Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol.13, 261–291 (1997). ArticleCASPubMed Google Scholar
Kelly, T. J. & Brown, G. W. Regulation of chromosome replication. Annu. Rev. Biochem.69, 829–880 (2000). ArticleCASPubMed Google Scholar
Prasanth, S. G., Mendez, J., Prasanth, K. V. & Stillman, B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil. Trans. R. Soc. Lond. B359, 7–16 (2004). ArticleCAS Google Scholar
Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet.35, 25–31 (2003). ArticleCASPubMed Google Scholar
Sears, R. C. & Nevins, J. R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem.277, 11617–11620 (2002). ArticleCASPubMed Google Scholar
Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol.14, 684–691 (2002). ArticleCASPubMed Google Scholar
Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene18, 7873–7882 (1999). ArticleCASPubMed Google Scholar
Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev.13, 1501–1512 (1999). ArticleCASPubMed Google Scholar
Kozar K et al. Mouse development and cell proliferation in the absence of d-cyclins. Cell118, 477–491, (2004). ArticleCASPubMed Google Scholar
Malumbres, M. et al., Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell118, 493–504, (2004). ArticleCASPubMed Google Scholar
Pavletich, N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol.287, 821–828 (1999). ArticleCASPubMed Google Scholar
Blain, S. W., Scher, H. I., Cordon-Cardo, C. & Koff, A. p27 as a target for cancer therapeutics. Cancer Cell3, 111–115 (2003). ArticleCASPubMed Google Scholar
Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev.13, 1181–1189 (1999). ArticleCASPubMedPubMed Central Google Scholar
Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature Rev. Mol. Cell. Biol.4, 855–864 (2003). ArticleADSCAS Google Scholar
Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF (Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature428, 190–193 (2004). ArticleADSCASPubMed Google Scholar
Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature428, 194–198 (2004). ArticleADSCASPubMed Google Scholar
Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell112, 423–440 (2003). ArticleCASPubMed Google Scholar
Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature (in the press).
Hsu, J. Y. et al. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC (Cdh1). Nature Cell Biol.4, 358–366 (2002). ArticleCASPubMed Google Scholar
Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature411, 1017–1021 (2001). ArticleADSCASPubMed Google Scholar
Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell116, 191–203 (2004). ArticleCASPubMed Google Scholar
Schlessinger, J. & Lemmon, M. A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE191, RE12 (2003). Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer3, 11–22 (2003). ArticleCAS Google Scholar
Coleman, M. L., Marshall, C. J. & Olson, M. F. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nature Rev. Mol. Cell Biol.5, 355–366 (2004). ArticleCAS Google Scholar
Giancotti, F. G. & Tarone, G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol.19, 173–206 (2003). ArticleCASPubMed Google Scholar
Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer2, 489–501 (2002). ArticleCAS Google Scholar
Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE172, RE5 (2003). Google Scholar
Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer4, 361–370 (2004). ArticleCAS Google Scholar
Sawyers, C. L. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev.17, 2998–3010 (2003). ArticleCASPubMed Google Scholar
Noble, M. E., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. Science303, 1800–1805 (2004). ArticleADSCASPubMed Google Scholar
Arteaga, C. L. & Baselga, J. Tyrosine kinase inhibitors; why does the current process of clinical development not apply to them? Cancer Cell5, 525–531 (2004). ArticleCASPubMed Google Scholar
Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug. Discov.3, 391–400 (2004). ArticleCAS Google Scholar
Chiosis, G. L. B., Huezo, H., Solit, D., Basso, A. & Rosen, N. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets3, 371–376 (2003). ArticleCASPubMed Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleADSCASPubMed Google Scholar
Maher, E. A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15, 1311–1333 (2001). ArticleCASPubMed Google Scholar
Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib (Iressa®) and erlotinib (Tarceva TM). Proc. Natl Acad. Sci. USA101, 13306–13311 (2004). ArticleADSCASPubMedPubMed Central Google Scholar
Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell116, 205–219 (2004). ArticleCASPubMed Google Scholar
Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science281, 1305–1308 (1998). ArticleCASPubMed Google Scholar
Kolesnick, R. & Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene22, 5897–5906 (2003). ArticleCASPubMed Google Scholar
Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer2, 647–656 (2002). ArticleCAS Google Scholar
Hu, M. C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117, 225–237 (2004). ArticleCASPubMed Google Scholar
Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science286, 1358–1362 (1999). ArticleCASPubMed Google Scholar
Barradas, M., Monjas, A., Diaz-Meco, M. T., Serrano, M. & Moscat, J. The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J.18, 6362–6369 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer4, 335–348 (2004). ArticleCAS Google Scholar
Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J.23, 833–843 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell6, 91–99 (2004). ArticleCASPubMed Google Scholar
Holland, E. C., Sonenberg, N., Pandolfi, P. P. & Thomas, G. Signaling control of mRNA translation in cancer pathogenesis. Oncogene23, 3138–3144 (2004). ArticleCASPubMed Google Scholar
Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell12, 889–901 (2003). ArticleCASPubMed Google Scholar
Wendel et al. Survival signaling by Akt and eIF4E in oncogenetics and cancer therapy. Nature428, 332–337 (2004). ArticleADSCASPubMed Google Scholar
Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med.10, 484–486 (2004). ArticleCASPubMed Google Scholar
Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol.2, 769–776 (2001). ArticleCAS Google Scholar
Jope, R. S. & Johnson, G. V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci.29, 95–102 (2004). ArticleCASPubMed Google Scholar
Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol.16, 653–699 (2000). ArticleCASPubMed Google Scholar
Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol.13, 146–150 (2003). ArticleCASPubMed Google Scholar
Seoane, J., Le, H. V. & Massagué, J. Myc suppression of the p21 (Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419, 729–734 (2002). ArticleADSCASPubMed Google Scholar
Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer2, 764–776 (2002). ArticleCAS Google Scholar
Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature Rev. Cancer3, 807–821 (2003). ArticleCAS Google Scholar
Shi, Y. & Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell113, 685–700 (2003). ArticleCASPubMed Google Scholar
Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell117, 211–23 (2004). ArticleCASPubMed Google Scholar
Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell117, 421–426 (2004). ArticleCASPubMed Google Scholar
Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nature Genet.29, 117–129 (2001). ArticleCASPubMed Google Scholar
Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl Acad. Sci. USA100, 8621–8623 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Michael, D. & Oren, M. The p53 and Mdm2 families in cancer. Curr. Opin. Genet. Dev.12, 53–59 (2002). ArticleCASPubMed Google Scholar
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem.73, 39–85 (2004). ArticleCASPubMed Google Scholar
Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer2, 594–604 (2002). ArticleCAS Google Scholar
Flores, E. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416, 560–564 (2002). ArticleADSCASPubMed Google Scholar
Senoo, M., Manis, J. P., Alt, F. W. & McKeon, F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell6, 85–89 (2004). ArticleCASPubMed Google Scholar
Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol.15, 164–171 (2003). ArticleCASPubMed Google Scholar
Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev.13, 77–83 (2003). ArticleCASPubMed Google Scholar
Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303, 2011–2015 (2004). ArticleADSCASPubMed Google Scholar
Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell116, 551–563 (2004). ArticleCASPubMed Google Scholar
So, C. W. & Cleary, M. L. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol. Cell. Biol.22, 6542–6552 (2003). ArticleCAS Google Scholar
Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol.13, 410–418 (2003). ArticleCASPubMed Google Scholar
Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev.13, 2678–2690 (1999). ArticleCASPubMedPubMed Central Google Scholar
Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature423, 302–305 (2003). ArticleADSCASPubMed Google Scholar
Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature423, 255–260 (2003). ArticleADSCASPubMed Google Scholar
Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer3, 444–451 (2003). ArticleCAS Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleADSCASPubMed Google Scholar
Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell111, 241–250 (2002). ArticleCASPubMed Google Scholar
Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science304, 1755–1759 (2004). ArticleADSCASPubMed Google Scholar
Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA100, 7331–7336 (2003). ArticleADSCASPubMedPubMed Central Google Scholar
Kerney, A. M., Cole, H. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signalling promotes proliferation in developing cerebellar granule neurone precursors. Development130, 15–28 (2003). ArticleCAS Google Scholar
Grady, W. M. & Markowitz, S. D. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet.3, 101–128 (2002). ArticleCASPubMed Google Scholar
Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature425, 846–851 (2003). ArticleADSCASPubMed Google Scholar