Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med.315, 1650–1659 (1986). ArticleCASPubMed Google Scholar
Virchow, R. An address on the value of pathological experiments. Br. Med. J.2, 198–203 (1881). This is the first account of inflammatory processes that accompany cancer development in tissues. ArticleCASPubMedPubMed Central Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med.248, 171–183 (2000). ArticleCASPubMed Google Scholar
Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature491, 254–258 (2012). This paper shows a role for products derived from the commensal microbiota in tumour-induced inflammation and tumour promotion. ArticleCASPubMedPubMed Central Google Scholar
Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic _bacteroides fragilis_-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA108, 15354–15359 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abdulamir, A. S., Hafidh, R. R. & Abu Bakar, F. The association of streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J. Exp. Clin. Cancer Res.30, 11 (2011). ArticlePubMedPubMed Central Google Scholar
Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science338, 120–123 (2012). This article shows the genotoxic and tumour-promoting potential of a pathobiont of the commensal microflora that blooms under inflammatory conditions. ArticleCASPubMedPubMed Central Google Scholar
Amit, I. et al. A module of negative feedback regulators defines growth factor signaling. Nature Genet.39, 503–512 (2007). ArticleCASPubMed Google Scholar
Mosesson, Y., Mills, G. B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nature Rev. Cancer8, 835–850 (2008). ArticleCASPubMed Google Scholar
Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature487, 505–509 (2012). ArticleCASPubMedPubMed Central Google Scholar
Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature487, 500–504 (2012). ArticleCASPubMedPubMed Central Google Scholar
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature483, 100–103 (2012). ArticleCASPubMed Google Scholar
Casaletto, J. B. & McClatchey, A. I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nature Rev. Cancer12, 387–400 (2012). ArticleCAS Google Scholar
Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell19, 441–455 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell19, 456–469 (2011). ArticleCASPubMed Google Scholar
Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell15, 91–102 (2009). ArticleCASPubMed Google Scholar
Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell15, 103–113 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bronte-Tinkew, D. M. et al. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res.69, 632–639 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest.117, 3846–3856 (2007). ArticleCASPubMedPubMed Central Google Scholar
Waldner, M. J., Foersch, S. & Neurath, M. F. Interleukin-6 — a key regulator of colorectal cancer development. Int. J. Biol. Sci.8, 1248–1253 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Rev. Cancer9, 798–809 (2009). ArticleCAS Google Scholar
Liang, J. et al. Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell23, 107–120 (2013). ArticleCASPubMed Google Scholar
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell140, 197–208 (2010). ArticleCASPubMedPubMed Central Google Scholar
Iliopoulos, D., Hirsch, H. A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell139, 693–706 (2009). ArticleCASPubMedPubMed Central Google Scholar
Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol.5, 749–759 (2005). ArticleCAS Google Scholar
Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nature Immunol.12, 715–723 (2011). ArticleCAS Google Scholar
Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature431, 461–466 (2004). ArticleCASPubMed Google Scholar
Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell118, 285–296 (2004). This paper and reference 31 first showed a connection between inflammation and cancer growth through the transcription factor NF-κB. ArticleCASPubMed Google Scholar
Popivanova, B. K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest.118, 560–570 (2008). CASPubMedPubMed Central Google Scholar
Schiechl, G. et al. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11bhighGr1low macrophages. J. Clin. Invest.121, 1692–1708 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tye, H. et al. STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell22, 466–478 (2012). ArticleCASPubMed Google Scholar
Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunol.12, 383–390 (2011). ArticleCAS Google Scholar
Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med.206, 1465–1472 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jiang, R. et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology54, 900–909 (2011). ArticleCASPubMed Google Scholar
Park, O. et al. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology54, 252–261 (2011). ArticlePubMedCAS Google Scholar
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell152, 25–38 (2013). ArticleCASPubMed Google Scholar
Myant, K. B. et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell12, 761–773 (2013). ArticleCASPubMedPubMed Central Google Scholar
Marotta, L. L. et al. The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24− stem cell-like breast cancer cells in human tumors. J. Clin. Invest.121, 2723–2735 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ho, P. L., Lay, E. J., Jian, W., Parra, D. & Chan, K. S. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res.72, 3135–3142 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA104, 16158–16163 (2007). ArticleCASPubMedPubMed Central Google Scholar
Scheitz, C. J., Lee, T. S., McDermitt, D. J. & Tumbar, T. Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J.31, 4124–4139 (2012). ArticleCASPubMedPubMed Central Google Scholar
Quante, M. et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell21, 36–51 (2012). ArticleCASPubMedPubMed Central Google Scholar
Campisi, J. & d'Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol.8, 729–740 (2007). ArticleCAS Google Scholar
Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev.25, 2125–2136 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature479, 547–551 (2011). ArticleCASPubMed Google Scholar
Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature494, 361–365 (2013). ArticleCASPubMed Google Scholar
