O'Brien, C. P. A range of research-based pharmacotherapies for addiction. Science278, 66–70 (1997). ArticleCASPubMed Google Scholar
Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci.12, 652–669 (2011). This article describes dysfunction of the prefrontal cortex in cocaine addicts during different stages of the addiction cycle. ArticleCASPubMedPubMed Central Google Scholar
Hanlon, C. A., Beveridge, T. J. & Porrino, L. J. Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci. Biobehav. Rev.37, 2037–2046 (2013). This article reviews available evidence on the extent to which behavioural and neuronal consequences of cocaine exposure recover during abstinence in clinical populations, primates and rodents. ArticleCASPubMedPubMed Central Google Scholar
Cruz, F. C. et al. New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat. Rev. Neurosci.14, 743–754 (2013). ArticleCASPubMedPubMed Central Google Scholar
Venniro, M., Caprioli, D. & Shaham, Y. Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog. Brain Res.224, 25–52 (2016). This concise but comprehensive review of animal models provides historical context and an explanation of experimental procedures. ArticlePubMed Google Scholar
Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology (Berl.)229, 453–476 (2013). ArticleCAS Google Scholar
Self, D. W., Choi, K. H., Simmons, D., Walker, J. R. & Smagula, C. S. Extinction training regulates neuroadaptive responses to withdrawal from chronic cocaine self-administration. Learn. Mem.11, 648–657 (2004). ArticlePubMedPubMed Central Google Scholar
Wolf, M. E. & Ferrario, C. R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci. Biobehav. Rev.35, 185–211 (2010). ArticleCASPubMedPubMed Central Google Scholar
Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci.20, 798–805 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature412, 141–142 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lu, L., Grimm, J. W., Hope, B. T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology47 (Suppl. 1), 214–226 (2004). This review is the foundation for understanding the phenomenon of incubation of cocaine craving. ArticleCASPubMed Google Scholar
Ferland, J.-M. N. & Winstanley, C. A. Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addict. Biol.http://dx.doi.org/10.1111/adb.12388 (2016).
Gancarz-Kausch, A. M., Adank, D. N. & Dietz, D. M. Prolonged withdrawal following cocaine self-administration increases resistance to punishment in a cocaine binge. Sci. Rep.4, 6876 (2014). ArticleCASPubMedPubMed Central Google Scholar
Li, X., Caprioli, D. & Marchant, N. J. Recent updates on incubation of drug craving: a mini-review. Addict. Biol.20, 872–876 (2015). ArticlePubMed Google Scholar
Hollander, J. A. & Carelli, R. M. Abstinence from cocaine self-administration heightens neural encoding of goal-directed behaviors in the accumbens. Neuropsychopharmacology30, 1464–1474 (2005). ArticleCASPubMed Google Scholar
Kerstetter, K. A., Aguilar, V. R., Parrish, A. B. & Kippin, T. E. Protracted time-dependent increases in cocaine-seeking behavior during cocaine withdrawal in female relative to male rats. Psychopharmacology (Berl.)198, 63–75 (2008). ArticleCAS Google Scholar
Zlebnik, N. E. & Carroll, M. E. Prevention of the incubation of cocaine seeking by aerobic exercise in female rats. Psychopharmacology (Berl.)232, 3507–3513 (2015). ArticleCAS Google Scholar
Terrier, J., Luscher, C. & Pascoli, V. Cell-type specific insertion of GluA2-lacking AMPARs with cocaine exposure leading to sensitization, cue-induced seeking, and incubation of craving. Neuropsychopharmacologyhttp://dx.doi.org/10.1038/npp.2015.345 (2015).
