Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol.8, 101–112 (2007). ArticleCAS Google Scholar
Muchowski, P. J. Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron35, 9–12 (2002). ArticleCASPubMed Google Scholar
Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature431, 805–810 (2004). ArticleCASPubMed Google Scholar
Fiumara, F., Fioriti, L., Kandel, E. R. & Hendrickson, W. A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and polyQ proteins. Cell143, 1121–1135 (2010). This study demonstrated that coiled-coil motifs in polyQ proteins contribute to the aggregation and cytotoxicity of these proteins. ArticleCASPubMedPubMed Central Google Scholar
Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nature Rev. Neurosci.11, 791–797 (2010). ArticleCAS Google Scholar
Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr.79, 368–376 (2008). ArticleCAS Google Scholar
Buschert, V., Bokde, A. L. W. & Hampel, H. Cognitive intervention in Alzheimer disease. Nature Rev. Neurol.6, 508–517 (2010). ArticleCAS Google Scholar
Carter, M. D., Simms, G. A. & Weaver, D. F. The development of new therapeutics for Alzheimer's disease. Clin. Pharmacol. Ther.88, 475–486 (2010). ArticleCASPubMed Google Scholar
Boillée, S., Vande Velde, C. & Cleveland, D. W. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron52, 39–59 (2006). ArticleCASPubMed Google Scholar
Verity, N. C. & Mallucci, G. R. Rescuing neurons in prion disease. Biochem. J.433, 19–29 (2010). ArticleCAS Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleCASPubMed Google Scholar
Chai, Y., Koppenhafer, S. L., Bonini, N. M. & Paulson, H. L. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci.19, 10338–10347 (1999). ArticleCASPubMedPubMed Central Google Scholar
Warrick, J. M. et al. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genet.23, 425–428 (1999). ArticleCASPubMed Google Scholar
Chan, H. Y., Warrick, J. M., Gray-Board, G. L., Paulson, H. L. & Bonini, N. M. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet.9, 2811–2820 (2000). This study showed that HSP40 and HSP70 synergize to ameliorate the cytotoxicity of polyQ proteins in fruitfly disease models by modulating the solubility of these proteins. ArticleCASPubMed Google Scholar
Auluck, P. K. & Bonini, N. M. Pharmacological prevention of Parkinson disease in Drosophila. Nature Med.8, 1185–1186 (2002). This paper showed that pharmacological activation of HSF1 via the HSP90 inhibitor geldanamycin can ameliorate disease phenotypes in a fruitfly model of Parkinson's disease. ArticleCASPubMed Google Scholar
Auluck, P., Meulener, M. & Bonini, N. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. J. Biol. Chem.280, 2873–2878 (2005). ArticleCASPubMed Google Scholar
Alavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature472, 226–229 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl Acad. Sci. USA106, 14914–14919 (2009). This study describes a widespread failure in protein folding that occurs in early adulthood and coincides with reduced activation of HSF1 and chaperone protein expression inC. elegans. ArticleCASPubMedPubMed Central Google Scholar
Fonte, V. et al. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc. Natl Acad. Sci. USA99, 9439–9444 (2002). ArticleCASPubMedPubMed Central Google Scholar
Satyal, S. H. et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA97, 5750–5755 (2000). This study shows that the expression of polyQ proteins inC. elegansdisrupts general protein folding, causes aggregation of otherwise soluble proteins and constitutively promotes the activation of HSF1 and chaperone proteins. ArticleCASPubMedPubMed Central Google Scholar
Teixeira-Castro, A. et al. Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum. Mol. Genet.20, 2996–3009 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet.5, e1000350 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lanneau, D., de Thonel, A., Maurel, S., Didelot, C. & Garrido, C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion1, 53–60 (2007). ArticlePubMedPubMed Central Google Scholar
