DeMali, K. A., Wennerberg, K. & Burridge, K. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol.15, 572–582 (2003). ArticleCASPubMed Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). ArticleCASPubMed Google Scholar
Parsons, J. T. Focal adhesion kinase: the first ten years. J. Cell Sci.116, 1409–1416 (2003). Provides a good overview of the early studies on FAK. ArticleCASPubMed Google Scholar
Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature377, 539–544 (1995). Shows that null mutation of FAK results in defects in embryonic morphogenesis, and that FAK-null cells show enhanced focal-contact formation and cell motility defects in culture. ArticleCASPubMed Google Scholar
Webb, D. J. et al. FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol.6, 154–161 (2004). ArticleCASPubMed Google Scholar
Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science303, 836–839 (2004). Provides evidence that FAK promotes cell polarization through the stabilization of microtubules at leading edges of motile cells. ArticleCASPubMed Google Scholar
Ren, X. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci.113, 3673–3678 (2000). ArticleCASPubMed Google Scholar
Agochiya, M. et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene18, 5646–5653 (1999). ArticleCASPubMed Google Scholar
Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA98, 13790–13795 (2001). ArticleCASPubMedPubMed Central Google Scholar
Yeoh, E. J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell1, 133–143 (2002). ArticleCASPubMed Google Scholar
Cance, W. G. et al. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin. Cancer Res.6, 2417–2423 (2000). CASPubMed Google Scholar
Ilic, D. et al. Focal adhesion kinase is required for blood vessel morphogenesis. Circ. Res.92, 300–307 (2003). ArticleCASPubMed Google Scholar
Haskell, H. et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin. Cancer Res.9, 2157–2165 (2003). CASPubMed Google Scholar
Hauck, C. R., Hsia, D. A., Ilic, D. & Schlaepfer, D. D. v-Src SH3-enhanced interaction with focal adhesion kinase at β1 integrin-containing invadopodia promotes cell invasion. J. Biol. Chem.277, 12487–12490 (2002). ArticleCASPubMed Google Scholar
Hauck, C. R., Hsia, D. A., Puente, X. S., Cheresh, D. A. & Schlaepfer, D. D. FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. EMBO J.21, 6289–6302 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hsia, D. A. et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol.160, 753–767 (2003). This reference, together with reference 69, shows that constitutively active Src can bypass the need for FAK in promoting the turnover of focal contacts. ArticleCASPubMedPubMed Central Google Scholar
Schlaepfer, D. D., Mitra, S. K. & Ilic, D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta1692, 77–102 (2004). Provides a solid review on the role of FAK during embryonic development. ArticleCASPubMed Google Scholar
Yano, H. et al. Roles played by a subset of integrin signaling molecules in cadherin-based cell–cell adhesion. J. Cell Biol.166, 283–295 (2004). ArticleCASPubMedPubMed Central Google Scholar
Katsumi, A., Orr, A. W., Tzima, E. & Schwartz, M. A. Integrins in mechanotransduction. J. Biol. Chem.279, 12001–12004 (2004). ArticleCASPubMed Google Scholar
Carragher, N. O., Westhoff, M. A., Fincham, V. J., Schaller, M. D. & Frame, M. C. A novel role for FAK as a protease-targeting adaptor protein. Regulation by p42 ERK and Src. Curr. Biol.13, 1442–1450 (2003). ArticleCASPubMed Google Scholar
Hauck, C. R. et al. Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res.61, 7079–7090 (2001). CASPubMed Google Scholar
Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol.2, 249–256 (2000). ArticleCASPubMed Google Scholar
Streblow, D. N. et al. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J. Biol. Chem.278, 50456–50465 (2003). Together with reference 23, this paper shows that the FAK FERM domain has important roles in promoting growth-factor-stimulated and G-protein-stimulated cell motility. ArticleCASPubMed Google Scholar
Chen, R. et al. Regulation of the PH-domain-containing tyrosine kinase Etk by focal adhesion kinase through the FERM domain. Nature Cell Biol.3, 439–444 (2001). ArticleCASPubMed Google Scholar
Poullet, P. et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell–matrix adhesion. J. Biol. Chem.276, 37686–37691 (2001). ArticleCASPubMed Google Scholar