Pribluda, A. et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell24, 242–256 (2013). ArticleCASPubMed Google Scholar
Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature454, 436–444 (2008). ArticleCASPubMed Google Scholar
Campregher, C., Luciani, M. G. & Gasche, C. Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in colon epithelial cells. Gut57, 780–787 (2008). ArticleCASPubMed Google Scholar
Mills, K. D., Ferguson, D. O. & Alt, F. W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev.194, 77–95 (2003). ArticleCASPubMed Google Scholar
Takai, A. et al. A novel mouse model of hepatocarcinogenesis triggered by AID causing deleterious p53 mutations. Oncogene28, 469–478 (2009). ArticleCASPubMed Google Scholar
Okazaki, I. M., Kotani, A. & Honjo, T. Role of AID in tumorigenesis. Adv. Immunol.94, 245–273 (2007). ArticleCASPubMed Google Scholar
Endo, Y. et al. Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. Gastroenterology135, 889–898 (2008). ArticleCASPubMed Google Scholar
Komori, J. et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology47, 888–896 (2008). ArticleCASPubMed Google Scholar
Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis30, 1073–1081 (2009). ArticleCASPubMed Google Scholar
Schetter, A. J., Heegaard, N. H. & Harris, C. C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis31, 37–49 (2010). ArticleCASPubMed Google Scholar
Singh, B., Vincent, L., Berry, J. A., Multani, A. S. & Lucci, A. Cyclooxygenase-2 expression induces genomic instability in MCF10A breast epithelial cells. J. Surg. Res.140, 220–226 (2007). ArticleCASPubMed Google Scholar
Hahn, M. A. et al. Methylation of polycomb target genes in intestinal cancer is mediated by inflammation. Cancer Res.68, 10280–10289 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mishra, A. et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell22, 645–655 (2012). ArticleCASPubMedPubMed Central Google Scholar
Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res.70, 5649–5669 (2010). ArticleCASPubMedPubMed Central Google Scholar
Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol.21, 139–146 (2011). ArticleCASPubMed Google Scholar
Bates, R. C. & Mercurio, A. M. Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol. Biol. Cell14, 1790–1800 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sullivan, N. J. et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene28, 2940–2947 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell15, 416–428 (2009). ArticleCASPubMedPubMed Central Google Scholar
Grivennikov, S. I. & Karin, M. Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev.20, 65–71 (2010). ArticleCASPubMed Google Scholar
Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev.24, 241–255 (2010). ArticleCASPubMedPubMed Central Google Scholar
DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell16, 91–102 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kitamura, T. et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nature Genet.39, 467–475 (2007). ArticleCASPubMed Google Scholar
Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer8, 618–631 (2008). ArticleCAS Google Scholar
Lerner, I. et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J. Clin. Invest.121, 1709–1721 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67, 2649–2656 (2007). ArticleCASPubMed Google Scholar
Grivennikov, S. I., Kuprash, D. V., Liu, Z. G. & Nedospasov, S. A. Intracellular signals and events activated by cytokines of the tumor necrosis factor superfamily: From simple paradigms to complex mechanisms. Int. Rev. Cytol.252, 129–161 (2006). ArticleCASPubMed Google Scholar
Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Rev. Cancer9, 274–284 (2009). ArticleCAS Google Scholar
McDonald, B. et al. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int. J. Cancer125, 1298–1305 (2009). ArticleCASPubMed Google Scholar
Wolf, M. J. et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell22, 91–105 (2012). ArticleCASPubMed Google Scholar
Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Med.19, 747–752 (2013). ArticleCASPubMed Google Scholar
Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med.2, 1096–1103 (1996). ArticleCASPubMed Google Scholar
Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med.9, 562–567 (2003). ArticleCASPubMed Google Scholar
Geissmann, F. et al. TGF-β 1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol.162, 4567–4575 (1999). CASPubMed Google Scholar
Steinbrink, K. et al. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells. Blood93, 1634–1642 (1999). CASPubMed Google Scholar
Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood92, 4778–4791 (1998). CASPubMed Google Scholar
Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell21, 822–835 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol.9, 162–174 (2009). ArticleCAS Google Scholar
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med.10, 942–949 (2004). ArticleCASPubMed Google Scholar
Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature475, 226–230 (2011). ArticleCASPubMed Google Scholar
Facciabene, A., Motz, G. T. & Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res.72, 2162–2171 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood111, 251–259 (2008). ArticleCASPubMedPubMed Central Google Scholar
Garrett, W. S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell16, 208–219 (2009). ArticleCASPubMedPubMed Central Google Scholar
Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest.123, 700–711 (2013). CASPubMedPubMed Central Google Scholar
Moore, P. S. & Chang, Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature Rev. Cancer10, 878–889 (2010). ArticleCAS Google Scholar
Wuerthele-Caspe, V. et al. Cultural properties and pathogenicity of certain microorganisms obtained from various proliferative and neoplastic diseases. Am. J. Med. Sci.220, 638–646 (1950). ArticleCASPubMed Google Scholar
Livingston, V. W. & Alexander-Jackson, E. An experimental biologic approach to the treatment of neoplastic disease; determination of actinomycin in urine and cultures as an aid to diagnosis and prognosis. J. Am. Med. Womens Assoc.20, 858–866 (1965). CASPubMed Google Scholar
Unproven methods of cancer management. Livingston-Wheeler therapy. CA Cancer J. Clin.41, A7–A12 (1991).