Meredith, G. E., Baldo, B. A., Andrezjewski, M. E. & Kelley, A. E. The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct. Funct.213, 17–27 (2008). ArticlePubMedPubMed Central Google Scholar
Sesack, S. R. & Grace, A. A. Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology35, 27–47 (2010). ArticlePubMed Google Scholar
Mogenson, G. J., Jones, D. L. & Yim, C. Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol.14, 69–97 (1980). ArticleCASPubMed Google Scholar
Kourrich, S., Calu, D. J. & Bonci, A. Intrinsic plasticity: an emerging player in addiction. Nat. Rev. Neurosci.16, 173–184 (2015). ArticleCASPubMed Google Scholar
Hollander, J. A. & Carelli, R. M. Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J. Neurosci.27, 3535–3539 (2007). ArticleCASPubMedPubMed Central Google Scholar
Guillem, K., Ahmed, S. H. & Peoples, L. L. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol. Psychiatry76, 31–39 (2014). This paper demonstrates that the NAc core is selectively involved in incubation of drug seeking, whereas the NAc shell is involved in escalation of drug taking. ArticleCASPubMed Google Scholar
Kourrich, S. & Thomas, M. J. Similar neurons, opposite adaptations: psychostimulant experience differentially alters firing properties in accumbens core versus shell. J. Neurosci.29, 12275–12283 (2009). ArticleCASPubMedPubMed Central Google Scholar
Conrad, K. L. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature454, 118–121 (2008). This study was the first to demonstrate that CP-AMPARs accumulate in the NAc during incubation of cocaine craving and that activation of these receptors in the core subregion is required for the expression of incubation after prolonged withdrawal. ArticleCASPubMedPubMed Central Google Scholar
Wolf, M. E. & Tseng, K. Y. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front. Mol. Neurosci.5, 72 (2012). This is a comprehensive review of the functional and behavioural significance of AMPAR plasticity during abstinence in two crucial regions of the reward circuitry. ArticleCASPubMedPubMed Central Google Scholar
Schmidt, H. D. et al. ADAR2-dependent GluA2 editing regulates cocaine seeking. Mol. Psychiatry20, 1460–1466 (2015). ArticleCASPubMed Google Scholar
Purgianto, A. et al. Different adaptations in AMPA receptor transmission in the nucleus accumbens after short versus long access cocaine self-administration regimens. Neuropsychopharmacology38, 1789–1797 (2013). ArticleCASPubMedPubMed Central Google Scholar
Loweth, J. A. et al. Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat. Neurosci.17, 73–80 (2014). This study established the importance of mGluR1 in the NAc as a modulator of synaptic plasticity underlying incubation of cocaine craving and as a target for therapeutic intervention. ArticleCASPubMed Google Scholar
Lu, L. et al. Central amygdala ERK signaling pathway is critical to incubation of cocaine craving. Nat. Neurosci.8, 212–219 (2005). This paper was important in establishing a necessary role for the central nucleus of the amygdala in the incubation of cocaine craving. ArticleCASPubMed Google Scholar
Koya, E. et al. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology56 (Suppl. 1), 177–185 (2009). ArticleCASPubMed Google Scholar
Mameli, M., Bellone, C., Brown, M. T. & Luscher, C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci.14, 414–416 (2011). ArticleCASPubMed Google Scholar
Kullmann, D. M. & Lamsa, K. Roles of distinct glutamate receptors in induction of anti-Hebbian long-term potentiation. J. Physiol.586, 1481–1486 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ferrario, C. R., Goussakov, I., Stutzmann, G. E. & Wolf, M. E. Withdrawal from cocaine self-administration alters NMDA receptor-mediated Ca2+ entry in nucleus accumbens dendritic spines. PLoS ONE7, e40898 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bellone, C. & Luscher, C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur. J. Neurosci.21, 1280–1288 (2005). ArticlePubMed Google Scholar
Loweth, J. A., Tseng, K. Y. & Wolf, M. E. Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mGluR1 finds a niche. Curr. Opin. Neurobiol.23, 500–506 (2013). ArticleCASPubMedPubMed Central Google Scholar