Kadare, G. et al. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J. Biol. Chem.278, 47434–47440 (2003). Shows that sumoylation of FAK within the FERM domain is associated with catalytic activation and preferential nuclear localization. ArticleCASPubMed Google Scholar
Jones, G. & Stewart, G. Nuclear import of N-terminal FAK by activation of the FcεRI receptor in RBL-2H3 cells. Biochem. Biophys. Res. Comm.314, 39–45 (2004). ArticleCASPubMed Google Scholar
McKean, D. M. et al. FAK induces expression of Prx1 to promote tenascin-C-dependent fibroblast migration. J. Cell Biol.161, 393–402 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhao, J. et al. Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol. Cell11, 1503–1515 (2003). ArticleCASPubMed Google Scholar
Hanks, S. K., Ryzhova, L., Shin, N. Y. & Brabek, J. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front. Biosci.8, 982–996 (2003). Article Google Scholar
Chodniewicz, D. & Klemke, R. L. Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold. Biochim. Biophys. Acta.1692, 63–76 (2004). ArticleCASPubMed Google Scholar
Schaller, M. D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta.1540, 1–21 (2001). ArticleCASPubMed Google Scholar
Zhai, J. et al. Direct interaction of focal adhesion kinase with p190RhoGEF. J. Biol. Chem.278, 24865–24873 (2003). Together with reference 79, shows that FAK can directly activate Rho through binding and phosphorylation of a GEF, and that this activation regulates axonal branching. ArticleCASPubMed Google Scholar
Liu, E., Cote, J. F. & Vuori, K. Negative regulation of FAK signaling by SOCS proteins. EMBO J.22, 5036–5046 (2003). This paper established a link between FAK activation, phosphorylation of Tyr397 and subsequent degradation of FAK. ArticleCASPubMedPubMed Central Google Scholar
Avraham, H., Park, S. Y., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal12, 123–133 (2000). ArticleCASPubMed Google Scholar
Klingbeil, C. K. et al. Targeting Pyk2 to β1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J. Cell Biol.152, 97–110 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lim, Y. et al. Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J. Biol. Chem.279, 29060–29065 (2004). ArticleCASPubMed Google Scholar
Gabarra-Niecko, V., Keely, P. J. & Schaller, M. D. Characterization of an activated mutant of focal adhesion kinase: 'SuperFAK'. Biochem. J.365, 591–603 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nowakowski, J. et al. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure (Camb.)10, 1659–1667 (2002). ArticleCAS Google Scholar
Medley, Q. G. et al. Signaling between focal adhesion kinase and Trio. J. Biol. Chem.278, 13265–13270 (2003). ArticleCASPubMed Google Scholar
Cooper, L. A., Shen, T. L. & Guan, J. L. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol. Cell. Biol.23, 8030–8041 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zeng, L. et al. PTPα regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration. J. Cell Biol.160, 137–146 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chiarugi, P. et al. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J. Cell Biol.161, 933–944 (2003). ArticleCASPubMedPubMed Central Google Scholar
Arias-Salgado, E. G. et al. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc. Natl Acad. Sci. USA100, 13298–13302 (2003). Shows that selected β-integrin subunits can bind and activate Src in the absence of a contribution from FAK. ArticleCASPubMedPubMed Central Google Scholar
Turner, C. E. Paxillin and focal adhesion signalling. Nature Cell Biol.2, 231–236 (2000). ArticleCAS Google Scholar
Cho, S. Y. & Klemke, R. L. Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J. Cell Biol.156, 725–736 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brabek, J. et al. CAS promotes invasiveness of Src-transformed cells. Oncogene23, 7406–7415 (2004). ArticleCASPubMed Google Scholar
Schaller, M. D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene20, 6459–6472 (2001). ArticleCASPubMed Google Scholar
Subauste, M. C. et al. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility. J. Cell Biol.165, 371–381 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hayashi, I., Vuori, K. & Liddington, R. C. The focal adhesion targeting (FAT) region of focal adhesion kinase is a four-helix bundle that binds paxillin. Nature Struct. Biol.9, 101–106 (2002). ArticleCASPubMed Google Scholar
