 ArticlePubMedCAS Google Scholar
Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M, Hartley SB et al (2005) Antigen-engaged b cells undergo chemotaxis toward the t zone and form motile conjugates with helper T cells. PLoS Biol 3:e150. doi:10.1371/journal.pbio.0030150 ArticlePubMedCAS Google Scholar
Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R (2007) CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J Exp Med 204:489–495. doi:10.1084/jem.20061706 ArticlePubMedCAS Google Scholar
Cariappa A, Mazo IB, Chase C, Shi HN, Liu H, Li Q et al (2005) Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes. Immunity 23:397–407. doi:10.1016/j.immuni.2005.09.004 ArticlePubMedCAS Google Scholar
Mazo IB, Honczarenko M, Leung H, Cavanagh LL, Bonasio R, Weninger W et al (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22:259–270. doi:10.1016/j.immuni.2005.01.008 ArticlePubMedCAS Google Scholar
Wei SH, Miller MJ, Cahalan MD, Parker I (2002) Two-photon imaging in intact lymphoid tissue. Adv Exp Med Biol 512:203–208 PubMed Google Scholar
Sims TN, Soos TJ, Xenias HS, Dubin-Thaler B, Hofman JM, Waite JC et al (2007) Opposing effects of PKCtheta and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129:773–785. doi:10.1016/j.cell.2007.03.037 ArticlePubMedCAS Google Scholar
Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171. doi:10.1016/j.immuni.2007.06.007 ArticlePubMedCAS Google Scholar
Kawakami N, Nagerl UV, Odoardi F, Bonhoeffer T, Wekerle H, Flugel A (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J Exp Med 201:1805–1814. doi:10.1084/jem.20050011 ArticlePubMedCAS Google Scholar
Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.1038/nn1472 ArticlePubMedCAS Google Scholar
Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ et al (2005) Intravascular immune surveillance by CXCR6 + NKT cells patrolling liver sinusoids. PLoS Biol 3:e113. doi:10.1371/journal.pbio.0030113 ArticlePubMedCAS Google Scholar
Egen JG, Rothfuchs AG, Feng CG, Winter N, Sher A, Germain RN (2008) Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28:271–284. doi:10.1016/j.immuni.2007.12.010 ArticlePubMedCAS Google Scholar
Chieppa M, Rescigno M, Huang AY, Germain RN (2006) Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203:2841–2852. doi:10.1084/jem.20061884 ArticlePubMedCAS Google Scholar
Zinselmeyer BH, Lynch JN, Zhang X, Aoshi T, Miller MJ (2008) Video-rate two-photon imaging of mouse footpad—a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm Res 57:93–96. doi:10.1007/s00011-007-7195-y ArticlePubMedCAS Google Scholar
Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A et al (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med 203:2749–2761. doi:10.1084/jem.20060710 ArticlePubMedCAS Google Scholar
Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204:345–356. doi:10.1084/jem.20061890 ArticlePubMedCAS Google Scholar
Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8 T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397. doi:10.1172/JCI34388 ArticlePubMedCAS Google Scholar
Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM et al (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213. doi:10.1016/j.immuni.2007.07.007 ArticlePubMedCAS Google Scholar
Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY et al (2003) Distinct dendritic cell populations sequentially present a subcutaneous antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:47–57. doi:10.1016/S1074-7613(03)00175-4 ArticlePubMedCAS Google Scholar
Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N et al (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654. doi:10.1016/j.immuni.2005.04.004 ArticlePubMedCAS Google Scholar
Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR et al (2003) Epidermal viral immunity induced by CD8α+ dendritic cells but not by Langerhans cells. Science 301:1925–1928. doi:10.1126/science.1087576 ArticlePubMedCAS Google Scholar
Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–162. doi:10.1016/j.immuni.2006.04.017 ArticlePubMedCAS Google Scholar
Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689. doi:10.1038/nri2156 ArticlePubMedCAS Google Scholar
Carriere V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G, Al Saati T et al (2005) Cancer cells regulate lymphocyte recruitment and leukocyte-endothelium interactions in the tumor-draining lymph node. Cancer Res 65:11639–11648. doi:10.1158/0008-5472.CAN-05-1190 ArticlePubMedCAS Google Scholar
Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM et al (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674. doi:10.1126/science.1144830 ArticlePubMedCAS Google Scholar
Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N et al (2006) Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001. doi:10.1016/j.immuni.2006.10.011 ArticlePubMedCAS Google Scholar
Hayakawa M, Kobayashi M, Hoshino T (1988) Direct contact between reticular fibers and migratory cells in the paracortex of mouse lymph nodes: a morphological and quantitative study. Arch Histol Cytol 51:233–240. doi:10.1679/aohc.51.233 ArticlePubMedCAS Google Scholar
Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP et al (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29. doi:10.1016/j.immuni.2004.11.013 ArticlePubMedCAS Google Scholar
Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I (2004) T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci USA 101:998–1003. doi:10.1073/pnas.0306407101 ArticlePubMedCAS Google Scholar
Okada T, Cyster JG (2007) CC chemokine receptor 7 contributes to GI-dependent T cell motility in the lymph node. J Immunol 178:2973–2978 Google Scholar
Asperti-Boursin F, Real E, Bismuth G, Trautmann A, Donnadieu E (2007) CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J Exp Med 204:1167–1179. doi:10.1084/jem.20062079 ArticlePubMedCAS Google Scholar
Monks CRF, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 394:82–86. doi:10.1038/27925 Article Google Scholar
Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227. doi:10.1126/science.285.5425.221 ArticlePubMedCAS Google Scholar
Miller MJ, Safrina O, Parker I, Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200:847–856. doi:10.1084/jem.20041236 ArticlePubMedCAS Google Scholar
Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC et al (2005) Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6:707–717. doi:10.1038/ni1210 ArticlePubMedCAS Google Scholar
Garcia Z, Pradelli E, Celli S, Beuneu H, Simon A, Bousso P (2007) Competition for antigen determines the stability of T cell-dendritic cell interactions during clonal expansion. Proc Natl Acad Sci USA 104:4553–4558. doi:10.1073/pnas.0610019104 ArticlePubMedCAS Google Scholar
Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H et al (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9:282–291. doi:10.1038/ni1559 ArticlePubMedCAS Google Scholar
Skokos D, Shakhar G, Varma R, Waite JC, Cameron TO, Lindquist RL et al (2007) Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes. Nat Immunol 8:835–844. doi:10.1038/ni1490 ArticlePubMedCAS Google Scholar
Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92. doi:10.1038/ni1289 ArticlePubMedCAS Google Scholar
Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A et al (2006) Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203:505–511. doi:10.1084/jem.20050783 ArticlePubMedCAS Google Scholar
Lyman MA, Aung S, Biggs JA, Sherman LA (2004) A spontaneously arising pancreatic tumor does not promote the differentiation of naive CD8+ T lymphocytes into effector CTL. J Immunol 172:6558–6567 PubMedCAS Google Scholar
Veldhoen M, Moncrieffe H, Hocking RJ, Atkins CJ, Stockinger B (2006) Modulation of dendritic cell function by naive and regulatory CD4+ T cells. J Immunol 176:6202–6210 PubMedCAS Google Scholar
Lewkowich IP, Herman NS, Schleifer KW, Dance MP, Chen BL, Dienger KM et al (2005) CD4+, CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J Exp Med 202:1549–1561. doi:10.1084/jem.20051506 ArticlePubMedCAS Google Scholar
Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S (2008) Intercellular adhesion molecule–1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28:258–270. doi:10.1016/j.immuni.2007.12.016 ArticlePubMedCAS Google Scholar
Fisher DT, Chen Q, Appenheimer MM, Skitzki J, Wang WC, Odunsi K et al (2006) Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy. Immunol Invest 35:251–277. doi:10.1080/08820130600745430 ArticlePubMedCAS Google Scholar
Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190. doi:10.1038/ni1275 ArticlePubMedCAS Google Scholar
Wu NZ, Klitzman B, Dodge R, Dewhirst MW (1992) Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 52:4265–4268 PubMedCAS Google Scholar