Batulan, Z. et al. High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci.23, 5789–5798 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bonelli, M. A. et al. Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro. Exp. Cell Res.252, 20–32 (1999). ArticleCASPubMed Google Scholar
Gutsmann-Conrad, A., Heydari, A. R., You, S. & Richardson, A. The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp. Cell Res.241, 404–413 (1998). ArticleCASPubMed Google Scholar
Gutsmann-Conrad, A., Pahlavani, M. A., Heydari, A. R. & Richardson, A. Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats. Mech. Ageing Dev.107, 255–270 (1999). ArticleCASPubMed Google Scholar
Fargnoli, J., Kunisada, T., Fornace, A. J., Schneider, E. L. & Holbrook, N. J. Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc. Natl Acad. Sci. USA87, 846–850 (1990). ArticleCASPubMedPubMed Central Google Scholar
Fawcett, T. W., Sylvester, S. L., Sarge, K. D., Morimoto, R. I. & Holbrook, N. J. Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J. Biol. Chem.269, 32272–32278 (1994). CASPubMed Google Scholar
Pahlavani, M. A., Harris, M. D., Moore, S. A., Weindruch, R. & Richardson, A. The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp. Cell Res.218, 310–318 (1995). ArticleCASPubMed Google Scholar
Bailey, C. K., Andriola, I. F. M., Kampinga, H. H. & Merry, D. E. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum. Mol. Genet.11, 515–523 (2002). ArticleCASPubMed Google Scholar
Fujimoto, M. et al. Active HSF1 significantly suppresses polyglutamine aggregate formation in cellular and mouse models. J. Biol. Chem.280, 34908–34916 (2005). This study demonstrates that the expression of a constitutively activeHSF1allele ameliorates pathogenic phenotypes in a mouse model of Huntington's disease. ArticleCASPubMed Google Scholar
Muchowski, P. J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA97, 7841–7846 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol.11, 1215–1222 (2004). ArticleCAS Google Scholar
Wyttenbach, A. et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl Acad. Sci. USA97, 2898–2903 (2000). ArticleCASPubMedPubMed Central Google Scholar
Feder, J. H., Rossi, J. M., Solomon, J., Solomon, N. & Lindquist, S. The consequences of expressing hsp70 in Drosophila cells at normal temperatures. Genes Dev.6, 1402–1413 (1992). ArticleCASPubMed Google Scholar
Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell130, 1005–1018 (2007). ArticleCASPubMedPubMed Central Google Scholar
Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nature Rev. Mol. Cell Biol.11, 545–555 (2010). ArticleCAS Google Scholar
Gonsalves, S. E., Moses, A. M., Razak, Z., Robert, F. & Westwood, J. T. Whole-genome analysis reveals that active heat shock factor binding sites are mostly associated with non-heat shock genes in Drosophila melanogaster. PLoS ONE6, e15934 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hahn, J.-S., Hu, Z., Thiele, D. J. & Iyer, V. R. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell Biol.24, 5249–5256 (2004). ArticleCASPubMedPubMed Central Google Scholar
Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D. & Myers, R. M. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell15, 1254–1261 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ostling, P., Björk, J. K., Roos-Mattjus, P., Mezger, V. & Sistonen, L. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem.282, 7077–7086 (2007). ArticleCASPubMed Google Scholar
Sandqvist, A. et al. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol. Biol. Cell20, 1340–1347 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shinkawa, T. et al. Heat shock factor 2 is required for maintaining proteostasis against febrile range thermal stress and polyglutamine aggregation. Mol. Biol. Cell22, 3571–3583 (2011). ArticleCASPubMedPubMed Central Google Scholar
Abravaya, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev.6, 1153–1164 (1992). ArticleCASPubMed Google Scholar
