Germinal centres: role in B-cell physiology and malignancy (original) (raw)
MacLennan, I. C. & Gray, D. Antigen-driven selection of virgin and memory B cells. Immunol. Rev.91, 61–85 (1986). ArticleCASPubMed Google Scholar
Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature354, 389–392 (1991). ArticleCASPubMed Google Scholar
Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell67, 1121–1129 (1991). ArticleCASPubMed Google Scholar
Küppers, R., Klein, U., Hansmann, M. L. & Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med.341, 1520–1529 (1999). ArticlePubMed Google Scholar
Stevenson, F. et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev.162, 247–259 (1998). ArticleCASPubMed Google Scholar
Camacho, S. A., Kosco-Vilbois, M. H. & Berek, C. The dynamic structure of the germinal center. Immunol. Today19, 511–514 (1998). ArticleCASPubMed Google Scholar
Wang, Y. & Carter, R. H. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunity22, 749–761 (2005). ArticleCASPubMed Google Scholar
Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science315, 528–531 (2007). ArticleCASPubMed Google Scholar
Schwickert, T. A. et al. In vivo imaging of germinal centres reveals a dynamic open structure. Nature446, 83–87 (2007). ArticleCASPubMed Google Scholar
Hauser, A. E. et al. Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns. Immunity26, 655–667 (2007). ArticleCASPubMed Google Scholar
Hauser, A. E., Shlomchik, M. J. & Haberman, A. M. In vivo imaging studies shed light on germinal-centre development. Nature Rev. Immunol.7, 499–504 (2007). ArticleCAS Google Scholar
Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nature Immunol.5, 943–952 (2004). This work provided insights into the trafficking of cells between the dark and light zones of GCs and is the first in an elegant series of studies (see references9,10and11) that dissects the dynamics of GC B-cell differentiation using sophisticated experimental systems. ArticleCAS Google Scholar
Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature432, 635–639 (2004). This study shows that the p53-dependent response to DNA damage normally resulting in growth arrest and apoptotic responses is specifically suppressed in centroblasts by BCL-6. ArticleCASPubMed Google Scholar
Hu, B. T., Lee, S. C., Marin, E., Ryan, D. H. & Insel, R. A. Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J. Immunol.159, 1068–1071 (1997). CASPubMed Google Scholar
Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature342, 929–931 (1989). This is the first demonstration that GC B cells do not survivein vitrounless rescued by CD40 stimulation, thereby providing the first indication that centroblasts are characterized by a pro-apoptotic gene expression programme. ArticleCASPubMed Google Scholar
Feuillard, J., Taylor, D., Casamayor-Palleja, M., Johnson, G. D. & MacLennan, I. C. Isolation and characteristics of tonsil centroblasts with reference to Ig class switching. Int. Immunol.7, 121–130 (1995). ArticleCASPubMed Google Scholar
Billian, G., Bella, C., Mondiere, P. & Defrance, T. Identification of a tonsil IgD+ B cell subset with phenotypical and functional characteristics of germinal center B cells. Eur. J. Immunol.26, 1712–1719 (1996). ArticleCASPubMed Google Scholar
Liu, Y. J. et al. Germinal center cells express BCL-2 protein after activation by signals which prevent their entry into apoptosis. Eur. J. Immunol.21, 1905–1910 (1991). ArticleCASPubMed Google Scholar
Martinez-Valdez, H. et al. Human germinal center B cells express the apoptosis-inducing genes Fas, c-myc, P53, and Bax but not the survival gene bcl-2. J. Exp. Med.183, 971–977 (1996). ArticleCASPubMed Google Scholar
Smith, K. G., Nossal, G. J. & Tarlinton, D. M. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl Acad. Sci. USA92, 11628–11632 (1995). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y., Ohta, H. & Takemori, T. Fas is required for clonal selection in germinal centers and the subsequent establishment of the memory B cell repertoire. Immunity14, 181–192 (2001). ArticleCASPubMed Google Scholar
de Villartay, J. P., Fischer, A. & Durandy, A. The mechanisms of immune diversification and their disorders. Nature Rev. Immunol.3, 962–972 (2003). ArticleCAS Google Scholar
Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7–2 in established germinal centers. J. Immunol.155, 556–567 (1995). CASPubMed Google Scholar
Basso, K. et al. Tracking CD40 signaling during germinal center development. Blood104, 4088–4096 (2004). ArticleCASPubMed Google Scholar
Kosco-Vilbois, M. H., Bonnefoy, J. Y. & Chvatchko, Y. The physiology of murine germinal center reactions. Immunol. Rev.156, 127–136 (1997). ArticleCASPubMed Google Scholar
Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature429, 566–571 (2004). ArticleCASPubMed Google Scholar
Lee, C. H. et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J. Exp. Med.203, 63–72 (2006). ArticleCASPubMedPubMed Central Google Scholar
Toyama, H. et al. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity17, 329–339 (2002). ArticleCASPubMed Google Scholar
William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science297, 2066–2070 (2002). ArticlePubMed Google Scholar
Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood104, 3647–3654 (2004). ArticleCASPubMed Google Scholar
Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science280, 1750–1752 (1998). ArticleCASPubMed Google Scholar
Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA95, 11816–11821 (1998). References36and37describe for the first time that the somatic hypermutation machinery can act outside the antibody gene loci. ArticleCASPubMedPubMed Central Google Scholar
Wagner, S. D. & Neuberger, M. S. Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol.14, 441–457 (1996). ArticleCASPubMed Google Scholar
Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature408, 216–221 (2000). ArticleCASPubMed Google Scholar
Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity13, 589–597 (2000). ArticleCASPubMed Google Scholar
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell102, 553–563 (2000). ArticleCASPubMed Google Scholar
Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell102, 565–575 (2000). References41and42identify AID as the enzyme required for SHM and CSR. ArticleCASPubMed Google Scholar
Petersen-Mahrt, S. K., Harris, R. S. & Neuberger, M. S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature418, 99–103 (2002). ArticleCASPubMed Google Scholar
Bransteitter, R., Pham, P., Scharff, M. D. & Goodman, M. F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl Acad. Sci. USA100, 4102–4107 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature422, 726–730 (2003). ArticleCASPubMed Google Scholar
Di Noia, J. & Neuberger, M. S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature419, 43–48 (2002). ArticleCASPubMed Google Scholar
Dickerson, S. K., Market, E., Besmer, E. & Papavasiliou, F. N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med.197, 1291–1296 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ramiro, A. R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M. C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nature Immunol.4, 452–456 (2003). ArticleCAS Google Scholar
Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem.76, 1–22 (2007). ArticleCASPubMed Google Scholar
Küppers, R., Zhao, M., Hansmann, M. L. & Rajewsky, K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J.12, 4955–4967 (1993). ArticlePubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Expression of the AID protein in normal and neoplastic B cells. Blood104, 3318–3325 (2004). ArticleCASPubMed Google Scholar
Cattoretti, G. et al. Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood107, 3967–3975 (2006). ArticleCASPubMed Google Scholar
Sayegh, C. E., Quong, M. W., Agata, Y. & Murre, C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nature Immunol.4, 586–593 (2003). ArticleCAS Google Scholar
Chaudhuri, J., Khuong, C. & Alt, F. W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature430, 992–998 (2004). ArticleCASPubMed Google Scholar
Basu, U. et al. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature438, 508–511 (2005). ArticleCASPubMed Google Scholar
Pasqualucci, L., Kitaura, Y., Gu, H. & Dalla-Favera, R. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl Acad. Sci. USA103, 395–400 (2006). ArticleCASPubMed Google Scholar
McBride, K. M. et al. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl Acad. Sci. USA103, 8798–8803 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001). This is the first demonstration that proto-oncogenes in a certain type of lymphoma are frequently hypermutated in their promoter region, and may contribute to lymphomagenesis by causing dysregulated expression. ArticleCASPubMed Google Scholar
Ye, B. H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science262, 747–750 (1993). ArticleCASPubMed Google Scholar
Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood86, 45–53 (1995). CASPubMed Google Scholar
Allman, D. et al. BCL-6 expression during B-cell activation. Blood87, 5257–5268 (1996). CASPubMed Google Scholar
Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science276, 589–592 (1997). ArticleCASPubMed Google Scholar
Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nature Genet.16, 161–170 (1997). References63and64show that theBCL6proto-oncogene is required for the formation of GCs in T-cell-dependent immune responses. ArticleCASPubMed Google Scholar
Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell7, 445–455 (2005). ArticleCASPubMed Google Scholar
Polo, J. M. et al. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nature Med.10, 1329–1335 (2004). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell119, 75–86 (2004). ArticleCASPubMed Google Scholar
Parekh, S. et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood110, 2067–2074 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity13, 199–212 (2000). This study employs an elegant global gene expression-profiling approach to identify BCL-6 target genes, providing novel insights into BCL-6 function. ArticleCASPubMed Google Scholar
Niu, H., Cattoretti, G. & Dalla-Favera, R. BCL6 controls the expression of the B7–1/CD80 costimulatory receptor in germinal center B cells. J. Exp. Med.198, 211–221 (2003). ArticleCASPubMedPubMed Central Google Scholar
Phan, R. T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nature Immunol.6, 1054–1060 (2005). ArticleCAS Google Scholar
Ranuncolo, S. M. et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nature Immunol.8, 705–714 (2007). ArticleCAS Google Scholar
Phan, R. T., Saito, M., Kitagawa, Y., Means, A. & Dalla-Favera, R. Genotoxic stress regulates expression of the BCL6 proto-oncogene in germinal center B cells. Nature Immunol.8, 1132–1139 (2007). ArticleCAS Google Scholar
Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol.173, 1158–1165 (2004). ArticleCASPubMed Google Scholar
Vasanwala, F. H., Kusam, S., Toney, L. M. & Dent, A. L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immunol.169, 1922–1929 (2002). ArticleCASPubMed Google Scholar
Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell77, 297–306 (1994). ArticleCASPubMed Google Scholar
Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity19, 607–620 (2003). References76and77show that the transcriptional repressor BLIMP1 is essential for the terminal differentiation of a B cell into a plasma cell. ArticleCASPubMed Google Scholar
Kuo, T. C. et al. Repression of BCL-6 is required for the formation of human memory B cells in vitro. J. Exp. Med.204, 819–830 (2007). ArticleCASPubMedPubMed Central Google Scholar
Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev.12, 1953–1961 (1998). ArticleCASPubMedPubMed Central Google Scholar
Saito, M. et al. A signaling pathway mediating down-regulation of BCL6 in germinal center B-cells is blocked by BCL6 gene alterations in B-cell lymphoma. Cancer Cell12, 280–292 (2007). ArticleCASPubMed Google Scholar
Bereshchenko, O. R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nature Genet.32, 606–613 (2002). ArticleCASPubMed Google Scholar
Blink, E. J. et al. Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J. Exp. Med.201, 545–554 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shih, T. A., Meffre, E., Roederer, M. & Nussenzweig, M. C. Role of BCR affinity in T cell dependent antibody responses in vivo. Nature Immunol.3, 570–575 (2002). ArticleCAS Google Scholar
Phan, T. G. et al. High affinity germinal center B cells are actively selected into the plasma cell compartment. J. Exp. Med.203, 2419–2424 (2006). ArticleCASPubMedPubMed Central Google Scholar
Barreto, V., Reina-San-Martin, B., Ramiro, A. R., McBride, K. M. & Nussenzweig, M. C. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell12, 501–508 (2003). ArticleCASPubMed Google Scholar
Ta, V. T. et al. AID mutant analyses indicate requirement for class-switch-specific cofactors. Nature Immunol.4, 843–848 (2003). ArticleCAS Google Scholar
Rooney, S., Chaudhuri, J. & Alt, F. W. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev.200, 115–131 (2004). ArticleCASPubMed Google Scholar
Liu, Y. J. et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity4, 241–250 (1996). ArticleCASPubMed Google Scholar
Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature409, 105–109 (2001). ArticleCASPubMed Google Scholar
McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature409, 102–105 (2001). ArticleCASPubMed Google Scholar
Klein, U. et al. IRF4 controls plasma cell differentiation and class switch recombination. Nature Immunol.7, 773–782 (2006). ArticleCAS Google Scholar
Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity25, 225–236 (2006). ArticleCASPubMed Google Scholar
Liu, Y. J. & Banchereau, J. Regulation of B-cell commitment to plasma cells or to memory B cells. Semin. Immunol.9, 235–240 (1997). ArticleCASPubMed Google Scholar
Shan, H., Shlomchik, M. & Weigert, M. Heavy-chain class switch does not terminate somatic mutation. J. Exp. Med.172, 531–536 (1990). ArticleCASPubMed Google Scholar
Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol.8, 463–470 (2007). ArticleCAS Google Scholar
Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity24, 269–281 (2006). ArticleCASPubMed Google Scholar
Nera, K. P. et al. Loss of Pax5 promotes plasma cell differentiation. Immunity24, 283–293 (2006). ArticleCASPubMed Google Scholar
Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor blimp-1. Immunity26, 555–566 (2007). This study demonstrates that the earliest step in plasma-cell differentiation is mediated by the downregulation of PAX5, followed by BLIMP1 upregulation. ArticleCASPubMed Google Scholar
Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood95, 2084–2092 (2000). CASPubMed Google Scholar
Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol.165, 5462–5471 (2000). ArticleCASPubMed Google Scholar
Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature412, 300–307 (2001). ArticleCASPubMed Google Scholar
Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity21, 81–93 (2004). ArticleCASPubMed Google Scholar
Mittrücker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science275, 540–543 (1997). ArticlePubMed Google Scholar
Scheeren, F. A. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nature Immunol.6, 303–313 (2005). ArticleCAS Google Scholar
Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med.192, 1841–1848 (2000). ArticleCASPubMedPubMed Central Google Scholar
Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science268, 720–722 (1995). ArticleCASPubMed Google Scholar
Stevenson, F. et al. Insight into the origin and clonal history of B-cell tumors as revealed by analysis of immunoglobulin variable region genes. Immunol. Rev.162, 247–259 (1998). ArticleCASPubMed Google Scholar
Küppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene20, 5580–5594 (2001). ArticlePubMed Google Scholar
Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nature Rev. Cancer5, 251–262 (2005). ArticleCAS Google Scholar
Lenz, G. et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J. Exp. Med.204, 633–643 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood101, 2914–2923 (2003). ArticleCASPubMed Google Scholar
Ramiro, A. R. et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell118, 431–438 (2004). ArticleCASPubMed Google Scholar
Unniraman, S., Zhou, S. & Schatz, D. G. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nature Immunol.5, 1117–1123 (2004). ArticleCAS Google Scholar
Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell21, 201–214 (2006). ArticleCASPubMed Google Scholar
Kotani, A. et al. Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc. Natl Acad. Sci. USA104, 1616–1620 (2007). ArticleCASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Activation induced cytidine deaminase (AID) is required for germinal-center-derived lymphomagenesis. Nature Genet. 9 December 2007 (doi:10.1038/ng.2007.35) References118and119identify AID as being crucially involved in the pathogenesis of GC-derived B-cell lymphomas.
McDonnell, T. J. & Korsmeyer, S. J. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature349, 254–256 (1991). ArticleCASPubMed Google Scholar
Iida, S. et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood88, 4110–4117 (1996). CASPubMed Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). ArticleCASPubMed Google Scholar
Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell9, 1031–1044 (2002). ArticleCASPubMed Google Scholar
Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature448, 445–451 (2007). ArticleCASPubMed Google Scholar
Tam, W. et al. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood107, 4090–4100 (2006). ArticleCASPubMed Google Scholar
Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med.194, 1861–1874 (2001). ArticleCASPubMedPubMed Central Google Scholar
Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science316, 604–608 (2007). ArticleCASPubMed Google Scholar
Goossens, T., Klein, U. & Küppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA95, 2463–2468 (1998). ArticleCASPubMedPubMed Central Google Scholar
Toellner, K. M., Gulbranson-Judge, A., Taylor, D. R., Sze, D. M. & MacLennan, I. C. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. J. Exp. Med.183, 2303–2312 (1996). ArticleCASPubMed Google Scholar
Seki, M., Gearhart, P. J. & Wood, R. D. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep.6, 1143–1148 (2005). ArticleCASPubMedPubMed Central Google Scholar
Martin, A. & Scharff, M. D. AID and mismatch repair in antibody diversification. Nature Rev. Immunol.2, 605–614 (2002). ArticleCAS Google Scholar
Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity17, 51–62 (2002). ArticleCASPubMed Google Scholar
Lin, K. I., Angelin-Duclos, C., Kuo, T. C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol.22, 4771–4780 (2002). ArticleCASPubMedPubMed Central Google Scholar