Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet.11, 636–646 (2010). ArticleCASPubMed Google Scholar
Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotech.26, 808–816 (2008). ArticleCAS Google Scholar
Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol.48, 419–436 (2010). ArticleCASPubMed Google Scholar
Li, T. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res.39, 6315–6325 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J. Genet. Genom.39, 209–215 (2012). ArticleCAS Google Scholar
Watanabe, T. et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nature Commun.3, 1017 (2012). ArticleCAS Google Scholar
Sander, J. D. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotech.29, 697–698 (2011). ArticleCAS Google Scholar
Huang, P. et al. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotech.29, 699–700 (2011). ArticleCAS Google Scholar
Bedell, V. M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature 23 Sep 2012 (doi:10.1038/nature11537).
Lei, Y. et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc. Natl Acad. Sci. USA109, 17484–17489 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tesson, L. et al. Knockout rats generated by embryo microinjection of TALENs. Nature Biotech.29, 695–696 (2011). ArticleCAS Google Scholar
Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res.39, e82 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, T., Liu, B., Spalding, M. H., Weeks, D. P. & Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotech.30, 390–392 (2012). ArticleCAS Google Scholar
Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotech.30, 460–465 (2012). ArticleCAS Google Scholar
Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotech.29, 143–148 (2011). ArticleCAS Google Scholar
Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotech.29, 731–734 (2011). ArticleCAS Google Scholar
Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science326, 1509–1512 (2009). ArticleCASPubMed Google Scholar
Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science326, 1501 (2009). ArticleCASPubMed Google Scholar
Morbitzer, R., Romer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using _de novo_-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl Acad. Sci. USA107, 21617–21622 (2010). ArticleCASPubMedPubMed Central Google Scholar
Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res.39, 359–372 (2011). ArticlePubMedCAS Google Scholar
Mak, A. N., Bradley, P., Cernadas, R. A., Bogdanove, A. J. & Stoddard, B. L. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science335, 716–719 (2012). ArticleCASPubMedPubMed Central Google Scholar
Streubel, J., Blucher, C., Landgraf, A. & Boch, J. TAL effector RVD specificities and efficiencies. Nature Biotech.30, 593–595 (2012). ArticleCAS Google Scholar
Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Commun.3, 968 (2012). ArticleCAS Google Scholar
Handel, E. M. & Cathomen, T. Zinc-finger nuclease based genome surgery: it's all about specificity. Curr. Gene Ther.11, 28–37 (2011). ArticlePubMed Google Scholar
Moehle, E. A. et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA104, 3055–3060 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods8, 753–755 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science300, 764 (2003). ArticleCASPubMed Google Scholar
Morton, J., Davis, M. W., Jorgensen, E. M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl Acad. Sci. USA103, 16370–16375 (2006). ArticleCASPubMedPubMed Central Google Scholar
Doyon, Y. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotech.26, 702–708 (2008). ArticleCAS Google Scholar
Meng, X., Noyes, M. B., Zhu, L. J., Lawson, N. D. & Wolfe, S. A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotech.26, 695–701 (2008). ArticleCAS Google Scholar
Yano, A. et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol.22, 1423–1428 (2012). ArticleCASPubMed Google Scholar
Dong, Z. et al. Heritable targeted inactivation of myostatin gene in yellow catfish (Pelteobagrus fulvidraco) using engineered zinc finger nucleases. PLoS ONE6, e28897 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ochiai, H. et al. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells15, 875–885 (2010). CASPubMed Google Scholar
Young, J. J. et al. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc. Natl Acad. Sci. USA108, 7052–7057 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hauschild, J. et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc. Natl Acad. Sci. USA108, 12013–12017 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yu, S. et al. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res.21, 1638–1640 (2011). ArticleCASPubMedPubMed Central Google Scholar
Flisikowska, T. et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE6, e21045 (2011). ArticleCASPubMedPubMed Central Google Scholar
Takasu, Y. et al. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol.40, 759–765 (2010). ArticleCASPubMed Google Scholar
Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc finger nucleases. Genome Res. 25 Sep 2012 (doi:10.1101/gr.145599.112). ArticlePubMedCAS Google Scholar
Meyer, M., de Angelis, M. H., Wurst, W. & Kuhn, R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl Acad. Sci. USA107, 15022–15026 (2010). ArticleCASPubMedPubMed Central Google Scholar
Curtin, S. J. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol.156, 466–473 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sander, J. D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods8, 67–69 (2011). ArticleCASPubMed Google Scholar
Lloyd, A., Plaisier, C. L., Carroll, D. & Drews, G. N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl Acad. Sci. USA102, 2232–2237 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, F. et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl Acad. Sci. USA107, 12028–12033 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shukla, V. K. et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature459, 437–441 (2009). ArticleCASPubMed Google Scholar
