Noncoding RNAs and Atherosclerosis (original) (raw)

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carninci P et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559.
    Article PubMed CAS Google Scholar
  2. Birney E et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447:799.
    Article PubMed CAS Google Scholar
  3. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(Spec No 1):R17.
    Article PubMed CAS Google Scholar
  4. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861.
    Article PubMed CAS Google Scholar
  5. Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci. 2013;14:19987.
    Article PubMed Central PubMed CAS Google Scholar
  6. Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806.
    Article PubMed CAS Google Scholar
  7. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175.
    Article PubMed CAS Google Scholar
  8. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827.
    Article PubMed CAS Google Scholar
  9. Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33:178.
    Article PubMed Central PubMed CAS Google Scholar
  10. Go AS et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2013. doi:10.1161/01.cir.0000441139.02102.80.
    PubMed Central Google Scholar
  11. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503.
    Article PubMed CAS Google Scholar
  12. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494.
    Article PubMed Central PubMed CAS Google Scholar
  13. Djebali S et al. Landscape of transcription in human cells. Nature. 2012;489:101.
    Article PubMed Central PubMed CAS Google Scholar
  14. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522.
    Article PubMed CAS Google Scholar
  15. Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179.
    Article PubMed CAS Google Scholar
  16. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15.
    Article PubMed CAS Google Scholar
  17. Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7:643.
    Article PubMed CAS Google Scholar
  18. Faehnle CR, Joshua-Tor L. Argonaute MID domain takes centre stage. EMBO Rep. 2010;11:564.
    Article PubMed Central PubMed CAS Google Scholar
  19. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597.
    PubMed CAS Google Scholar
  20. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651.
    Article PubMed Central PubMed CAS Google Scholar
  21. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925.
    Article PubMed CAS Google Scholar
  22. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155.
    Article PubMed CAS Google Scholar
  23. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300.
    Article PubMed CAS Google Scholar
  24. Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25:2573.
    Article PubMed Central PubMed CAS Google Scholar
  25. Leung A et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266.
    Article PubMed CAS Google Scholar
  26. Grote P et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206.
    Article PubMed CAS Google Scholar
  27. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904.
    Article PubMed Central PubMed CAS Google Scholar
  28. Tiffany HL, Gao JL, Roffe E, Sechler JM, Murphy PM. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family. J Innate Immun. 2011;3:519.
    Article PubMed Central PubMed CAS Google Scholar
  29. Tsai MC et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689.
    Article PubMed Central PubMed CAS Google Scholar
  30. Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239.
    Article PubMed CAS Google Scholar
  31. Esau C et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87.
    Article PubMed CAS Google Scholar
  32. Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48:648.
    Article PubMed CAS Google Scholar
  33. Rayner KJ et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570.
    Article PubMed Central PubMed CAS Google Scholar
  34. Ramirez CM et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707.
    Article PubMed Central PubMed CAS Google Scholar
  35. Kim J et al. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol. 2011;235:476.
    Article PubMed Central PubMed CAS Google Scholar
  36. Ramirez CM et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592.
    Article PubMed CAS Google Scholar
  37. Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA. 2010;107:12228.
    Article PubMed Central PubMed Google Scholar
  38. Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice—brief report. Arterioscler Thromb Vasc Biol. 2013;33:1973. This study demonstrate that miR-33 inhibitors has atheroprotective effects independent of raising circulating HDL-C in mice.
  39. Rayner KJ et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404. This was among the first studies to demonstrate the important role of miR-33 in regulating plasma HDL levels and macrophage cholesterol efflux.
    Article PubMed Central PubMed CAS Google Scholar
  40. Rayner KJ et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121:2921. This study demonstrates the efficacy of anti-miR-33 therapy to enhance the regression of atherosclerosis.
    Article PubMed Central PubMed CAS Google Scholar
  41. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892. This article identifies miR-30c as a key regulator of microsomal triglyceride transfer protein. Most importantly, miR-30 overexpression reduces plasma LDL cholesterol levels and atherogenesis in mice.
    Article PubMed CAS Google Scholar
  42. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516.
    Article PubMed Central PubMed Google Scholar
  43. Zernecke A et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81.
    PubMed Google Scholar
  44. Zhou J et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013;113:40.
    Article PubMed CAS Google Scholar
  45. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21.
    Article PubMed Central PubMed CAS Google Scholar
  46. Raitoharju E et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219:211.
    Article PubMed CAS Google Scholar
  47. Ji R et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579.
    Article PubMed CAS Google Scholar
  48. Zhou J et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355.
    Article PubMed Central PubMed CAS Google Scholar
  49. Di Bernardini E et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways. J Biol Chem. 2013. 10.1074/jbc.M113.495531.
  50. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450.
    Article PubMed Central PubMed Google Scholar
  51. Sun X et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973. This study identified miR-181b as an important regulator of EC inflammation.
    PubMed Central PubMed CAS Google Scholar
  52. Sun X et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114:32.
    Article PubMed CAS Google Scholar
  53. Cheng HS et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:949.
    Article PubMed Central PubMed CAS Google Scholar
  54. Poliseno L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068.
    Article PubMed CAS Google Scholar
  55. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164.
    Article PubMed CAS Google Scholar
  56. Zhu N et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286.
    Article PubMed CAS Google Scholar
  57. Dentelli P et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010;30:1562.
    Article PubMed CAS Google Scholar
  58. Son DJ et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.
    Article PubMed Central PubMed CAS Google Scholar
  59. Suarez Y et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082.
    Article PubMed Central PubMed Google Scholar
  60. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979.