Fukumura D, Salehi HA, Witwer B, Tuma RF, Melder RJ, Jain RK (1995) Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res 55:4824–4829 PubMedCAS Google Scholar
Griffioen AW, Damen CA, Blijham GH, Groenewegen G (1996) Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88:667–673 PubMedCAS Google Scholar
Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule–1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56:1111–1117 PubMedCAS Google Scholar
Piali L, Fichtel A, Terpe HJ, Imhof BA, Gisler RH (1995) Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J Exp Med 181:811–816. doi:10.1084/jem.181.2.811 ArticlePubMedCAS Google Scholar
Ganss R, Ryschich E, Klar E, Arnold B, Hammerling GJ (2002) Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication. Cancer Res 62:1462–1470 PubMedCAS Google Scholar
Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139 PubMedCAS Google Scholar
Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. doi:10.1073/pnas.0509182102 ArticlePubMedCAS Google Scholar
Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561. doi:10.1073/pnas.95.13.7556 ArticlePubMedCAS Google Scholar
Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. doi:10.1038/35074122 ArticlePubMedCAS Google Scholar
Dighe AS, Richards E, Old LJ, Schreiber RD (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1:447–456. doi:10.1016/1074-7613(94)90087-6 ArticlePubMedCAS Google Scholar
Celada A, Gray PW, Rinderknecht E, Schreiber RD (1984) Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med 160:55–74. doi:10.1084/jem.160.1.55 ArticlePubMedCAS Google Scholar
Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H et al (2003) A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 63:4095–4100 PubMedCAS Google Scholar
Kowalczyk DW, Wlazlo AP, Giles-Davis W, Kammer AR, Mukhopadhyay S, Ertl HC (2003) Vaccine-induced CD8+ T cells eliminate tumors by a two-staged attack. Cancer Gene Ther 10:870–878. doi:10.1038/sj.cgt.7700653 ArticlePubMedCAS Google Scholar
Girardi M, Oppenheim D, Glusac EJ, Filler R, Balmain A, Tigelaar RE et al (2004) Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. J Invest Dermatol 122:699–706. doi:10.1111/j.0022-202X.2004.22342.x ArticlePubMedCAS Google Scholar
Weber JS, Rosenberg SA (1988) Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res 48:5818–5824 PubMedCAS Google Scholar
Lee JK, Sayers TJ, Brooks AD, Back TC, Young HA, Komschlies KL et al (2000) IFN-gamma-dependent delay of in vivo tumor progression by Fas overexpression on murine renal cancer cells. J Immunol 164:231–239 PubMedCAS Google Scholar
Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci USA 88:775–779. doi:10.1073/pnas.88.3.775 ArticlePubMedCAS Google Scholar
Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7:247–255. doi:10.1038/ni1304 ArticlePubMedCAS Google Scholar
Sambhi SK, Kohonen-Corish MR, Ramshaw IA (1991) Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci USA 88:4025–4029. doi:10.1073/pnas.88.9.4025 ArticlePubMedCAS Google Scholar
Dace DS, Chen PW, Niederkorn JY (2007) CD8+ T cells circumvent immune privilege in the eye and mediate intraocular tumor rejection by a TNF-alpha-dependent mechanism. J Immunol 178:6115–6122 PubMedCAS Google Scholar
Prevost-Blondel A, Roth E, Rosenthal FM, Pircher H (2000) Crucial role of TNF-alpha in CD8 T cell-mediated elimination of 3LL-A9 Lewis lung carcinoma cells in vivo. J Immunol 164:3645–3651 PubMedCAS Google Scholar
Zhang B, Karrison T, Rowley DA, Schreiber H (2008) IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 118:1398–1404. doi:10.1172/JCI33522 ArticlePubMedCAS Google Scholar
Stoelcker B, Ruhland B, Hehlgans T, Bluethmann H, Luther T, Mannel DN (2000) Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol 156:1171–1176 PubMedCAS Google Scholar
Schuler T, Kammertoens T, Preiss S, Debs P, Noben-Trauth N, Blankenstein T (2001) Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells. J Exp Med 194:1767–1775. doi:10.1084/jem.194.12.1767 ArticlePubMedCAS Google Scholar
Schuler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J Exp Med 189:803–810. doi:10.1084/jem.189.5.803 ArticlePubMedCAS Google Scholar
Dobrzanski MJ, Reome JB, Dutton RW (2001) Role of effector cell-derived IL–4, IL-5, and perforin in early and late stages of type 2 CD8 effector cell-mediated tumor rejection. J Immunol 167:424–434 PubMedCAS Google Scholar