Ali, A., Bharadwaj, S., O'Carroll, R. & Ovsenek, N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell Biol.18, 4949–4960 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bharadwaj, S., Ali, A. & Ovsenek, N. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell Biol.19, 8033–8041 (1999). ArticleCASPubMedPubMed Central Google Scholar
Conde, R., Xavier, J., McLoughlin, C., Chinkers, M. & Ovsenek, N. Protein phosphatase 5 is a negative modulator of heat shock factor 1. J. Biol. Chem.280, 28989–28996 (2005). ArticleCASPubMed Google Scholar
Guo, Y. et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem.276, 45791–45799 (2001). ArticleCASPubMed Google Scholar
Shi, Y., Mosser, D. D. & Morimoto, R. I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev.12, 654–666 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell94, 471–480 (1998). ArticleCASPubMed Google Scholar
Arlander, S. J. H. et al. Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J. Biol. Chem.281, 2989–2998 (2006). ArticleCASPubMed Google Scholar
Hernández, M. P., Chadli, A. & Toft, D. O. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J. Biol. Chem.277, 11873–11881 (2002). ArticleCASPubMed Google Scholar
King, F. W., Wawrzynow, A., Höhfeld, J. & Zylicz, M. Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53. EMBO J.20, 6297–6305 (2001). ArticleCASPubMedPubMed Central Google Scholar
Carmichael, J., Sugars, K. L., Bao, Y. P. & Rubinsztein, D. C. Glycogen synthase kinase-3β inhibitors prevent cellular polyglutamine toxicity caused by the Huntington's disease mutation. J. Biol. Chem.277, 33791–33798 (2002). ArticleCASPubMed Google Scholar
Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. & Calderwood, S. K. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem.271, 30847–30857 (1996). ArticleCASPubMed Google Scholar
Chu, B., Zhong, R., Soncin, F., Stevenson, M. A. & Calderwood, S. K. Transcriptional activity of heat shock factor 1 at 37 °C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Cα and Cζ. J. Biol. Chem.273, 18640–18646 (1998). ArticleCASPubMed Google Scholar
Hietakangas, V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell Biol.23, 2953–2968 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kline, M. P. & Morimoto, R. I. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell Biol.17, 2107–2115 (1997). ArticleCASPubMedPubMed Central Google Scholar
Knauf, U., Newton, E. M., Kyriakis, J. & Kingston, R. E. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev.10, 2782–2793 (1996). ArticleCASPubMed Google Scholar
Wang, X. et al. Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J. Biol. Chem.281, 782–791 (2006). ArticleCASPubMed Google Scholar
Pelham, H. R. A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell30, 517–528 (1982). ArticleCASPubMed Google Scholar
Pelham, H. R. & Bienz, M. A synthetic heat-shock promoter element confers heat-inducibility on the herpes simplex virus thymidine kinase gene. EMBO J.1, 1473–1477 (1982). ArticleCASPubMedPubMed Central Google Scholar
Perisic, O., Xiao, H. & Lis, J. T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell59, 797–806 (1989). ArticleCASPubMed Google Scholar
Clos, J. et al. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell63, 1085–1097 (1990). ArticleCASPubMed Google Scholar
Sorger, P. K. & Nelson, H. C. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell59, 807–813 (1989). ArticleCASPubMed Google Scholar
Ahn, S.-G. & Thiele, D. J. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev.17, 516–528 (2003). ArticleCASPubMedPubMed Central Google Scholar
Neef, D. W., Turski, M. L. & Thiele, D. J. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol.8, e1000291 (2010). In this study the authors generated a humanized HSF1-based yeast screen to identify HSF1A, a novel pharmacological activator of HSF1 that is efficacious in ameliorating polyQ protein-associated protein aggregation and cytotoxicity in cell culture and fruitfly disease models. ArticleCASPubMedPubMed Central Google Scholar
Trott, A. et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol. Biol. Cell19, 1104–1112 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. & Wu, C. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science259, 230–234 (1993). ArticleCASPubMed Google Scholar