McCutcheon, J. E. et al. Group I mGluR activation reverses cocaine-induced accumulation of calcium-permeable AMPA receptors in nucleus accumbens synapses via a protein kinase C-dependent mechanism. J. Neurosci.31, 14536–14541 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ferrario, C. R. et al. Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca2+-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology61, 1141–1151 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fourgeaud, L. et al. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci.24, 6939–6945 (2004). ArticleCASPubMedPubMed Central Google Scholar
Scheyer, A. F., Wolf, M. E. & Tseng, K. Y. A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration. J. Neurosci.34, 3095–3100 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bhakar, A. L., Dolen, G. & Bear, M. F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci.35, 417–443 (2012). ArticleCASPubMedPubMed Central Google Scholar
Monteggia, L. M. & Zarate, C. Jr. Antidepressant actions of ketamine: from molecular mechanisms to clinical practice. Curr. Opin. Neurobiol.30, 139–143 (2015). ArticleCASPubMedPubMed Central Google Scholar
Martin, M., Chen, B. T., Hopf, F. W., Bowers, M. S. & Bonci, A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat. Neurosci.9, 868–869 (2006). ArticleCASPubMed Google Scholar
Knackstedt, L. A. et al. Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J. Neurosci.30, 7984–7992 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grimm, J. W. et al. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci.23, 742–747 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, X. & Wolf, M. E. Brain-derived neurotrophic factor rapidly increases AMPA receptor surface expression in rat nucleus accumbens. Eur. J. Neurosci.34, 190–198 (2011). ArticlePubMedPubMed Central Google Scholar
Li, X. et al. Different roles of BDNF in nucleus accumbens core versus shell during the incubation of cue-induced cocaine craving and its long-term maintenance. J. Neurosci.33, 1130–1142 (2013). ArticleCASPubMedPubMed Central Google Scholar
Li, X. & Wolf, M. E. Multiple faces of BDNF in cocaine addiction. Behav. Brain Res.279, 240–254 (2015). ArticleCASPubMed Google Scholar
McCutcheon, J. E., Wang, X., Tseng, K. Y., Wolf, M. E. & Marinelli, M. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J. Neurosci.31, 5737–5743 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cameron, C. M. & Carelli, R. M. Cocaine abstinence alters nucleus accumbens firing dynamics during goal-directed behaviors for cocaine and sucrose. Eur. J. Neurosci.35, 940–951 (2012). ArticlePubMedPubMed Central Google Scholar
Lee, B. R. et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci.16, 1644–1651 (2013). This is the first demonstration that silent synapse formation and un-silencing are crucial for the plasticity that underlies incubation of cocaine craving. ArticleCASPubMedPubMed Central Google Scholar
Ma, Y. Y. et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron83, 1453–1467 (2014). This paper shows that silent synapse-based plasticity in the NAc can both promote and oppose incubation of cocaine craving. ArticleCASPubMedPubMed Central Google Scholar
Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature509, 459–464 (2014). This study demonstrates differences in cocaine-induced plasticity at synapses between specific glutamate afferents and MSN subpopulations in the NAc shell. ArticleCASPubMed Google Scholar
Mameli, M. et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat. Neurosci.12, 1036–1041 (2009). This study shows that mGluR1-regulated synaptic plasticity in the VTA enables subsequent plasticity in the NAc that is linked to cue-induced cocaine seeking during abstinence. ArticleCASPubMed Google Scholar
Bellone, C. & Luscher, C. Drug-evoked plasticity: do addictive drugs reopen a critical period of postnatal synaptic development? Front. Mol. Neurosci.5, 75 (2012). ArticleCASPubMedPubMed Central Google Scholar
Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci.8, 1481–1489 (2005). ArticleCASPubMed Google Scholar
O'Donnell, P. & Grace, A. A. Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci.15, 3622–3639 (1995). ArticleCASPubMedPubMed Central Google Scholar
Finch, D. M. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus6, 495–512 (1996). ArticleCASPubMed Google Scholar
