Adherens junctions: from molecules to morphogenesis (original) (raw)
Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol.6, 622–634 (2005). ArticleCAS Google Scholar
Halbleib, J. M. & Nelson, W. J. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev.20, 3199–3214 (2006). ArticleCASPubMed Google Scholar
Nishimura, T. & Takeichi, M. Remodeling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol.89, 33–54 (2009). ArticleCASPubMed Google Scholar
Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963). The first clear morphological descriptions of AJs and other epithelial junctions by electron microscopy in mammalian tissues. ArticleCASPubMedPubMed Central Google Scholar
Hirokawa, N. & Heuser, J. E. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. J. Cell Biol.91, 399–409 (1981). ArticleCASPubMed Google Scholar
Miyaguchi, K. Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. J. Struct. Biol.132, 169–178 (2000). ArticleCASPubMed Google Scholar
Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science251, 1451–1455 (1991). ArticleCASPubMed Google Scholar
Pokutta, S. & Weis, W. I. Structure and mechanism of cadherins and catenins in cell–cell contacts. Annu. Rev. Cell Dev. Biol.23, 237–261 (2007). ArticleCASPubMed Google Scholar
Franke, W. W. Discovering the molecular components of intercellular junctions — a historical view. Cold Spring Harbor Perspect. Biol.1, a003061 (2009). Article Google Scholar
Berx, G. & van Roy, F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harbor Perspect. Biol.1, a003129 (2009). Article Google Scholar
Bonazzi, M., Lecuit, M. & Cossart, P. Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Cold Spring Harbor Perspect. Biol.1, a003087 (2009). Article Google Scholar
Grell, K. G. & Ruthmann, A. Placozoa. In Microscopic Anatomy of Invertebrates, Placozoa, Porifera, Cnidaria and Ctenophora. (eds F.H. & J.W.) (Wiley-Liss, New York, 1991). Google Scholar
Kraus, Y. & Technau, U. Gastrulation in the sea anemone Nematostella vectensis occurs by invagination and immigration: an ultrastructural study. Dev. Genes Evol.216, 119–132 (2006). ArticlePubMed Google Scholar
Grimson, M. J. et al. Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism. Nature408, 727–731 (2000). Identifies junctional complexes with AJ morphology in an organism without classic cadherins ArticleCASPubMed Google Scholar
Oda, H., Tagawa, K. & Akiyama-Oda, Y. Diversification of epithelial adherens junctions with independent reductive changes in cadherin form: identification of potential molecular synapomorphies among bilaterians. Evol. Dev.7, 376–389 (2005). A reconstruction of the evolution of classic cadherins during animal evolution. ArticleCASPubMed Google Scholar
Hulpiau, P. & van Roy, F. Molecular evolution of the cadherin superfamily. Int. J. Biochem. Cell Biol.41, 349–369 (2009). ArticleCASPubMed Google Scholar
Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron19, 77–89 (1997). ArticleCASPubMed Google Scholar
Miller, J. R. & McClay, D. R. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev. Biol.192, 323–339 (1997). ArticleCASPubMed Google Scholar
Broadbent, I. D. & Pettitt, J. The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Curr. Biol.12, 59–63 (2002). ArticleCASPubMed Google Scholar
Tanabe, K., Takeichi, M. & Nakagawa, S. Identification of a nonchordate-type classic cadherin in vertebrates: chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex. Dev. Dyn.229, 899–906 (2004). ArticleCASPubMed Google Scholar
Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with Armadillo and essential for embryonic cell-cell adhesion. Dev. Biol.165, 716–726 (1994). ArticleCASPubMed Google Scholar
Oda, H., Akiyama-Oda, Y. & Zhang, S. Two classic cadherin-related molecules with no cadherin extracellular repeats in the cephalochordate amphioxus: distinct adhesive specificities and possible involvement in the development of multicell-layered structures. J. Cell Sci.117, 2757–2767 (2004). ArticleCASPubMed Google Scholar
Garrod, D. & Chidgey, M. Desmosome structure, composition and function. Biochim. Biophys. Acta1778, 572–587 (2008). ArticleCASPubMed Google Scholar
Leckband, D. & Prakasam, A. Mechanism and dynamics of cadherin adhesion. Annu. Rev. Biomed. Eng.8, 259–287 (2006). ArticleCASPubMed Google Scholar
Tsukasaki, Y. et al. Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J. Mol. Biol.367, 996–1006 (2007). ArticleCASPubMed Google Scholar
Kovacs, E. M. & Yap, A. S. Cell–cell contact: cooperating clusters of actin and cadherin. Curr. Biol.18, R667–R669 (2008). ArticleCASPubMed Google Scholar