    Article PubMed Central PubMed CAS Google Scholar
  61. Loyer X et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2013. doi:10.1161/CIRCRESAHA.114.302213.
    Google Scholar
  62. Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222:314.
    Article PubMed CAS Google Scholar
  63. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59.
    Article PubMed CAS Google Scholar
  64. Akhtar N et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361.
    Article PubMed Central PubMed CAS Google Scholar
  65. Urbich C et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607.
    Article PubMed CAS Google Scholar
  66. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci. 2008;29:12.
    Article PubMed CAS Google Scholar
  67. Menghini R et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524.
    Article PubMed CAS Google Scholar
  68. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398:735.
    Article PubMed CAS Google Scholar
  69. Vasa-Nicotera M et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326.
    Article PubMed CAS Google Scholar
  70. Wang M et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044.
    Article PubMed CAS Google Scholar
  71. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56.
    Article PubMed Central PubMed CAS Google Scholar
  72. Sarkar J et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol. 2010;299:L861.
    Article PubMed Central PubMed CAS Google Scholar
  73. Boettger T et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634.
    Article PubMed Central PubMed CAS Google Scholar
  74. Cheng Y et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158.
    Article PubMed Central PubMed CAS Google Scholar
  75. Cordes KR et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705.
    PubMed Central PubMed CAS Google Scholar
  76. Xin M et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166.
    Article PubMed Central PubMed CAS Google Scholar
  77. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13.
    Article PubMed Central PubMed CAS Google Scholar
  78. Qiu LX et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695.
    Article PubMed CAS Google Scholar
  79. Chen J et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 2011;31:368.
    Article PubMed Central PubMed CAS Google Scholar
  80. Xie C et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20:205.
    Article PubMed Central PubMed CAS Google Scholar
  81. Torella D et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109:880.
    Article PubMed CAS Google Scholar
  82. Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007;101:1225.
    Article PubMed CAS Google Scholar
  83. Zhang P et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels—brief report. Arterioscler Thromb Vasc Biol. 2012;32:756. This article demonstrates that the therapeutic inhibition of miR-29 might be useful for treating elastin-deficiency-associated diseases.
    Article PubMed Central PubMed CAS Google Scholar
  84. Liu X et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476.
    Article PubMed Central PubMed CAS Google Scholar
  85. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284:3728.
    Article PubMed Central PubMed CAS Google Scholar
  86. Zhang Y et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens. 2011;29:1560.
    Article PubMed CAS Google Scholar
  87. Choe N et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348.
    Article PubMed CAS Google Scholar
  88. Yu ML et al. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J. 2011;75:703.
    Article PubMed CAS Google Scholar
  89. Chen KC et al. Negative feedback regulation between microRNA let-7 g and the oxLDL receptor LOX-1. J Cell Sci. 2011;124:4115.
    Article PubMed CAS Google Scholar
  90. Zhang Y, Chen N, Zhang J, Tong Y. Hsa-let-7 g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci. 2013;14:22708.
    Article PubMed Central PubMed CAS Google Scholar
  91. Liao YC et al. Let-7 g improves multiple endothelial functions through targeting TGF-β and SIRT-1 signaling. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.09.069.
    Google Scholar
  92. Liao XB et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:3344.
    Article PubMed CAS Google Scholar
  93. Remus EW et al. miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis. 2013;228:168.
    Article PubMed CAS Google Scholar
  94. Xu J et al. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2013;45:953.
    Article CAS Google Scholar
  95. Thulin P et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med. 2013;31:1003.
    PubMed Central PubMed CAS Google Scholar
  96. Chen T et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131.
    Article PubMed CAS Google Scholar
  97. Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 2010;58:961.
    PubMed CAS Google Scholar
  98. Nazari-Jahantigh M et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122:4190.
    Article PubMed Central PubMed CAS Google Scholar
  99. Donners MM et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7:e35877.
    Article PubMed Central PubMed CAS Google Scholar
  100. Yang K et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854.
    Article PubMed CAS Google Scholar
  101. Liu G et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009;106:15819.
    Article PubMed Central PubMed Google Scholar
  102. Ishii N et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087.
    Article PubMed CAS Google Scholar
  103. McPherson R et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488.
    Article PubMed Central PubMed CAS Google Scholar
  104. Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491.
    Article PubMed CAS Google Scholar
  105. Samani NJ et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443.
    Article PubMed Central PubMed CAS Google Scholar
  106. Yap KL et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662.
    Article PubMed Central PubMed CAS Google Scholar
  107. Kotake Y et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956.
    Article PubMed Central PubMed CAS Google Scholar
  108. Holdt LM et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.
    Article PubMed Central PubMed CAS Google Scholar
  109. Bochenek G et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22:4516.
    Article PubMed CAS Google Scholar
  110. Robb GB et al. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem. 2004;279:37982.
    Article PubMed CAS Google Scholar
  111. Fish JE et al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem. 2007;282:15652.
    Article PubMed CAS Google Scholar
  112. Li K et al. A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood. 2010;115:133.
    Article PubMed Central PubMed CAS Google Scholar
  113. Halley P et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 2014;6:222.
    Article PubMed CAS Google Scholar
  114. Lund-Katz S, Phillips MC. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183.
    Article PubMed Central PubMed CAS Google Scholar
  115. Carpenter S et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789.
    Article PubMed CAS Google Scholar

Download references