Brady, A. M., Glick, S. D. & O'Donnell, P. Selective disruption of nucleus accumbens gating mechanisms in rats behaviorally sensitized to methamphetamine. J. Neurosci.25, 6687–6695 (2005). ArticleCASPubMedPubMed Central Google Scholar
Vanderschuren, L. J., Di Ciano, P. & Everitt, B. J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci.25, 8665–8670 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fuchs, R. A., Branham, R. K. & See, R. E. Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J. Neurosci.26, 3584–3588 (2006). ArticleCASPubMedPubMed Central Google Scholar
See, R. E., Elliott, J. C. & Feltenstein, M. W. The role of dorsal versus ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology (Berl.)194, 321–331 (2007). ArticleCAS Google Scholar
Pacchioni, A. M., Gabriele, A. & See, R. E. Dorsal striatum mediation of cocaine-seeking after withdrawal from short or long daily access cocaine self-administration in rats. Behav. Brain Res.218, 296–300 (2011). ArticleCASPubMed Google Scholar
Jonkman, S., Pelloux, Y. & Everitt, B. J. Differential roles of the dorsolateral and midlateral striatum in punished cocaine seeking. J. Neurosci.32, 4645–4650 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bossert, J. M., Ghitza, U. E., Lu, L., Epstein, D. H. & Shaham, Y. Neurobiology of relapse to heroin and cocaine seeking: an update and clinical implications. Eur. J. Pharmacol.526, 36–50 (2005). ArticleCASPubMed Google Scholar
Knackstedt, L. A., Trantham-Davidson, H. L. & Schwendt, M. The role of ventral and dorsal striatum mGluR5 in relapse to cocaine-seeking and extinction learning. Addict. Biol.19, 87–101 (2014). ArticleCASPubMed Google Scholar
Li, X. et al. Incubation of methamphetamine craving is associated with selective increases in expression of Bdnf and Trkb, glutamate receptors, and epigenetic enzymes in cue-activated Fos-expressing dorsal striatal neurons. J. Neurosci.35, 8232–8244 (2015). ArticleCASPubMedPubMed Central Google Scholar
Heidbreder, C. A. & Groenewegen, H. J. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci. Biobehav. Rev.27, 555–579 (2003). ArticlePubMed Google Scholar
West, E. A., Saddoris, M. P., Kerfoot, E. C. & Carelli, R. M. Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur. J. Neurosci.39, 1891–1902 (2014). ArticlePubMedPubMed Central Google Scholar
Li, X., Zeric, T., Kambhampati, S., Bossert, J. M. & Shaham, Y. The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology40, 1297–1306 (2015). ArticleCASPubMedPubMed Central Google Scholar
Shin, C. B. et al. Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex. Neuropharmacology102, 103–110 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sun, W. L. et al. Relapse to cocaine-seeking after abstinence is regulated by cAMP-dependent protein kinase A in the prefrontal cortex. Addict. Biol.19, 77–86 (2014). ArticleCASPubMed Google Scholar
Sun, X., Zhao, Y. & Wolf, M. E. Dopamine receptor stimulation modulates AMPA receptor synaptic insertion in prefrontal cortex neurons. J. Neurosci.25, 7342–7351 (2005). ArticleCASPubMedPubMed Central Google Scholar
Swinford-Jackson, S. E., Anastasio, N. C., Fox, R. G., Stutz, S. J. & Cunningham, K. A. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT receptor (5-HTR) system. Neuroscience324, 50–61 (2016). ArticleCASPubMed Google Scholar
Miller, B. W. et al. Cocaine craving during protracted withdrawal requires PKCɛ priming within vmPFC. Addict. Biol.http://dx.doi.org/10.1111/adb.12354 (2016).
Ben-Shahar, O. et al. Deficits in ventromedial prefrontal cortex group 1 metabotropic glutamate receptor function mediate resistance to extinction during protracted withdrawal from an extensive history of cocaine self-administration. J. Neurosci.33, 495–506a (2013). ArticleCASPubMedPubMed Central Google Scholar
Kasanetz, F. et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol. Psychiatry18, 729–737 (2013). ArticleCASPubMed Google Scholar
Chen, B. T. et al. Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature496, 359–362 (2013). ArticleCASPubMed Google Scholar
Pelloux, Y., Murray, J. E. & Everitt, B. J. Differential roles of the prefrontal cortical subregions and basolateral amygdala in compulsive cocaine seeking and relapse after voluntary abstinence in rats. Eur. J. Neurosci.38, 3018–3026 (2013). PubMedPubMed Central Google Scholar
Everitt, B. J., Cardinal, R. N., Parkinson, J. A. & Robbins, T. W. Appetitive behavior: impact of amygdala-dependent mechanisms of emotional learning. Ann. NY Acad. Sci.985, 233–250 (2003). ArticlePubMed Google Scholar
