Noncoding RNAs and Atherosclerosis (original) (raw)
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Carninci P et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559. ArticlePubMedCAS Google Scholar
Birney E et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447:799. ArticlePubMedCAS Google Scholar
Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci. 2013;14:19987. ArticlePubMed CentralPubMedCAS Google Scholar
Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806. ArticlePubMedCAS Google Scholar
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522. ArticlePubMedCAS Google Scholar
Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179. ArticlePubMedCAS Google Scholar
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15. ArticlePubMedCAS Google Scholar
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597. PubMedCAS Google Scholar
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925. ArticlePubMedCAS Google Scholar
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155. ArticlePubMedCAS Google Scholar
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300. ArticlePubMedCAS Google Scholar
Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25:2573. ArticlePubMed CentralPubMedCAS Google Scholar
Leung A et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266. ArticlePubMedCAS Google Scholar
Grote P et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206. ArticlePubMedCAS Google Scholar
Tiffany HL, Gao JL, Roffe E, Sechler JM, Murphy PM. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family. J Innate Immun. 2011;3:519. ArticlePubMed CentralPubMedCAS Google Scholar
Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239. ArticlePubMedCAS Google Scholar
Esau C et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87. ArticlePubMedCAS Google Scholar
Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48:648. ArticlePubMedCAS Google Scholar
Ramirez CM et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707. ArticlePubMed CentralPubMedCAS Google Scholar
Ramirez CM et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592. ArticlePubMedCAS Google Scholar
Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA. 2010;107:12228. ArticlePubMed CentralPubMed Google Scholar
Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice—brief report. Arterioscler Thromb Vasc Biol. 2013;33:1973. This study demonstrate that miR-33 inhibitors has atheroprotective effects independent of raising circulating HDL-C in mice.
Rayner KJ et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404. This was among the first studies to demonstrate the important role of miR-33 in regulating plasma HDL levels and macrophage cholesterol efflux. ArticlePubMed CentralPubMedCAS Google Scholar
Rayner KJ et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121:2921. This study demonstrates the efficacy of anti-miR-33 therapy to enhance the regression of atherosclerosis. ArticlePubMed CentralPubMedCAS Google Scholar
Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892. This article identifies miR-30c as a key regulator of microsomal triglyceride transfer protein. Most importantly, miR-30 overexpression reduces plasma LDL cholesterol levels and atherogenesis in mice. ArticlePubMedCAS Google Scholar
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516. ArticlePubMed CentralPubMed Google Scholar
Zernecke A et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81. PubMed Google Scholar
Zhou J et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013;113:40. ArticlePubMedCAS Google Scholar
Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21. ArticlePubMed CentralPubMedCAS Google Scholar
Raitoharju E et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219:211. ArticlePubMedCAS Google Scholar
Ji R et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579. ArticlePubMedCAS Google Scholar
Zhou J et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355. ArticlePubMed CentralPubMedCAS Google Scholar
Di Bernardini E et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways. J Biol Chem. 2013. 10.1074/jbc.M113.495531.
Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450. ArticlePubMed CentralPubMed Google Scholar
Sun X et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973. This study identified miR-181b as an important regulator of EC inflammation. PubMed CentralPubMedCAS Google Scholar
Sun X et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114:32. ArticlePubMedCAS Google Scholar
Poliseno L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068. ArticlePubMedCAS Google Scholar
Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164. ArticlePubMedCAS Google Scholar
Zhu N et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286. ArticlePubMedCAS Google Scholar
Dentelli P et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010;30:1562. ArticlePubMedCAS Google Scholar
Son DJ et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000. ArticlePubMed CentralPubMedCAS Google Scholar
Suarez Y et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082. ArticlePubMed CentralPubMed Google Scholar
Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979. ArticlePubMed CentralPubMedCAS Google Scholar
Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222:314. ArticlePubMedCAS Google Scholar
Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59. ArticlePubMedCAS Google Scholar
Akhtar N et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361. ArticlePubMed CentralPubMedCAS Google Scholar
Urbich C et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607. ArticlePubMedCAS Google Scholar
Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci. 2008;29:12. ArticlePubMedCAS Google Scholar
Menghini R et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524. ArticlePubMedCAS Google Scholar
Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398:735. ArticlePubMedCAS Google Scholar
Vasa-Nicotera M et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326. ArticlePubMedCAS Google Scholar
Wang M et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044. ArticlePubMedCAS Google Scholar
Sarkar J et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol. 2010;299:L861. ArticlePubMed CentralPubMedCAS Google Scholar
Boettger T et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634. ArticlePubMed CentralPubMedCAS Google Scholar
Cheng Y et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158. ArticlePubMed CentralPubMedCAS Google Scholar
Xin M et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166. ArticlePubMed CentralPubMedCAS Google Scholar
Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13. ArticlePubMed CentralPubMedCAS Google Scholar
Qiu LX et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695. ArticlePubMedCAS Google Scholar
Chen J et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 2011;31:368. ArticlePubMed CentralPubMedCAS Google Scholar
Xie C et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20:205. ArticlePubMed CentralPubMedCAS Google Scholar
Torella D et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109:880. ArticlePubMedCAS Google Scholar
Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007;101:1225. ArticlePubMedCAS Google Scholar
Zhang P et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels—brief report. Arterioscler Thromb Vasc Biol. 2012;32:756. This article demonstrates that the therapeutic inhibition of miR-29 might be useful for treating elastin-deficiency-associated diseases. ArticlePubMed CentralPubMedCAS Google Scholar
Liu X et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476. ArticlePubMed CentralPubMedCAS Google Scholar
Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284:3728. ArticlePubMed CentralPubMedCAS Google Scholar
Zhang Y et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens. 2011;29:1560. ArticlePubMedCAS Google Scholar
Choe N et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348. ArticlePubMedCAS Google Scholar
Yu ML et al. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J. 2011;75:703. ArticlePubMedCAS Google Scholar
Chen KC et al. Negative feedback regulation between microRNA let-7 g and the oxLDL receptor LOX-1. J Cell Sci. 2011;124:4115. ArticlePubMedCAS Google Scholar
Zhang Y, Chen N, Zhang J, Tong Y. Hsa-let-7 g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci. 2013;14:22708. ArticlePubMed CentralPubMedCAS Google Scholar
Liao YC et al. Let-7 g improves multiple endothelial functions through targeting TGF-β and SIRT-1 signaling. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.09.069. Google Scholar
Liao XB et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:3344. ArticlePubMedCAS Google Scholar
Remus EW et al. miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis. 2013;228:168. ArticlePubMedCAS Google Scholar
Xu J et al. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2013;45:953. ArticleCAS Google Scholar
Thulin P et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med. 2013;31:1003. PubMed CentralPubMedCAS Google Scholar
Chen T et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131. ArticlePubMedCAS Google Scholar
Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 2010;58:961. PubMedCAS Google Scholar
Donners MM et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7:e35877. ArticlePubMed CentralPubMedCAS Google Scholar
Yang K et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854. ArticlePubMedCAS Google Scholar
Liu G et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009;106:15819. ArticlePubMed CentralPubMed Google Scholar
Ishii N et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087. ArticlePubMedCAS Google Scholar
Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491. ArticlePubMedCAS Google Scholar
Yap KL et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662. ArticlePubMed CentralPubMedCAS Google Scholar
Kotake Y et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956. ArticlePubMed CentralPubMedCAS Google Scholar
Holdt LM et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588. ArticlePubMed CentralPubMedCAS Google Scholar
Bochenek G et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22:4516. ArticlePubMedCAS Google Scholar
Robb GB et al. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem. 2004;279:37982. ArticlePubMedCAS Google Scholar
Fish JE et al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem. 2007;282:15652. ArticlePubMedCAS Google Scholar
Halley P et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 2014;6:222. ArticlePubMedCAS Google Scholar
Lund-Katz S, Phillips MC. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183. ArticlePubMed CentralPubMedCAS Google Scholar
Carpenter S et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789. ArticlePubMedCAS Google Scholar