Troyanovsky, S. Cadherin dimers in cell–cell adhesion. Eur. J. Cell Biol.84, 225–233 (2005). ArticleCASPubMed Google Scholar
He, W., Cowin, P. & Stokes, D. L. Untangling desmosomal knots with electron tomography. Science302, 109–113 (2003). ArticleCASPubMed Google Scholar
Al-Amoudi, A., Diez, D. C., Betts, M. J. & Frangakis, A. S. The molecular architecture of cadherins in native epidermal desmosomes. Nature450, 832–837 (2007). The alignment of the atomic structure of a classic cadherin extracellular domain to electron tomographic reconstructions of fully packed, cadherin-based intercellular junctions. ArticleCASPubMed Google Scholar
Owen, G. R., Acehan, D., Derr, K. D., Rice, W. J. & Stokes, D. L. Cryoelectron tomography of isolated desmosomes. Biochem. Soc. Trans.36, 173–179 (2008). ArticleCASPubMed Google Scholar
McGill, M. A., McKinley, R. F. & Harris, T. J. Independent cadherin–catenin and Bazooka clusters interact to assemble adherens junctions. J. Cell Biol.185, 787–796 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cavey, M., Rauzi, M., Lenne, P. F. & Lecuit, T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature453, 751–756 (2008). Reveals that AJs are comprised of dispersed cadherin subclusters. ArticleCASPubMed Google Scholar
Xu, W. & Kimelman, D. Mechanistic insights from structural studies of β-catenin and its binding partners. J. Cell Sci.120, 3337–3344 (2007). ArticleCASPubMed Google Scholar
Gavert, N. & Ben-Ze'ev, A. β-Catenin signaling in biological control and cancer. J. Cell Biochem.102, 820–828 (2007). ArticleCASPubMed Google Scholar
McCrea, P. D. & Park, J. I. Developmental functions of the p120-catenin sub-family. Biochim. Biophys. Acta1773, 17–33 (2007). ArticleCASPubMed Google Scholar
Benjamin, J. M. & Nelson, W. J. Bench to bedside and back again: molecular mechanisms of α-catenin function and roles in tumorigenesis. Semin. Cancer Biol.18, 53–64 (2008). ArticleCASPubMed Google Scholar
Kobielak, A. & Fuchs, E. α-Catenin: at the junction of intercellular adhesion and actin dynamics. Nature Rev. Mol. Cell Biol.5, 614–625 (2004). ArticleCAS Google Scholar
Huber, A. H., Stewart, D. B., Laurents, D. V., Nelson, W. J. & Weis, W. I. The cadherin cytoplasmic domain is unstructured in the absence of β-catenin. A possible mechanism for regulating cadherin turnover. J. Biol. Chem.276, 12301–12309 (2001). ArticleCASPubMed Google Scholar
Chen, Y. T., Stewart, D. B. & Nelson, W. J. Coupling assembly of the E-cadherin/β-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J. Cell Biol.144, 687–699 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lock, J. G. & Stow, J. L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell16, 1744–1755 (2005). ArticleCASPubMedPubMed Central Google Scholar
Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell9, 365–376 (2005). ArticleCASPubMed Google Scholar
Bajpai, S. et al. α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. Proc. Natl Acad. Sci. USA105, 18331–18336 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol.170, 803–812 (2005). Shows that the release of α-catenin from cadherin is not needed for several types of tissue morphogenesis. ArticleCASPubMedPubMed Central Google Scholar
Gorfinkiel, N. & Arias, A. M. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J. Cell Sci.120, 3289–3298 (2007). ArticleCASPubMed Google Scholar
Rhee, J., Buchan, T., Zukerberg, L., Lilien, J. & Balsamo, J. Cables links Robo-bound Abl kinase to N-cadherin-bound β-catenin to mediate Slit-induced modulation of adhesion and transcription. Nature Cell Biol.9, 883–892 (2007). ArticleCASPubMed Google Scholar
Lilien, J. & Balsamo, J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol.17, 459–465 (2005). ArticleCASPubMed Google Scholar
Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol.163, 525–534 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ishiyama, N. et al. Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell–cell adhesion. Cell141, 117–128 (2010). ArticleCASPubMed Google Scholar
Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol.163, 547–557 (2003). ArticleCASPubMedPubMed Central Google Scholar
Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell135, 948–959 (2008). Identifies a mechanism for linking microtubule minus ends to AJs. ArticleCASPubMed Google Scholar