Liu, G., Guibao, C. D. & Zheng, J. Structural insight into the mechanisms of targeting and signaling of focal adhesion kinase. Mol. Cell. Biol.22, 2751–2760 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gao, G. et al. NMR solution structure of the focal adhesion targeting domain of focal adhesion kinase in complex with a paxillin LD peptide: evidence for a two-site binding model. J. Biol. Chem.279, 8441–8451 (2004). ArticleCASPubMed Google Scholar
Katz, B. Z. et al. Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and SRC family kinases. J. Biol. Chem.278, 29115–29120 (2003). ArticleCASPubMed Google Scholar
Prutzman, K. C. et al. The focal adhesion targeting domain of focal adhesion kinase contains a hinge region that modulates tyrosine 926 phosphorylation. Structure (Camb.)12, 881–891 (2004). References 53, 54, 55 and 57 provide structural analyses of the FAK FAT domain and the paxillin LD peptide binding, and show that Tyr925 phosphorylation might require conformational alterations in the FAT domain. ArticleCAS Google Scholar
Ma, A., Richardson, A., Schaefer, E. M. & Parsons, J. T. Serine phosphorylation of focal adhesion kinase in interphase and mitosis: a possible role in modulating binding to p130Cas. Mol. Biol. Cell12, 1–12 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hunger-Glaser, I., Fan, R. S., Perez-Salazar, E. & Rozengurt, E. PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation. J. Cell Physiol.200, 213–222 (2004). ArticleCASPubMed Google Scholar
Liu, Z. X., Yu, C. F., Nickel, C., Thomas, S. & Cantley, L. G. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin–focal adhesion kinase association. J. Biol. Chem.277, 10452–10458 (2002). ArticleCASPubMed Google Scholar
Ishibe, S., Joly, D., Zhu, X. & Cantley, L. G. Phosphorylation-dependent paxillin–ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell12, 1275–1285 (2003). ArticleCASPubMed Google Scholar
Kirchner, J., Kam, Z., Tzur, G., Bershadsky, A. D. & Geiger, B. Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J. Cell Sci.116, 975–986 (2003). ArticleCASPubMed Google Scholar
Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci.116, 4605–4613 (2003). ArticleCASPubMed Google Scholar
Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci.112, 2677–2691 (1999). ArticleCASPubMed Google Scholar
Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nature Cell Biol.4, 286–293 (2002). ArticleCASPubMed Google Scholar
Izaguirre, G. et al. The cytoskeletal/non-muscle isoform of α-actinin is phosphorylated on its actin-binding domain by the focal adhesion kinase. J. Biol. Chem.276, 28676–28685 (2001). ArticleCASPubMed Google Scholar
Yu, D. H., Qu, C. K., Henegariu, O., Lu, X. & Feng, G. S. Protein-tyrosine phosphatase Shp-2 regulates cell spreading, migration, and focal adhesion. J. Biol. Chem.273, 21125–21131 (1998). ArticleCASPubMed Google Scholar
Von Wichert, G., Haimovich, B., Feng, G. S. & Sheetz, M. P. Force-dependent integrin–cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J.22, 5023–5035 (2003). Together with reference 67, this study shows that null mutation of SHP2 results in FAK hyperactivation, elevated α-actinin phosphorylation, and the failure to promote the maturation of integrin–cytoskeletal linkages. ArticleCASPubMedPubMed Central Google Scholar
Moissoglu, K. & Gelman, I. H. v-Src rescues actin-based cytoskeletal architecture and cell motility and induces enhanced anchorage independence during oncogenic transformation of focal adhesion kinase-null fibroblasts. J. Biol. Chem.278, 47946–47959 (2003). ArticleCASPubMed Google Scholar
Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res.92, 827–839 (2003). ArticleCASPubMed Google Scholar
Bhatt, A., Kaverina, I., Otey, C. & Huttenlocher, A. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J. Cell Sci.115, 3415–3425 (2002). ArticleCASPubMed Google Scholar
Dourdin, N. et al. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J. Biol. Chem.276, 48382–48388 (2001). ArticleCASPubMed Google Scholar
Cuevas, B. D. et al. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J.22, 3346–3355 (2003). ArticleCASPubMedPubMed Central Google Scholar
Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. & Carragher, N. O. Src-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol. Cell. Biol.24, 8113–8133 (2004). ArticleCASPubMedPubMed Central Google Scholar
Giannone, G. et al. Calcium rises locally trigger focal adhesion disassembly and enhance residency of focal adhesion kinase at focal adhesions. J. Biol. Chem.279, 28715–28723 (2004). ArticleCASPubMed Google Scholar