Chase, H. W., Eickhoff, S. B., Laird, A. R. & Hogarth, L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol. Psychiatry70, 785–793 (2011). ArticlePubMedPubMed Central Google Scholar
Koob, G. F. et al. Addiction as a stress surfeit disorder. Neuropharmacology76, 370–382 (2014). ArticleCASPubMed Google Scholar
Lu, L., Dempsey, J., Shaham, Y. & Hope, B. T. Differential long-term neuroadaptations of glutamate receptors in the basolateral and central amygdala after withdrawal from cocaine self-administration in rats. J. Neurochem.94, 161–168 (2005). ArticleCASPubMed Google Scholar
Lu, L., Uejima, J. L., Gray, S. M., Bossert, J. M. & Shaham, Y. Systemic and central amygdala injections of the mGluR2/3 agonist LY379268 attenuate the expression of incubation of cocaine craving. Biol. Psychiatry61, 591–598 (2007). ArticleCASPubMed Google Scholar
Corbit, L. H. & Balleine, B. W. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J. Neurosci.25, 962–970 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zorrilla, E. P., Valdez, G. R. & Weiss, F. Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology (Berl.)158, 374–381 (2001). ArticleCAS Google Scholar
Pollandt, S. et al. Cocaine withdrawal enhances long-term potentiation induced by corticotropin-releasing factor at central amygdala glutamatergic synapses via CRF, NMDA receptors and PKA. Eur. J. Neurosci.24, 1733–1743 (2006). ArticlePubMed Google Scholar
Wolff, S. B. et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature509, 453–458 (2014). ArticleCASPubMed Google Scholar
Luscher, C. Cocaine-evoked synaptic plasticity of excitatory transmission in the ventral tegmental area. Cold Spring Harb. Perspect. Med.3, a012013 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pignatelli, M. & Bonci, A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron86, 1145–1157 (2015). ArticleCASPubMed Google Scholar
Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci.9, 636–641 (2006). ArticleCASPubMed Google Scholar
Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science317, 530–533 (2007). ArticleCASPubMed Google Scholar
Chen, B. T. et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron59, 288–297 (2008). This study demonstrates that contingent cocaine administration leads to a strengthening of excitatory drive to dopamine neurons that persists for at least 3 months of abstinence. ArticleCASPubMedPubMed Central Google Scholar
Lu, L. et al. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol. Psychiatry66, 137–145 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lu, L., Dempsey, J., Liu, S. Y., Bossert, J. M. & Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci.24, 1604–1611 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pu, L., Liu, Q. S. & Poo, M. M. BDNF-dependent synaptic sensitization in midbrain dopamine neurons after cocaine withdrawal. Nat. Neurosci.9, 605–607 (2006). ArticleCASPubMed Google Scholar
Willuhn, I., Wanat, M. J., Clark, J. J. & Phillips, P. E. Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr. Top. Behav. Neurosci.3, 29–71 (2010). ArticlePubMedPubMed Central Google Scholar
Carelli, R. M. & West, E. A. When a good taste turns bad: neural mechanisms underlying the emergence of negative affect and associated natural reward devaluation by cocaine. Neuropharmacology76, 360–369 (2014). The complexity of the relationship between reward and dopamine transmission is illustrated by this review article. ArticleCASPubMed Google Scholar
Calu, D., Nasser, H. & Shaham, Y. Unexpected results on the role of nucleus accumbens dopamine in stress-induced relapse. Biol. Psychiatry77, 848–849 (2015). ArticlePubMedPubMed Central Google Scholar
Grigson, P. S. & Twining, R. C. Cocaine-induced suppression of saccharin intake: a model of drug-induced devaluation of natural rewards. Behav. Neurosci.116, 321–333 (2002). ArticleCASPubMed Google Scholar
Saddoris, M. P., Wang, X., Sugam, J. A. & Carelli, R. M. Cocaine self-administration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent rats. J. Neurosci.36, 235–250 (2016). ArticleCASPubMedPubMed Central Google Scholar
Volkow, N. D., Fowler, J. S., Wang, G. J., Baler, R. & Telang, F. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology56 (Suppl. 1), 3–8 (2009). ArticleCASPubMed Google Scholar