Myster, S. H., Cavallo, R., Anderson, C. T., Fox, D. T. & Peifer, M. Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell Biol.160, 433–449 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin–catenin function during epidermal morphogenesis. J. Cell Biol.162, 15–22 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pacquelet, A., Lin, L. & Rorth, P. Binding site for p120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J. Cell Biol.160, 313–319 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S. & Takeichi, M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell70, 293–301 (1992). ArticleCASPubMed Google Scholar
Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA92, 8813–8817 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pokutta, S. & Weis, W. I. Structure of the dimerization and β-catenin-binding region of α-catenin. Mol. Cell5, 533–543 (2000). ArticleCASPubMed Google Scholar
Yamada, S., Pokutta, S., Drees, F., Weis, W. I. & Nelson, W. J. Deconstructing the cadherin–catenin–actin complex. Cell123, 889–901 (2005). Suggests that α-catenin cannot bind cadherin–β-catenin complexes and actin at the same time. ArticleCASPubMedPubMed Central Google Scholar
Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-Catenin is a molecular switch that binds E-cadherin–β-Catenin and regulates actin-filament assembly. Cell123, 903–915 (2005). ArticleCASPubMedPubMed Central Google Scholar
Costa, M. et al. A putative catenin–cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol.141, 297–308 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kametani, Y. & Takeichi, M. Basal-to-apical cadherin flow at cell junctions. Nature Cell Biol.9, 92–98 (2007). ArticleCASPubMed Google Scholar
Abe, K. & Takeichi, M. EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc. Natl Acad. Sci. USA105, 13–19 (2008). ArticleCASPubMed Google Scholar
Sawyer, J. K., Harris, N. J., Slep, K. C., Gaul, U. & Peifer, M. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol.186, 57–73 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol.6, 21–30 (2004). ArticleCASPubMed Google Scholar
McNeill, H., Ryan, T. A., Smith, S. J. & Nelson, W. J. Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J. Cell Biol.120, 1217–1226 (1993). Provides some of the first descriptions of how AJs assemble as cells first come into contact. ArticleCASPubMed Google Scholar
Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin–catenin–actin reorganization during development of cell–cell adhesion. J. Cell Biol.135, 1899–1911 (1996). ArticleCASPubMed Google Scholar
Adams, C. L., Chen, Y. T., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent protein. J. Cell Biol.142, 1105–1119 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vasioukhin, V. & Fuchs, E. Actin dynamics and cell–cell adhesion in epithelia. Curr. Opin. Cell Biol.13, 76–84 (2001). ArticleCASPubMed Google Scholar
Vasioukhin, V., Bauer, C., Yin, M. & Fuchs, E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell100, 209–219 (2000). ArticleCASPubMed Google Scholar
Yonemura, S., Itoh, M., Nagafuchi, A. & Tsukita, S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Sci.108, 127–142 (1995). ArticleCASPubMed Google Scholar
Ivanov, A. I., Hunt, D., Utech, M., Nusrat, A. & Parkos, C. A. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol. Biol. Cell16, 2636–2650 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kishikawa, M., Suzuki, A. & Ohno, S. aPKC enables development of zonula adherens by antagonizing centripetal contraction of the circumferential actomyosin cables. J. Cell Sci.121, 2481–2492 (2008). ArticleCASPubMed Google Scholar
Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell cell adhesion. J. Cell Biol.178, 517–527 (2007). Reveals how Rho family GTPases are coordinated as AJs form and mature. ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. Actin at cell-cell junctions is composed of two dynamic and functional populations. J. Cell Sci.118, 5549–5562 (2005). ArticleCASPubMed Google Scholar
Scott, J. A. et al. Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol. Biol. Cell17, 1085–1095 (2006). ArticleCASPubMedPubMed Central Google Scholar
Verma, S. et al. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J. Biol. Chem.279, 34062–34070 (2004). ArticleCASPubMed Google Scholar
Kovacs, E. M., Goodwin, M., Ali, R. G., Paterson, A. D. & Yap, A. S. Cadherin-directed actin assembly: E-cadherin physically associates with the Arp2/3 complex to direct actin assembly in nascent adhesive contacts. Curr. Biol.12, 379–382 (2002). ArticleCASPubMed Google Scholar
Lampugnani, M. G. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell13, 1175–1189 (2002). ArticleCASPubMedPubMed Central Google Scholar
Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem.276, 33305–33308 (2001). ArticleCASPubMed Google Scholar
Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem.277, 6708–6718 (2002). ArticleCASPubMed Google Scholar
Hordijk, P. L. et al. Inhibition of invasion of epithelial cells by Tiam1–Rac signaling. Science278, 1464–1466 (1997). ArticleCASPubMed Google Scholar
Sander, E. E., ten Klooster, J. P., van Delft, S., van der Kammen, R. A. & Collard, J. G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol.147, 1009–1022 (1999). ArticleCASPubMedPubMed Central Google Scholar
Malliri, A., van Es, S., Huveneers, S. & Collard, J. G. The Rac exchange factor Tiam1 is required for the establishment and maintenance of cadherin-based adhesions. J. Biol. Chem.279, 30092–30098 (2004). ArticleCASPubMed Google Scholar
Mertens, A. E., Rygiel, T. P., Olivo, C., van der Kammen, R. & Collard, J. G. The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J. Cell Biol.170, 1029–1037 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yamazaki, D., Oikawa, T. & Takenawa, T. Rac–WAVE-mediated actin reorganization is required for organization and maintenance of cell–cell adhesion. J. Cell Sci.120, 86–100 (2007). ArticleCASPubMed Google Scholar
Braga, V. M., Betson, M., Li, X. & Lamarche-Vane, N. Activation of the small GTPase Rac is sufficient to disrupt cadherin-dependent cell–cell adhesion in normal human keratinocytes. Mol. Biol. Cell11, 3703–3721 (2000). ArticleCASPubMedPubMed Central Google Scholar
Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell3, 367–381 (2002). ArticleCASPubMed Google Scholar
Zandy, N. L., Playford, M. & Pendergast, A. M. Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proc. Natl Acad. Sci. USA104, 17686–17691 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dube, N. et al. The RapGEF PDZ-GEF2 is required for maturation of cell–cell junctions. Cell Signal.20, 1608–1615 (2008). ArticleCASPubMed Google Scholar
Pannekoek, W. J., Kooistra, M. R., Zwartkruis, F. J. & Bos, J. L. Cell–cell junction formation: the role of Rap1 and Rap1 guanine nucleotide exchange factors. Biochim. Biophys. Acta1788, 790–796 (2009). ArticleCASPubMed Google Scholar
Wildenberg, G. A. et al. p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell127, 1027–1039 (2006). ArticleCASPubMed Google Scholar
Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol.8, 633–644 (2007). ArticleCAS Google Scholar
Harris, T. J., Sawyer, J. K. & Peifer, M. How the cytoskeleton helps build the embryonic body plan: models of morphogenesis from Drosophila. Curr. Top. Dev. Biol.89, 55–85 (2009). ArticleCASPubMed Google Scholar
Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature Cell Biol.7, 262–269 (2005). ArticleCASPubMed Google Scholar
Delanoe-Ayari, H., Al Kurdi, R., Vallade, M., Gulino-Debrac, D. & Riveline, D. Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc. Natl Acad. Sci. USA101, 2229–2234 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bard, L. et al. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J. Neurosci.28, 5879–5890 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Gonzalez, R., Simoes Sde, M., Roper, J. C., Eaton, S. & Zallen, J. A. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell17, 736–743 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shewan, A. M. et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol. Biol. Cell16, 4531–4542 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sahai, E. & Marshall, C. J. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nature Cell Biol.4, 408–415 (2002). ArticleCASPubMed Google Scholar
Warner, S. J. & Longmore, G. D. Distinct functions for Rho1 in maintaining adherens junctions and apical tension in remodeling epithelia. J. Cell Biol.185, 1111–1125 (2009). ArticleCASPubMedPubMed Central Google Scholar
Warner, S. J. & Longmore, G. D. Cdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension. J. Cell Biol.187, 119–133 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila. Dev. Cell6, 343–355 (2004). ArticleCASPubMed Google Scholar
Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature429, 667–671 (2004). Shows how localizing myosin activity to specific AJs can affect tissue morphogenesis. ArticleCASPubMed Google Scholar
Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell11, 459–470 (2006). ArticleCASPubMed Google Scholar
Harris, T. J. & Peifer, M. Adherens junction-dependent and -independent steps in the establishment of epithelial cell polarity in Drosophila. J. Cell Biol.167, 135–147 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cox, R. T., Kirkpatrick, C. & Peifer, M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J. Cell Biol.134, 133–148 (1996). ArticleCASPubMed Google Scholar
Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell91, 905–915 (1997). ArticleCASPubMed Google Scholar
Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol.14, 1827–1833 (2004). ArticleCASPubMed Google Scholar
Costa, M., Wilson, E. T. & Wieschaus, E. A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell76, 1075–1089 (1994). ArticleCASPubMed Google Scholar
Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science315, 384–386 (2007). ArticlePubMedCAS Google Scholar
Dawes-Hoang, R. E. et al. Folded gastrulation, cell shape change and the control of myosin localization. Development132, 4165–4178 (2005). ArticleCASPubMed Google Scholar
Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature457, 495–499 (2009). Shows how myosin activity affecting all AJs across a tissue can cause apical constriction and tissue morphogenesis. ArticleCASPubMed Google Scholar
Stehbens, S. J., Akhmanova, A. & Yap, A. S. Microtubules and cadherins: a neglected partnership. Front. Biosci.14, 3159–3167 (2009). ArticleCAS Google Scholar
Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell–cell contacts. J. Cell Sci.119, 1801–1811 (2006). ArticleCASPubMed Google Scholar
Ligon, L. A. & Holzbaur, E. L. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic8, 808–819 (2007). ArticleCASPubMed Google Scholar
Bartolini, F. & Gundersen, G. G. Generation of noncentrosomal microtubule arrays. J. Cell Sci.119, 4155–4163 (2006). ArticleCASPubMed Google Scholar
Waterman-Storer, C. M., Salmon, W. C. & Salmon, E. D. Feedback interactions between cell–cell adherens junctions and cytoskeletal dynamics in newt lung epithelial cells. Mol. Biol. Cell11, 2471–2483 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ligon, L. A., Karki, S., Tokito, M. & Holzbaur, E. L. Dynein binds to β-catenin and may tether microtubules at adherens junctions. Nature Cell Biol.3, 913–917 (2001). Identifies a mechanism for linking microtubule plus ends to AJs. ArticleCASPubMed Google Scholar
Karki, S., Ligon, L. A., DeSantis, J., Tokito, M. & Holzbaur, E. L. PLAC-24 is a cytoplasmic dynein-binding protein that is recruited to sites of cell–cell contact. Mol. Biol. Cell13, 1722–1734 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chausovsky, A., Bershadsky, A. D. & Borisy, G. G. Cadherin-mediated regulation of microtubule dynamics. Nature Cell Biol.2, 797–804 (2000). ArticleCASPubMed Google Scholar
Shtutman, M. et al. Signaling function of α-catenin in microtubule regulation. Cell Cycle7, 2377–2383 (2008). ArticleCASPubMed Google Scholar
Mary, S. et al. Biogenesis of N-cadherin-dependent cell–cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol. Biol. Cell13, 285–301 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol.161, 563–596 (1994). ArticleCASPubMed Google Scholar
Harris, T. J. & Peifer, M. The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J. Cell Biol.170, 813–823 (2005). ArticleCASPubMedPubMed Central Google Scholar
Muller, H. A. & Wieschaus, E. Armadillo, Bazooka, and Stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol.134, 149–163 (1996). ArticleCASPubMed Google Scholar
Le Borgne, R., Bellaiche, Y. & Schweisguth, F. Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr. Biol.12, 95–104 (2002). ArticleCASPubMed Google Scholar
Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science301, 1547–1550 (2003). ArticleCASPubMed Google Scholar
den Elzen, N., Buttery, C. V., Maddugoda, M. P., Ren, G. & Yap, A. S. Cadherin adhesion receptors orient the mitotic spindle during symmetric cell division in mammalian epithelia. Mol. Biol. Cell20, 3740–3750 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell128, 547–560 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nejsum, L. N. & Nelson, W. J. A molecular mechanism directly linking E-cadherin adhesion to initiation of epithelial cell surface polarity. J. Cell Biol.178, 323–335 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dupin, I., Camand, E. & Etienne-Manneville, S. Classical cadherins control nucleus and centrosome position and cell polarity. J. Cell Biol.185, 779–786 (2009). ArticleCASPubMedPubMed Central Google Scholar
Desai, R. A., Gao, L., Raghavan, S., Liu, W. F. & Chen, C. S. Cell polarity triggered by cell–cell adhesion via E-cadherin. J. Cell Sci.122, 905–911 (2009). References 136–142 show how connections to AJs can affect the organization of microtubule networks. ArticleCASPubMedPubMed Central Google Scholar