Guettouche, T., Boellmann, F., Lane, W. S. & Voellmy, R. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem.6, 4 (2005). ArticleCASPubMedPubMed Central Google Scholar
Holmberg, C. I. et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J.20, 3800–3810 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kim, S.-A., Yoon, J.-H., Lee, S.-H. & Ahn, S.-G. Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J. Biol. Chem.280, 12653–12657 (2005). ArticleCASPubMed Google Scholar
Westerheide, S. D., Anckar, J., Stevens, S. M., Sistonen, L. & Morimoto, R. I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science323, 1063–1066 (2009). This study demonstrated that the DNA binding activity of HSF1 is inhibited by acetylation within the DNA binding domain, and HSF1 is maintained in a deacetylated state via SIRT1. ArticleCASPubMedPubMed Central Google Scholar
Yang, J., Bridges, K., Chen, K. Y. & Liu, A. Y.-C. Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS ONE3, e2864 (2008). This work reported that riluzole, which is a treatment for ALS, promotes an increase in steady-state HSF1 levels potentially via the inhibition of chaperone-mediated autophagy. ArticleCASPubMedPubMed Central Google Scholar
Trepel, J., Mollapour, M., Giaccone, G. & Neckers, L. Targeting the dynamic HSP90 complex in cancer. Nature Rev. Cancer10, 537–549 (2010). ArticleCAS Google Scholar
Dickey, C. A. et al. HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J.20, 753–755 (2006). ArticleCASPubMed Google Scholar
Dickey, C. A. et al. Development of a high throughput drug screening assay for the detection of changes in tau levels — proof of concept with HSP90 inhibitors. Curr. Alzheimer Res.2, 231–238 (2005). ArticleCASPubMed Google Scholar
Petrucelli, L. et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet.13, 703–714 (2004). ArticleCASPubMed Google Scholar
Flower, T. R., Chesnokova, L. S., Froelich, C. A., Dixon, C. & Witt, S. N. Heat shock prevents α-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J. Mol. Biol.351, 1081–1100 (2005). ArticleCASPubMed Google Scholar
Shen, H.-Y., He, J.-C., Wang, Y., Huang, Q.-Y. & Chen, J.-F. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J. Biol. Chem.280, 39962–39969 (2005). ArticleCASPubMed Google Scholar
Agrawal, N. et al. Identification of combinatorial drug regimens for treatment of Huntington's disease using Drosophila. Proc. Natl Acad. Sci. USA102, 3777–3781 (2005). This study demonstrated that the HSP90 inhibitor geldanamycin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid have combinatorial efficacy in ameliorating cytotoxicity in a fruitfly model of neurodegenerative disease. ArticleCASPubMedPubMed Central Google Scholar
Fujikake, N. et al. Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. J. Biol. Chem.283, 26188–26197 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hay, D. G. et al. Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach. Hum. Mol. Genet.13, 1389–1405 (2004). ArticleCASPubMed Google Scholar
Sittler, A. et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington's disease. Hum. Mol. Genet.10, 1307–1315 (2001). ArticleCASPubMed Google Scholar
Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. & Neckers, L. M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem.275, 37181–37186 (2000). ArticleCASPubMed Google Scholar
Yu, X. M. et al. Hsp90 inhibitors identified from a library of novobiocin analogues. J. Am. Chem. Soc.127, 12778–12779 (2005). ArticleCASPubMed Google Scholar
Ansar, S. et al. A non-toxic Hsp90 inhibitor protects neurons from Aβ-induced toxicity. Bioorg. Med. Chem. Lett.17, 1984–1990 (2007). ArticleCASPubMed Google Scholar
Kimura, H. et al. ITZ-1, a client-selective Hsp90 inhibitor, efficiently induces heat shock factor 1 activation. Chem. Biol.17, 18–27 (2010). ArticleCASPubMed Google Scholar