Nader, M. A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci.9, 1050–1056 (2006). ArticleCASPubMed Google Scholar
Beveridge, T. J., Smith, H. R., Nader, M. A. & Porrino, L. J. Abstinence from chronic cocaine self-administration alters striatal dopamine systems in rhesus monkeys. Neuropsychopharmacology34, 1162–1171 (2009). ArticleCASPubMed Google Scholar
Gould, R. W., Duke, A. N. & Nader, M. A. PET studies in nonhuman primate models of cocaine abuse: translational research related to vulnerability and neuroadaptations. Neuropharmacology84, 138–151 (2014). ArticleCASPubMed Google Scholar
Conrad, K. L., Ford, K., Marinelli, M. & Wolf, M. E. Dopamine receptor expression and distribution dynamically change in the rat nucleus accumbens after withdrawal from cocaine self-administration. Neuroscience169, 182–194 (2010). ArticleCASPubMed Google Scholar
Everitt, B. J. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories — indications for novel treatments of addiction. Eur. J. Neurosci.40, 2163–2182 (2014). ArticlePubMedPubMed Central Google Scholar
Jentsch, J. D. et al. Dissecting impulsivity and its relationships to drug addictions. Ann. NY Acad. Sci.1327, 1–26 (2014). PubMed Google Scholar
Neisewander, J. L., Cheung, T. H. & Pentkowski, N. S. Dopamine D3 and 5-HT1B receptor dysregulation as a result of psychostimulant intake and forced abstinence: implications for medications development. Neuropharmacology76, 301–319 (2014). This article reviews the literature on dopamine and serotonin transmission during abstinence. ArticleCASPubMed Google Scholar
Neisewander, J. L. et al. Increases in dopamine D3 receptor binding in rats receiving a cocaine challenge at various time points after cocaine self-administration: implications for cocaine-seeking behavior. Neuropsychopharmacology29, 1479–1487 (2004). ArticleCASPubMed Google Scholar
Xi, Z.-X. et al. Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdala inhibits incubation of cocaine craving in rats. Addict. Biol.18, 665–677 (2013). ArticleCASPubMed Google Scholar
Ben-Shahar, O. et al. Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. Brain Res.1131, 220–228 (2007). ArticleCASPubMed Google Scholar
Moore, R. J., Vinsant, S. L., Nader, M. A., Porrino, L. J. & Friedman, D. P. Effect of cocaine self-administration on striatal dopamine D1 receptors in rhesus monkeys. Synapse28, 1–9 (1998). ArticleCASPubMed Google Scholar
Caprioli, D. et al. Effect of the novel positive allosteric modulator of metabotropic glutamate receptor 2 AZD8529 on incubation of methamphetamine craving after prolonged voluntary abstinence in a rat model. Biol. Psychiatry78, 463–473 (2015). ArticleCASPubMedPubMed Central Google Scholar
Deroche-Gamonet, V., Belin, D. & Piazza, P. V. Evidence for addiction-like behavior in the rat. Science305, 1014–1017 (2004). ArticleCASPubMed Google Scholar
Cannella, N. et al. The mGluR2/3 agonist LY379268 induced anti-reinstatement effects in rats exhibiting addiction-like behavior. Neuropsychopharmacology38, 2048–2056 (2013). ArticleCASPubMedPubMed Central Google Scholar
Scheyer, A. F., et al. AMPA receptor plasticity in accumbens core contributes to incubation of methamphetamine craving. Biol. Psychiatryhttp://dx.doi.org/10.1016/j.biopsych.2016.04.003 (2016).
Howell, L. L. & Cunningham, K. A. Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol. Rev.67, 176–197 (2015). ArticleCASPubMedPubMed Central Google Scholar
Anastasio, N. C. et al. Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Neuropsychopharmacology39, 370–382 (2014). ArticleCASPubMed Google Scholar
Ortinski, P. I., Vassoler, F. M., Carlson, G. C. & Pierce, R. C. Temporally dependent changes in cocaine induced synaptic plasticity in the nucleus accumbens shell are reversed by D1-like dopamine receptor stimulation. Neuropsychopharmacology37, 1671–1682 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J. & Yalachkov, Y. Factors modulating neural reactivity to drug cues in addiction: a survey of human neuroimaging studies. Neurosci. Biobehav. Rev.38, 1–16 (2014). ArticlePubMed Google Scholar
Keralapurath, M. M., Briggs, S. B. & Wagner, J. J. Cocaine self-administration induces changes in synaptic transmission and plasticity in ventral hippocampus. Addict. Biol.http://dx.doi.org/10.1111/adb.12345 (2015).