Le, T. L., Yap, A. S. & Stow, J. L. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol.146, 219–232 (1999). Provides some of the first evidence for cadherin endocytosis and recycling. CASPubMedPubMed Central Google Scholar
de Beco, S., Gueudry, C., Amblard, F. & Coscoy, S. Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc. Natl Acad. Sci. USA106, 7010–7015 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hong, S., Troyanovsky, R. B. & Troyanovsky, S. M. Spontaneous assembly and active disassembly balance adherens junction homeostasis. Proc. Natl Acad. Sci. USA107, 3528–3533 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schill, N. J. & Anderson, R. A. Out, in and back again: PtdIns(4,5)P2 regulates cadherin trafficking in epithelial morphogenesis. Biochem. J.418, 247–260 (2009). ArticleCASPubMed Google Scholar
Troyanovsky, R. B., Sokolov, E. P. & Troyanovsky, S. M. Endocytosis of cadherin from intracellular junctions is the driving force for cadherin adhesive dimer disassembly. Mol. Biol. Cell17, 3484–3493 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol.8, 1223–1234 (2006). ArticleCASPubMed Google Scholar
Chiasson, C. M., Wittich, K. B., Vincent, P. A., Faundez, V. & Kowalczyk, A. P. p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol. Biol. Cell20, 1970–1980 (2009). ArticleCASPubMedPubMed Central Google Scholar
Miyashita, Y. & Ozawa, M. Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J. Biol. Chem.282, 11540–11548 (2007). ArticleCASPubMed Google Scholar
Classen, A. K., Anderson, K. I., Marois, E. & Eaton, S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev. Cell9, 805–817 (2005). Shows how localizing cadherin recycling to specific cell–cell contacts can affect tissue morphogenesis. ArticleCASPubMed Google Scholar
Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42–Par6–aPKC pathway regulating E-cadherin endocytosis. Curr. Biol.18, 1639–1648 (2008). ArticleCASPubMed Google Scholar
Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol.18, 1631–1638 (2008). ArticleCASPubMed Google Scholar
Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol.4, 222–231 (2002). ArticleCASPubMed Google Scholar
Harris, K. P. & Tepass, U. Cdc42 and Par proteins stabilize dynamic adherens junctions in the Drosophila neuroectoderm through regulation of apical endocytosis. J. Cell Biol.183, 1129–1143 (2008). ArticleCASPubMedPubMed Central Google Scholar
D'Souza-Schorey, C. Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol.15, 19–26 (2005). ArticleCASPubMed Google Scholar
Palacios, F., Schweitzer, J. K., Boshans, R. L. & D'Souza-Schorey, C. ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol.4, 929–936 (2002). ArticleCASPubMed Google Scholar
Kon, S., Tanabe, K., Watanabe, T., Sabe, H. & Satake, M. Clathrin dependent endocytosis of E-cadherin is regulated by the Arf196GAP isoform SMAP1. Exp. Cell Res.314, 1415–1428 (2008). ArticleCASPubMed Google Scholar
Ikenouchi, J. & Umeda, M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc. Natl Acad. Sci. USA107, 748–753 (2010). ArticleCASPubMed Google Scholar
Ogata, S. et al. TGF-β signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev.21, 1817–1831 (2007). ArticleCASPubMedPubMed Central Google Scholar
Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nature Cell Biol.10, 964–970 (2008). References 162 and 163 provide examples of how global changes to cadherin endocytosis across a tissue can affect its morphogenesis. ArticleCASPubMed Google Scholar
Takai, Y., Ikeda, W., Ogita, H. & Rikitake, Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol.24, 309–342 (2008). ArticleCASPubMed Google Scholar
Tachibana, K. et al. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J. Cell Biol.150, 1161–1176 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pokutta, S., Drees, F., Takai, Y., Nelson, W. J. & Weis, W. I. Biochemical and structural definition of the l-afadin- and actin-binding sites of α-catenin. J. Biol. Chem.277, 18868–18874 (2002). ArticleCASPubMed Google Scholar
Ikeda, W. et al. Afadin: A key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol.146, 1117–1132 (1999). ArticleCASPubMedPubMed Central Google Scholar
Larue, L., Ohsugi, M., Hirchenhain, J. & Kemler, R. E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl Acad. Sci. USA91, 8263–8267 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wei, S. Y. et al. Echinoid is a component of adherens junctions that cooperates with DE-Cadherin to mediate cell adhesion. Dev. Cell8, 493–504 (2005). ArticleCASPubMed Google Scholar
Laplante, C. & Nilson, L. A. Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila. Development133, 3255–3264 (2006). CASPubMed Google Scholar