Salehi, A. H. et al. AEG3482 is an antiapoptotic compound that inhibits Jun kinase activity and cell death through induced expression of heat shock protein 70. Chem. Biol.13, 213–223 (2006). ArticleCASPubMed Google Scholar
Schnaider, T., Somogyi, J., Csermely, P. & Szamel, M. The Hsp90-specific inhibitor, geldanamycin, blocks CD28-mediated activation of human T lymphocytes. Life Sci.63, 949–954 (1998). ArticleCASPubMed Google Scholar
Westerheide, S. et al. Celastrols as inducers of the heat shock response and cytoprotection. J. Biol. Chem.279, 56053–56060 (2004). ArticleCASPubMed Google Scholar
Hieronymus, H. et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell10, 321–330 (2006). ArticleCASPubMed Google Scholar
Zhang, T. et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol. Cancer Ther.7, 162–170 (2008). ArticleCASPubMed Google Scholar
Yang, H., Chen, D., Cui, Q. C., Yuan, X. & Dou, Q. P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res.66, 4758–4765 (2006). ArticleCASPubMed Google Scholar
Kiaei, M. et al. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener. Dis.2, 246–254 (2005). ArticleCASPubMed Google Scholar
Allison, A. C., Cacabelos, R., Lombardi, V. R., Alvarez, X. A. & Vigo, C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Prog. Neuropsychopharmacol. Biol. Psychiatry25, 1341–1357 (2001). ArticleCASPubMed Google Scholar
Wang, J., Gines, S., MacDonald, M. E. & Gusella, J. F. Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC Neurosci.6, 1 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y.-Q. & Sarge, K. D. Celastrol inhibits polyglutamine aggregation and toxicity though induction of the heat shock response. J. Mol. Med.85, 1421–1428 (2007). ArticleCASPubMed Google Scholar
Cleren, C., Calingasan, N. Y., Chen, J. & Beal, M. F. Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J. Neurochem.94, 995–1004 (2005). ArticleCASPubMed Google Scholar
Faust, K. et al. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci.10, 109 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hansen, J. & Bross, P. A cellular viability assay to monitor drug toxicity. Methods Mol. Biol.648, 303–311 (2010). ArticleCASPubMed Google Scholar
Kalmar, B. & Greensmith, L. Activation of the heat shock response in a primary cellular model of motoneuron neurodegeneration — evidence for neuroprotective and neurotoxic effects. Cell. Mol. Biol. Lett.14, 319–335 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, S., Liu, K., Wang, X., He, Q. & Chen, X. Toxic effects of celastrol on embryonic development of zebrafish (Danio rerio). Drug Chem. Toxicol.34, 61–65 (2011). ArticleCASPubMed Google Scholar
Ohtsuka, K., Kawashima, D., Gu, Y. & Saito, K. Inducers and co-inducers of molecular chaperones. Int. J. Hyperthermia21, 703–711 (2005). ArticleCASPubMed Google Scholar
Hirakawa, T., Rokutan, K., Nikawa, T. & Kishi, K. Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology111, 345–357 (1996). ArticleCASPubMed Google Scholar
Katsuno, M. et al. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc. Natl Acad. Sci. USA102, 16801–16806 (2005). This work demonstrated that pharmacological activation of HSF1 via geranylgeranylacetone promotes the activation of chaperone protein expression and ameliorates cytotoxicity in a mouse model of spinal and bulbar muscular atrophy. ArticleCASPubMedPubMed Central Google Scholar
Otaka, M. et al. The induction mechanism of the molecular chaperone HSP70 in the gastric mucosa by geranylgeranylacetone (HSP-inducer). Biochem. Biophys. Res. Commun.353, 399–404 (2007). ArticleCASPubMed Google Scholar
Hirota, K. et al. Geranylgeranylacetone enhances expression of thioredoxin and suppresses ethanol-induced cytotoxicity in cultured hepatocytes. Biochem. Biophys. Res. Commun.275, 825–830 (2000). ArticleCASPubMed Google Scholar
Okada, S. et al. Geranylgeranylacetone induces apoptosis in HL-60 cells. Cell Struct. Funct.24, 161–168 (1999). ArticleCASPubMed Google Scholar
Endo, S. et al. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol. Pharmacol.72, 1337–1348 (2007). ArticleCASPubMed Google Scholar