Polk, D. B. & Peek, R. M. Jr. Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer10, 403–414 (2010). ArticleCAS Google Scholar
Samaras, V., Rafailidis, P. I., Mourtzoukou, E. G., Peppas, G. & Falagas, M. E. Chronic bacterial and parasitic infections and cancer: a review. J. Infect. Dev. Ctries4, 267–281 (2010). ArticlePubMed Google Scholar
Hill, M. J. Chronic bacterial infection and subsequent human carcinogenesis. Eur. J. Cancer Prev.4, 127–128 (1995). CASPubMed Google Scholar
Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012).
Rakoff-Nahoum, S. & Medzhitov, R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science317, 124–127 (2007). ArticleCASPubMed Google Scholar
Lee, S. H. et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nature Med.16, 665–670 (2010). ArticleCASPubMed Google Scholar
Uronis, J. M. et al. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE4, e6026 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Salcedo, R. et al. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med.207, 1625–1636 (2010). ArticleCASPubMedPubMed Central Google Scholar
Fukata, M. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology133, 1869–1881 (2007). ArticleCASPubMed Google Scholar
Lowe, E. L. et al. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PLoS ONE5, e13027 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol.6, 4–13 (2013). ArticleCASPubMed Google Scholar
Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA107, 21635–21640 (2010). ArticlePubMedPubMed Central Google Scholar
Zaki, M. H., Vogel, P., Body-Malapel, M., Lamkanfi, M. & Kanneganti, T. D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol.185, 4912–4920 (2010). ArticleCASPubMed Google Scholar
Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol.186, 7187–7194 (2011). ArticleCASPubMed Google Scholar
Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA108, 9601–9606 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hu, B. et al. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1307575110 (2013). This paper, together with reference 103, shows that the intestinal dysbiosis that results from innate immune deficiency leads to transmissible colon cancer.
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res.22, 292–298 (2012). ArticleCASPubMedPubMed Central Google Scholar
Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis.17, 1971–1978 (2011). ArticlePubMed Google Scholar
Kostic, A. D. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe.14, 207–215 (2013) ArticleCASPubMedPubMed Central Google Scholar
Rubinstein, M. R., et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe.14, 195–206 (2013) ArticleCASPubMedPubMed Central Google Scholar
Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med.15, 1016–1022 (2009). This paper shows the direct involvement of a member of the commensal microflora in inflammation and tumorigenesis. ArticleCASPubMed Google Scholar
Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature499, 97–101 (2013). This report links microbiota-derived products to carcinogenesis and cellular senescence. ArticleCASPubMed Google Scholar
Yusuf, N. et al. Protective role of Toll-like receptor 4 during the initiation stage of cutaneous chemical carcinogenesis. Cancer Res.68, 615–622 (2008). ArticleCASPubMedPubMed Central Google Scholar
Swann, J. B. et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl Acad. Sci. USA105, 652–656 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nickoloff, B. J., Ben-Neriah, Y. & Pikarsky, E. Inflammation and cancer: is the link as simple as we think?. J. Invest Dermatol.124, 10–14 (2005). Article Google Scholar
Sanders, M. E. et al. An update on the use and investigation of probiotics in health and disease. Gut62, 787–796 (2013). ArticleCASPubMed Google Scholar
Maroof, H., Hassan, Z. M., Mobarez, A. M. & Mohamadabadi, M. A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J. Clin. Immunol.32, 1353–1359 (2012). ArticleCASPubMed Google Scholar
Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., De Simone, C. & Hontecillas, R. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS ONE7, e34676 (2012). ArticleCASPubMedPubMed Central Google Scholar
Corthesy, B., Gaskins, H. R. & Mercenier, A. Cross-talk between probiotic bacteria and the host immune system. J. Nutr.137, 781S–790S (2007). ArticleCASPubMed Google Scholar
Orlando, A., Messa, C., Linsalata, M., Cavallini, A. & Russo, F. Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol. Immunotoxicol31, 108–116 (2009). ArticleCASPubMed Google Scholar
Kim, Y. et al. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res.31, 468–473 (2008). ArticleCASPubMed Google Scholar
Le Leu, R. K. et al. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen- damaged cells in rat colon. J. Nutr.135, 996–1001 (2005). ArticleCASPubMed Google Scholar
Pool-Zobel, B. L. et al. _Lactobacillus_- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer26, 365–380 (1996). ArticleCASPubMed Google Scholar