Freeman, W. M. et al. Persistent alterations in mesolimbic gene expression with abstinence from cocaine self-administration. Neuropsychopharmacology33, 1807–1817 (2008). ArticleCASPubMed Google Scholar
Massart, R. et al. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J. Neurosci.35, 8042–8058 (2015). ArticleCASPubMedPubMed Central Google Scholar
Reichel, C. M. & Bevins, R. A. Forced abstinence model of relapse to study pharmacological treatments of substance use disorder. Curr. Drug Abuse Rev.2, 184–194 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bedi, G. et al. Incubation of cue-induced cigarette craving during abstinence in human smokers. Biol. Psychiatry69, 708–711 (2011). ArticlePubMedPubMed Central Google Scholar
Li, P. et al. Incubation of alcohol craving during abstinence in patients with alcohol dependence. Addict. Biol.20, 513–522 (2015). ArticlePubMed Google Scholar
Krasnova, I. N. et al. Incubation of methamphetamine and palatable food craving after punishment-induced abstinence. Neuropsychopharmacology39, 2008–2016 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kupchik, Y. M. et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat. Neurosci.18, 1230–1232 (2015). These results caution against classifying MSNs in the NAc strictly on the basis of dopamine receptor expression. ArticleCASPubMedPubMed Central Google Scholar
Smith, R. J., Lobo, M. K., Spencer, S. & Kalivas, P. W. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol.23, 546–552 (2013). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, R. Z. & Volkow, N. D. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry159, 1642–1652 (2002). ArticlePubMedPubMed Central Google Scholar
Porrino, L. J., Lyons, D., Smith, H. R., Daunais, J. B. & Nader, M. A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci.24, 3554–3562 (2004). ArticleCASPubMedPubMed Central Google Scholar
Beveridge, T. J., Smith, H. R., Daunais, J. B., Nader, M. A. & Porrino, L. J. Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur. J. Neurosci.23, 3109–3118 (2006). ArticlePubMed Google Scholar
Porrino, L. J., Smith, H. R., Nader, M. A. & Beveridge, T. J. The effects of cocaine: a shifting target over the course of addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry31, 1593–1600 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gozzi, A. et al. Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology36, 2431–2440 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hammer, R. P. Jr., Pires, W. S., Markou, A. & Koob, G. F. Withdrawal following cocaine self-administration decreases regional cerebral metabolic rate in critical brain reward regions. Synapse14, 73–80 (1993). ArticleCASPubMed Google Scholar
Macey, D. J., Rice, W. N., Freedland, C. S., Whitlow, C. T. & Porrino, L. J. Patterns of functional activity associated with cocaine self-administration in the rat change over time. Psychopharmacology (Berl.)172, 384–392 (2004). ArticleCAS Google Scholar
Sun, W. & Rebec, G. V. Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J. Neurosci.26, 8004–8008 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mu, P. et al. Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J. Neurosci.30, 3689–3699 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dikshtein, Y. et al. β-endorphin via the delta opioid receptor is a major factor in the incubation of cocaine craving. Neuropsychopharmacology38, 2508–2514 (2013). ArticleCASPubMedPubMed Central Google Scholar
Reppucci, C. J. & Petrovich, G. D. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct. Funct.http://dx.doi.org/10.1007/s00429-015-1081-0 (2015).
Phillips, A. G., Ahn, S. & Howland, J. G. Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neurosci. Biobehav. Rev.27, 543–554 (2003). ArticleCASPubMed Google Scholar
Sinha, R., Shaham, Y. & Heilig, M. Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl.)218, 69–82 (2011). ArticleCAS Google Scholar
Mantsch, J. R., Baker, D. A., Funk, D., Le, A. D. & Shaham, Y. Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology41, 335–356 (2016). ArticleCASPubMed Google Scholar
Thiel, K. J. et al. Environmental enrichment counters cocaine abstinence-induced stress and brain reactivity to cocaine cues but fails to prevent the incubation effect. Addict. Biol.17, 365–377 (2012). ArticleCASPubMed Google Scholar
Chauvet, C., Goldberg, S. R., Jaber, M. & Solinas, M. Effects of environmental enrichment on the incubation of cocaine craving. Neuropharmacology63, 635–641 (2012). ArticleCASPubMedPubMed Central Google Scholar
Loweth, J. A., Glynn, R. M., Rosenkranz, J. A. & Wolf, M. E. Chronic stress exposure during early withdrawal from extended access cocaine self-administration facilitates incubation of cue-induced cocaine craving. Soc. Neurosci. Abstr.41, 315.20 (2015). Google Scholar
Marchant, N. J., Kaganovsky, K., Shaham, Y. & Bossert, J. M. Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res.1628, 219–232 (2015). ArticleCASPubMed Google Scholar