Tam, S., Geller, R., Spiess, C. & Frydman, J. The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nature Cell Biol.8, 1155–1162 (2006). This study shows that the TRIC cytosolic chaperone complex binds to the pathogenic huntingtin protein and reduces huntingtin-mediated cytotoxicity. ArticleCASPubMed Google Scholar
Tam, S. et al. The chaperonin TRiC blocks a huntingtin sequence element that promotes the conformational switch to aggregation. Nature Struct. Mol. Biol.16, 1279–1285 (2009). ArticleCAS Google Scholar
Hargitai, J. et al. Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun.307, 689–695 (2003). ArticleCASPubMed Google Scholar
Vígh, L. et al. Bimoclomol: a nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nature Med.3, 1150–1154 (1997). ArticlePubMed Google Scholar
Török, Z. et al. Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc. Natl Acad. Sci. USA100, 3131–3136 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nánási, P. P. & Jednákovits, A. Multilateral in vivo and in vitro protective effects of the novel heat shock protein coinducer, bimoclomol: results of preclinical studies. Cardiovasc. Drug Rev.19, 133–151 (2001). ArticlePubMed Google Scholar
Kalmar, B. et al. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1G93A mouse model of ALS. J. Neurochem.107, 339–350 (2008). ArticleCASPubMed Google Scholar
Kieran, D. et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Med.10, 402–405 (2004). This study demonstrates that pharmacological activation of HSF1 via arimoclomol ameliorates pathogenic phenotypes and extends lifespan in a mouse model of ALS. ArticleCASPubMed Google Scholar
Lanka, V., Wieland, S., Barber, J. & Cudkowicz, M. Arimoclomol: a potential therapy under development for ALS. Expert Opin. Investig. Drugs18, 1907–1918 (2009). ArticleCASPubMed Google Scholar
Liu, A. Y. C. et al. Neuroprotective drug riluzole amplifies the heat shock factor 1 (HSF1)- and glutamate transporter 1 (GLT1)-dependent cytoprotective mechanisms for neuronal survival. J. Biol. Chem.286, 2785–2794 (2011). ArticleCASPubMed Google Scholar
Jurivich, D. A., Sistonen, L., Kroes, R. A. & Morimoto, R. I. Effect of sodium salicylate on the human heat shock response. Science255, 1243–1245 (1992). ArticleCASPubMed Google Scholar
Lee, B. S., Chen, J., Angelidis, C., Jurivich, D. A. & Morimoto, R. I. Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl Acad. Sci. USA92, 7207–7211 (1995). ArticleCASPubMedPubMed Central Google Scholar
Winegarden, N. A., Wong, K. S., Sopta, M. & Westwood, J. T. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J. Biol. Chem.271, 26971–26980 (1996). ArticleCASPubMed Google Scholar
Housby, J. N. et al. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine11, 347–358 (1999). ArticleCASPubMed Google Scholar
Palayoor, S. T., Youmell, M. Y., Calderwood, S. K., Coleman, C. N. & Price, B. D. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene18, 7389–7394 (1999). ArticleCASPubMed Google Scholar
Stevenson, M. A., Zhao, M. J., Asea, A., Coleman, C. N. & Calderwood, S. K. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-κ B-responsive genes. J. Immunol.163, 5608–5616 (1999). CASPubMed Google Scholar
Ishihara, K., Yamagishi, N. & Hatayama, T. Suppression of heat- and polyglutamine-induced cytotoxicity by nonsteroidal anti-inflammatory drugs. Eur. J. Biochem.271, 4552–4558 (2004). ArticleCASPubMed Google Scholar
Ianaro, A. et al. Anti-inflammatory activity of 15-deoxy-δ12,14-PGJ2 and 2-cyclopenten-1-one: role of the heat shock response. Mol. Pharmacol.64, 85–93 (2003). ArticleCASPubMed Google Scholar
Rossi, A., Elia, G. & Santoro, M. G. 2-cyclopenten-1-one, a new inducer of heat shock protein 70 with antiviral activity. J. Biol. Chem.271, 32192–32196 (1996). ArticleCASPubMed Google Scholar
Zhou, Y. et al. Chloro-oxime derivatives as novel small molecule chaperone amplifiers. Bioorg. Med. Chem. Lett.19, 3128–3135 (2009). ArticleCASPubMed Google Scholar
Zhou, Y. et al. Pyrimido[5,4-e][1,2,4]triazine-5,7(1_H_,6_H_)-dione derivatives as novel small molecule chaperone amplifiers. Bioorg. Med. Chem. Lett.19, 4303–4307 (2009). ArticleCASPubMed Google Scholar