Hecker, T. P., Ding, Q., Rege, T. A., Hanks, S. K. & Gladson, C. L. Overexpression of FAK promotes Ras activity through the formation of a FAK/p120RasGAP complex in malignant astrocytoma cells. Oncogene23, 3962–3971 (2004). ArticleCASPubMed Google Scholar
Chen, B. H., Tzen, J. T., Bresnick, A. R. & Chen, H. C. Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J. Biol. Chem.277, 33857–33863 (2002). ArticleCASPubMed Google Scholar
Arthur, W. T., Petch, L. A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol.10, 719–722 (2000). ArticleCASPubMed Google Scholar
Rico, B. et al. Control of axonal branching and synapse formation by focal adhesion kinase. Nature Neurosci.7, 1059–1069 (2004). ArticleCASPubMed Google Scholar
Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem.279, 9565–9576 (2004). ArticleCASPubMed Google Scholar
Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol.3, 723–729 (2001). ArticleCASPubMed Google Scholar
Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol.16, 106–112 (2004). ArticleCASPubMed Google Scholar
del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science303, 839–842 (2004). ArticleCASPubMed Google Scholar
del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J.19, 2008–2014 (2000). ArticleCASPubMedPubMed Central Google Scholar
Slack-Davis, J. K. et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J. Cell Biol.162, 281–291 (2003). ArticleCASPubMedPubMed Central Google Scholar
Xie, Z. et al. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell114, 469–482 (2003). ArticleCASPubMed Google Scholar
Ivankovic-Dikic, I., Gronroos, E., Blaukat, A., Barth, B. -U. & Dikic, I. Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nature Cell Biol.2, 574–581 (2000). ArticleCASPubMed Google Scholar
Papagrigoriou, E. et al. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. EMBO J.23, 2942–2951 (2004). ArticleCASPubMedPubMed Central Google Scholar
Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature420, 85–89 (2002). ArticleCASPubMed Google Scholar
Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature420, 89–93 (2002). ArticleCASPubMed Google Scholar
Barsukov, I. L. et al. Phosphatidylinositol phosphate kinase type 1γ and β1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J. Biol. Chem.278, 31202–31209 (2003). ArticleCASPubMed Google Scholar
Ling, K. et al. Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin–talin switch. J. Cell Biol.163, 1339–1349 (2003). Together with references 91 and 92, this reference shows that FAK–Src phosphorylation events function to control the composition of membrane lipids and the dynamics of focal contacts. ArticleCASPubMedPubMed Central Google Scholar
Wheelock, M. J. & Johnson, K. R. Cadherins as modulators of cellular phenotype. Ann. Rev. Cell Dev. Biol.19, 207–235 (2003). ArticleCAS Google Scholar
Irby, R. B. & Yeatman, T. J. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res.62, 2669–2674 (2002). CASPubMed Google Scholar
Avizienyte, E. et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nature Cell Biol.4, 632–638 (2002). ArticleCASPubMed Google Scholar
Quadri, S. K., Bhattacharjee, M., Parthasarathi, K., Tanita, T. & Bhattacharya, J. Endothelial barrier strengthening by activation of focal adhesion kinase. J. Biol. Chem.278, 13342–13349 (2003). ArticleCASPubMed Google Scholar
Miranti, C. K. & Brugge, J. S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biol.4, E83–E90 (2002). ArticleCASPubMed Google Scholar
Li, S. et al. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc. Natl Acad. Sci. USA99, 3546–3551 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. B., Dembo, M., Hanks, S. K. & Wang, Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA98, 11295–11300 (2001). Shows that FAK functions as an important environmental biosensor in promoting directional motility signals in response to changes in substrate flexibility. ArticleCASPubMedPubMed Central Google Scholar
Owen, J. D., Ruest, P. J., Fry, D. W. & Hanks, S. K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol. Cell. Biol.19, 4806–4818 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cukierman, E., Pankov, R. & Yamada, K. M. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol.14, 633–639 (2002). ArticleCASPubMed Google Scholar