Huang S, Xie K, Bucana CD, Ullrich SE, Bar-Eli M (1996) Interleukin 10 suppresses tumor growth and metastasis of human melanoma cells: potential inhibition of angiogenesis. Clin Cancer Res 2:1969–1979 PubMedCAS Google Scholar
Slifka MK, Rodriguez F, Whitton JL (1999) Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:76–79. doi:10.1038/43454 ArticlePubMedCAS Google Scholar
Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5:90–96. doi:10.1038/4779 ArticlePubMedCAS Google Scholar
He JS, Ostergaard HL (2007) CTLs contain and use intracellular stores of FasL distinct from cytolytic granules. J Immunol 179:2339–2348 PubMedCAS Google Scholar
Rosen D, Li JH, Keidar S, Markon I, Orda R, Berke G (2000) Tumor immunity in perforin-deficient mice: a role for CD95 (Fas/APO–1). J Immunol 164:3229–3235 PubMedCAS Google Scholar
Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ et al (2002) Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immuno 168:3484–3492 CAS Google Scholar
Caldwell SA, Ryan MH, McDuffie E, Abrams SI (2003) The Fas/Fas ligand pathway is important for optimal tumor regression in a mouse model of CTL adoptive immunotherapy of experimental CMS4 lung metastases. J Immunol 171:2402–2412 PubMedCAS Google Scholar
Stinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM (2006) Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443:462–465. doi:10.1038/nature05071 ArticlePubMedCAS Google Scholar
Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 132:3197–3204 PubMedCAS Google Scholar
Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834. doi:10.1038/322831a0 ArticlePubMedCAS Google Scholar
Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B et al (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271:29073–29079. doi:10.1074/jbc.271.46.29073 ArticlePubMedCAS Google Scholar
Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T et al (2005) Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23:249–262. doi:10.1016/j.immuni.2005.08.001 ArticlePubMedCAS Google Scholar
Spiotto MT, Rowley DA, Schreiber H (2004) Bystander elimination of antigen loss variants in established tumors. Nat Med 10:294–298. doi:10.1038/nm999 ArticlePubMedCAS Google Scholar
Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ et al (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:31–37. doi:10.1038/369031a0 ArticlePubMed Google Scholar
Brunner KT, Mauel J, Cerottini J-C, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition of isoantibody and by drugs. Immunology 14:181–196 PubMedCAS Google Scholar
Sanderson CJ (1976) The mechanism of T cell mediated cytotoxicity II. Morphological studies of cell death by time-lapse microcinematography. Proc R Soc Lond B Biol Sci 192:241–255 ArticlePubMedCAS Google Scholar
Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H et al (2006) Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25:129–141. doi:10.1016/j.immuni.2006.04.015 ArticlePubMedCAS Google Scholar
Duggan BL, Cabilio NR, Dickie P, Witmer J, Goping IS, Underhill DA et al (2008) A novel lineage-specific hypersensitive site is essential for position independent granzyme B expression in transgenic mice. Biochem Biophys Res Commun 368:357–363. doi:10.1016/j.bbrc.2008.01.065 ArticlePubMedCAS Google Scholar
Matter A (1979) Microcinematographic and electron microscopic analysis of target cell lysis induced by cytotoxic T lymphocytes. Immunology 36:179–190 PubMedCAS Google Scholar
Rothstein TL, Mage M, Jones G, McHugh LL (1978) Cytotoxic T lymphocyte sequential killing of immobilized allogeneic tumor target cells measured by time-lapse microcinematography. J Immunol 121:1652 PubMedCAS Google Scholar
Poenie M, Tsien RY, Schmitt-Verhulst A (1987) Sequential activation and lethal hit measured by [Ca++]i in individual cytolytic T cells and targets. EMBO J 6:2223–2232 PubMedCAS Google Scholar
Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA (1991) Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med 173:647–658. doi:10.1084/jem.173.3.647 ArticlePubMedCAS Google Scholar
Becker C, Pohla H, Frankenberger B, Schuler T, Assenmacher M, Schendel DJ et al (2001) Adoptive tumor therapy with T lymphocytes enriched through an IFN-gamma capture assay. Nat Med 7:1159–1162. doi:10.1038/nm1001-1159 ArticlePubMedCAS Google Scholar
Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H et al (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102:419–424. doi:10.1073/pnas.0408197102 ArticlePubMedCAS Google Scholar