Zhang, B. et al. Identification of small-molecule HSF1 amplifiers by high content screening in protection of cells from stress induced injury. Biochem. Biophys. Res. Commun.390, 925–930 (2009). ArticleCASPubMed Google Scholar
Hayashida, N. et al. Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J.29, 3459–3469 (2010). ArticleCASPubMedPubMed Central Google Scholar
Batista-Nascimento, L., Neef, D. W., Liu, P. C. C., Rodrigues-Pousada, C. & Thiele, D. J. Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS ONE6, e15976 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rimoldi, M., Servadio, A. & Zimarino, V. Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res. Bull.56, 353–362 (2001). This study shows that constitutively active HSF1, via loss of repressive phosphorylation events, prevents protein aggregation in cell culture models of polyglutamine disease. ArticleCASPubMed Google Scholar
Banerjee Mustafi, S., Chakraborty, P. K. & Raha, S. Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS ONE5, e8719 (2010). ArticleCASPubMedPubMed Central Google Scholar
Khaleque, M. A. et al. Induction of heat shock proteins by heregulin β1 leads to protection from apoptosis and anchorage-independent growth. Oncogene24, 6564–6573 (2005). ArticleCASPubMed Google Scholar
Xavier, I. et al. Glycogen synthase kinase 3β negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J. Biol. Chem.275, 29147–29152 (2000). ArticleCASPubMed Google Scholar
Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. & Lima, C. D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell108, 345–356 (2002). ArticleCASPubMed Google Scholar
Brunet Simioni, M. et al. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene28, 3332–3344 (2009). ArticleCASPubMed Google Scholar
Fukuda, I. et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol.16, 133–140 (2009). ArticleCASPubMed Google Scholar
Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet.37, 349–350 (2005). This study shows that activation of SIR-2 (theC. eleganshomolog of SIRT1) via resveratrol rescues neuronal dysfunction inC. elegansand mouse models of polyQ disease. ArticleCASPubMed Google Scholar
Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.26, 3169–3179 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ladiwala, A. R. A. et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers. J. Biol. Chem.285, 24228–24237 (2010). ArticleCASPubMedPubMed Central Google Scholar
Marambaud, P., Zhao, H. & Davies, P. Resveratrol promotes clearance of Alzheimer's disease amyloid-β peptides. J. Biol. Chem.280, 37377–37382 (2005). ArticleCASPubMed Google Scholar
Lu, K.-T. et al. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J. Agric. Food Chem.56, 6910–6913 (2008). ArticleCASPubMed Google Scholar
Zhang, F. et al. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol. Pharmacol.78, 466–477 (2010). ArticleCASPubMedPubMed Central Google Scholar
Salamanca, H. H., Fuda, N., Shi, H. & Lis, J. T. An RNA aptamer perturbs heat shock transcription factor activity in Drosophila melanogaster. Nucleic Acids Res.39, 6729–6740 (2011). This work describes an RNA aptamer that interacts with the DNA binding domain of HSF1 and inhibits its binding to promoter heat shock elements. ArticleCASPubMedPubMed Central Google Scholar
Liu, P. C. & Thiele, D. J. Modulation of human heat shock factor trimerization by the linker domain. J. Biol. Chem.274, 17219–17225 (1999). ArticleCASPubMed Google Scholar
Finkbeiner, S. Bridging the Valley of Death of therapeutics for neurodegeneration. Nature Med.16, 1227–1232 (2010). ArticleCASPubMed Google Scholar
Aguzzi, A. & O'Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature Rev. Drug Discov.9, 237–248 (2010). ArticleCAS Google Scholar
Hampel, H. et al. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nature Rev. Drug Discov.9, 560–574 (2010). ArticleCAS Google Scholar
Schapira, A. H. V. Challenges to the development of disease-modifying therapies in Parkinson's disease. Eur. J. Neurol.18 (Suppl. 1), 16–21 (2011). ArticlePubMed Google Scholar