Santiago, Y. et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc. Natl Acad. Sci. USA105, 5809–5814 (2008). ArticleCASPubMedPubMed Central Google Scholar
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). ArticleCASPubMed Google Scholar
Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). ArticlePubMed Google Scholar
Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell5, 97–110 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotech.27, 851–857 (2009). ArticleCAS Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nature Biotech.25, 1298–1306 (2007). ArticleCAS Google Scholar
Lee, H. J., Kim, E. & Kim, J. S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res.20, 81–89 (2010). ArticleCASPubMedPubMed Central Google Scholar
Brunet, E. et al. Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl Acad. Sci. USA106, 10620–10625 (2009). ArticleCASPubMedPubMed Central Google Scholar
Simsek, D. et al. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet.7, e1002080 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. J., Kweon, J., Kim, E., Kim, S. & Kim, J. S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res.22, 539–548 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mussolino, C. et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res.39, 9283–9293 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sanjana, N. E. et al. A transcription activator-like effector toolbox for genome engineering. Nature Protoc.7, 171–192 (2012). ArticleCAS Google Scholar
Sun, N., Liang, J., Abil, Z. & Zhao, H. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol. Biosyst.8, 1255–1263 (2012). ArticleCASPubMed Google Scholar
Kim, H., Um, E., Cho, S. R., Jung, C. & Kim, J. S. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nature Methods8, 941–943 (2011). ArticleCASPubMed Google Scholar
Sebastiano, V. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells29, 1717–1726 (2011). ArticleCASPubMedPubMed Central Google Scholar
Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell146, 318–331 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cade, L. et al. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res.140, 8001–8010 (2012). ArticleCAS Google Scholar
Doyon, Y. et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods8, 74–79 (2011). ArticleCASPubMed Google Scholar
Moore, F. E. et al. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS ONE7, e37877 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ramirez, C. L. et al. Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res.40, 5560–5568 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res.22, 1316–1326 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Gaj, T., Guo, J., Kato, Y., Sirk, S. J. & Barbas, C. F. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nature Methods9, 805–807 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mercer, A. C., Gaj, T., Fuller, R. P. & Barbas, C. F. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 26 Sep 2012 (doi:10.1093/nar/gks875). ArticleCASPubMedPubMed Central Google Scholar
Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct.29, 183–212 (2000). ArticleCASPubMed Google Scholar
Pabo, C. O., Peisach, E. & Grant, R. A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem.70, 313–340 (2001). ArticleCASPubMed Google Scholar
Greisman, H. A. & Pabo, C. O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science275, 657–661 (1997). ArticleCASPubMed Google Scholar
Isalan, M., Choo, Y. & Klug, A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl Acad. Sci. USA94, 5617–5621 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wolfe, S. A., Greisman, H. A., Ramm, E. I. & Pabo, C. O. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol.285, 1917–1934 (1999). ArticleCASPubMed Google Scholar
Beerli, R. R. & Barbas, C. F. Engineering polydactyl zinc-finger transcription factors. Nature Biotech.20, 135–141 (2002). ArticleCAS Google Scholar
Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell31, 294–301 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA93, 1156–1160 (1996). ArticleCASPubMedPubMed Central Google Scholar
Blancafort, P., Segal, D. J. & Barbas, C. F. Designing transcription factor architectures for drug discovery. Mol. Pharmacol.66, 1361–1371 (2004). ArticleCASPubMed Google Scholar
Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotech.29, 149–153 (2011). ArticleCAS Google Scholar
Geissler, R. et al. Transcriptional activators of human genes with programmable DNA-specificity. PLoS ONE6, e19509 (2011). ArticleCASPubMed Google Scholar
Garg, A., Lohmueller, J. J., Silver, P. A. & Armel, T. Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res.40, 7584–7595 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tremblay, J. P., Chapdelaine, P., Coulombe, Z. & Rousseau, J. TALE proteins induced the expression of the frataxin gene. Hum. Gene Ther.23, 883–890 (2012). ArticleCASPubMed Google Scholar
Wang, Z. et al. An integrated Chip for the high-throughput synthesis of transcription activator-like effectors. Angew. Chem. Int. Ed. Engl.51, 8505–8508 (2012). ArticleCASPubMed Google Scholar
Bultmann, S. et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res.40, 5368–5377 (2012). ArticleCASPubMedPubMed Central Google Scholar
Liu, P. Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem.276, 11323–11334 (2001). ArticleCASPubMed Google Scholar
Doyle, E. L. et al. TAL effector-nucleotide targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res.40, W117–W122 (2012). ArticleCASPubMedPubMed Central Google Scholar