Ilic, D. et al. FAK promotes organization of fibronectin matrix and fibrillar adhesions. J. Cell Sci.117, 177–187 (2004). ArticleCASPubMed Google Scholar
Beggs, H. E. et al. FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron40, 501–514 (2003). References 103 and 104 show that FAK has crucial roles in promoting 3D-matrix assembly and/or remodelling during development and in cell culture model systems. ArticleCASPubMedPubMed Central Google Scholar
Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell–matrix adhesions to the third dimension. Science294, 1708–1712 (2001). ArticleCASPubMed Google Scholar
Xia, H., Nho, R. S., Kahm, J., Kleidon, J. & Henke, C. A. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a β1 integrin viability signaling pathway. J. Biol. Chem.279, 33024–33034 (2004). ArticleCASPubMed Google Scholar
Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol.163, 583–595 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ilic, D. et al. Plasma membrane-associated pY397FAK is a marker of cytotrophoblast invasion in vivo and in vitro. Am. J. Pathol.159, 93–108 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bowden, E. T., Coopman, P. J. & Mueller, S. C. Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol.63, 613–627 (2001). ArticleCASPubMed Google Scholar
Hauck, C. R., Hunter, T. & Schlaepfer, D. D. The v-Src SH3 domain facilitates a cell adhesion-independent association with focal adhesion kinase. J. Biol. Chem.276, 17653–17662 (2001). ArticleCASPubMed Google Scholar
Stewart, A., Ham, C. & Zachary, I. The focal adhesion kinase amino-terminal domain localises to nuclei and intercellular junctions in HEK 293 and MDCK cells independently of tyrosine 397 and the carboxy-terminal domain. Biochem. Biophys. Res. Comm.299, 62–73 (2002). ArticleCASPubMed Google Scholar
Chen, H. C., Appeddu, P. A., Isoda, H. & Guan, J. L. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem.271, 26329–26334 (1996). ArticleCASPubMed Google Scholar
Calderwood, D. A. & Ginsberg, M. H. Talin forges the links between integrins and actin. Nature Cell Biol.5, 694–697 (2003). ArticleCASPubMed Google Scholar
Zheng, C. et al. Differential regulation of Pyk2 and focal adhesion kinase (FAK). J. Biol. Chem.273, 2384–2389 (1998). ArticleCASPubMed Google Scholar
Wang, Q. et al. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J. Cell Biol.160, 565–575 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sieg, D. J. et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK− cell migration. EMBO J.17, 5933–5947 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lakkakorpi, P. T., Bett, A. J., Lipfert, L., Rodan, G. A. & Duong, L. T. Pyk2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J. Biol. Chem.278, 11502–11512 (2003). ArticleCASPubMed Google Scholar
Lev, S. et al. Identification of a novel family of targets of Pyk2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol.19, 2278–2288 (1999). ArticleCASPubMedPubMed Central Google Scholar
Benbernou, N., Muegge, K. & Durum, S. K. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7Rα. J. Biol. Chem.275, 7060–7065 (2000). ArticleCASPubMed Google Scholar
Okigaki, M. et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc. Natl Acad. Sci. USA100, 10740–10745 (2003). Shows that null mutation of the FAK-related kinase PYK2 results in integrin and chemokine-stimulated motility defects of macrophages that are not functionally compensated by FAK expression. ArticleCASPubMedPubMed Central Google Scholar
Watson, J. M. et al. Inhibition of the calcium-dependent tyrosine kinase (CADTK) blocks monocyte spreading and motility. J. Biol. Chem.276, 3536–3542 (2001). ArticleCASPubMed Google Scholar
Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk2-deficient mice defines their role in the humoral response. Nature Immunol.1, 31–36 (2000). ArticleCAS Google Scholar
Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J.18, 2459–2471 (1999). ArticleCASPubMedPubMed Central Google Scholar
Honda, H. et al. Cardiovascular anomaly, impaired actin bundling and resistance to Src- induced transformation in mice lacking p130Cas. Nature Genet.19, 361–365 (1998). ArticleCASPubMed Google Scholar
Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol.22, 901–915 (2002). ArticleCASPubMedPubMed Central Google Scholar
Xu, W., Baribault, H. & Adamson, E. D. Vinculin knockout results in heart and brain defects during embryonic development. Development125, 327–337 (1998). ArticleCASPubMed Google Scholar