Murray, A. N., Solomon, J. P., Wang, Y. J., Balch, W. E. & Kelly, J. W. Discovery and characterization of a mammalian amyloid disaggregation activity. Protein Sci.19, 836–846 (2010). This work describes the discovery of a mammalian disaggregase with the ability to disaggregate β-amyloid aggregates. ArticleCASPubMedPubMed Central Google Scholar
Opar, A. Hope builds for earlier detection of Alzheimer's disease. Nature Rev. Drug Discov.9, 579–581 (2010). ArticleCAS Google Scholar
Nielsen, P. A., Andersson, O., Hansen, S. H., Simonsen, K. B. & Andersson, G. Models for predicting blood–brain barrier permeation. Drug Discov. Today16, 472–475 (2011). ArticleCASPubMed Google Scholar
Pardridge, W. M. Alzheimer's disease drug development and the problem of the blood-brain barrier. Alzheimers Dement.5, 427–432 (2009). ArticlePubMedPubMed Central Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.46, 3–26 (2001). ArticleCASPubMed Google Scholar
Cudkowicz, M. E. et al. Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve38, 837–844 (2008). ArticleCASPubMed Google Scholar
Milane, A. et al. Brain and plasma riluzole pharmacokinetics: effect of minocycline combination. J. Pharm. Pharm. Sci.12, 209–217 (2009). ArticleCASPubMed Google Scholar
Kumar, S. et al. Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease. EMBO J.30, 2255–2265 (2011). ArticleCASPubMedPubMed Central Google Scholar
Williams, T. L. & Serpell, L. C. Membrane and surface interactions of the Alzheimer's Aβ peptide: insights into the mechanism of cytotoxicity. FEBS J.278, 3905–3917 (2011). ArticleCASPubMed Google Scholar
Cohen, F. E. & Kelly, J. W. Therapeutic approaches to protein-misfolding diseases. Nature426, 905–909 (2003). ArticleCASPubMed Google Scholar
Labbadia, J. et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J. Clin. Invest.121, 3306–3319 (2011). This study demonstrates that activation of HSF1-dependent chaperone protein expression via an HSP90 inhibitor transiently ameliorates disease phenotypes in a mouse model of polyQ-based disease as a result of decreased promoter acetylation. ArticleCASPubMedPubMed Central Google Scholar
Balch, W. E., Morimoto, R. I., Dillin, A. & Kelly, J. W. Adapting proteostasis for disease intervention. Science319, 916–919 (2008). ArticleCASPubMed Google Scholar
Biamonte, M. A. et al. Heat shock protein 90: inhibitors in clinical trials. J. Med. Chem.53, 3–17 (2010). ArticleCASPubMed Google Scholar
Lancet, J. E. et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia24, 699–705 (2010). ArticleCASPubMed Google Scholar
Nowakowski, G. S. et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin. Cancer Res.12, 6087–6093 (2006). ArticleCASPubMed Google Scholar
Brandt, G. E. L., Schmidt, M. D., Prisinzano, T. E. & Blagg, B. S. J. Gedunin, a novel Hsp90 inhibitor: semisynthesis of derivatives and preliminary structure–activity relationships. J. Med. Chem.51, 6495–6502 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kikuchi, T. et al. Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (neem). J. Nat. Prod.74, 866–870 (2011). ArticleCASPubMed Google Scholar
Traynor, B. J. et al. Neuroprotective agents for clinical trials in ALS: a systematic assessment. Neurology67, 20–27 (2006). ArticleCASPubMed Google Scholar
Bensimon, G. et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain132, 156–171 (2009). ArticlePubMed Google Scholar
Nanke, Y. et al. Geranylgeranylacetone, a non-toxic inducer of heat shock protein, induces cell death in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Mod. Rheumatol.19, 379–383 (2009). ArticleCASPubMed Google Scholar
Nishida, T. et al. Geranylgeranylacetone protects against acetaminophen-induced hepatotoxicity by inducing heat shock protein 70. Toxicology219, 187–196 (2006). ArticleCASPubMed Google Scholar
Shirakabe, H. et al. Clinical evaluation of teprenone, a mucosal protective agent, in the treatment of patients with gastric ulcers: a nationwide, multicenter clinical study. Clin. Ther.17, 924–935 (1995). ArticleCASPubMed Google Scholar