Maintenance and modulation of T cell polarity (original) (raw)
Gupton, S.L. et al. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. J. Cell Biol.168, 619–631 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jacobelli, J., Chmura, S.A., Buxton, D.B., Davis, M.M. & Krummel, M.F. A single class II myosin modulates T cell motility and stopping but not synapse assembly. Nat. Immunol.5, 531–538 (2004). ArticleCASPubMed Google Scholar
Wülfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science282, 2266–2269 (1998). ArticlePubMed Google Scholar
Serrador, J.M. et al. CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood91, 4632–4644 (1998). ArticleCASPubMed Google Scholar
del Pozo, M.A. et al. ICAMs redistributed by chemokines to cellular uropods as a mechanism for recruitment of T lymphocytes. J. Cell Biol.137, 493–508 (1997). ArticleCASPubMedPubMed Central Google Scholar
Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential assembly of CD3ζ and CD4 during T cell activation. Science289, 1349–1352 (2000). ArticleCASPubMed Google Scholar
Tibaldi, E.V., Salgia, R. & Reinherz, E.L. CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Proc. Natl. Acad. Sci. USA99, 7582–7587 (2002). ArticleCASPubMedPubMed Central Google Scholar
Russell, S. & Oliaro, J. Compartmentalization in T-cell signalling: membrane microdomains and polarity orchestrate signalling and morphology. Immunol. Cell Biol.84, 107–113 (2006). ArticleCASPubMed Google Scholar
Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity20, 577–588 (2004). ArticleCASPubMed Google Scholar
Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol.7, 247–255 (2006). ArticleCASPubMed Google Scholar
Roche, J.P., Packard, M.C., Moeckel-Cole, S. & Budnik, V. Regulation of synaptic plasticity and synaptic vesicle dynamics by the PDZ protein Scribble. J. Neurosci.22, 6471–6479 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science289, 113–116 (2000). ArticleCASPubMed Google Scholar
Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature423, 173–177 (2003). ArticleCASPubMed Google Scholar
Qin, Y., Capaldo, C., Gumbiner, B.M. & Macara, I.G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol.171, 1061–1071 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ludford-Menting, M.J. et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity22, 737–748 (2005). ArticleCASPubMed Google Scholar
Yamanaka, T. et al. Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr. Biol.13, 734–743 (2003). ArticleCASPubMed Google Scholar
Plant, P.J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat. Cell Biol.5, 301–308 (2003). ArticleCASPubMed Google Scholar
Betschinger, J., Mechtler, K. & Knoblich, J.A. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature422, 326–330 (2003). ArticleCASPubMed Google Scholar
del Pozo, M.A., Vicente-Manzanares, M., Tejedor, R., Serrador, J.M. & Sanchez-Madrid, F. Rho GTPases control migration and polarization of adhesion molecules and cytoskeletal ERM components in T lymphocytes. Eur. J. Immunol.29, 3609–3620 (1999). ArticleCASPubMed Google Scholar
D'Souza-Schorey, C., Boettner, B. & Van Aelst, L. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol. Cell. Biol.18, 3936–3946 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haddad, E. et al. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood97, 33–38 (2001). ArticleCASPubMed Google Scholar
Snapper, S.B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol.77, 993–998 (2005). ArticleCASPubMed Google Scholar
Weiner, O.D. et al. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLoS Biol.4, e38 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Nolz, J.C. et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol.16, 24–34 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J.22, 3602–3612 (2003). ArticleCASPubMedPubMed Central Google Scholar
Laudanna, C., Campbell, J.J. & Butcher, E.C. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science271, 981–983 (1996). ArticleCASPubMed Google Scholar
Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity13, 759–769 (2000). ArticleCASPubMed Google Scholar
Volinsky, N., Gantman, A. & Yablonski, D.A. Pak- and Pix-dependent branch of the SDF-1α signalling pathway mediates T cell chemotaxis across restrictive barriers. Biochem. J.397, 213–222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Weiss-Haljiti, C. et al. Involvement of phosphoinositide 3-kinase γ, Rac, and PAK signaling in chemokine-induced macrophage migration. J. Biol. Chem.279, 43273–43284 (2004). ArticleCASPubMed Google Scholar
Leeuwen, F.N. et al. The guanine nucleotide exchange factor Tiam1 affects neuronal morphology; opposing roles for the small GTPases Rac and Rho. J. Cell Biol.139, 797–807 (1997). ArticleCASPubMedPubMed Central Google Scholar
Palacios, F., Price, L., Schweitzer, J., Collard, J.G. & D'Souza-Schorey, C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J.20, 4973–4986 (2001). ArticleCASPubMedPubMed Central Google Scholar
Audebert, S. et al. Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr. Biol.14, 987–995 (2004). ArticleCASPubMed Google Scholar
Mathew, D. et al. Recruitment of scribble to the synaptic scaffolding complex requires GUK-holder, a novel DLG binding protein. Curr. Biol.12, 531–539 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lue, R.A., Brandin, E., Chan, E.P. & Branton, D. Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1–2 conformational unit and an alternatively spliced domain. J. Cell Biol.135, 1125–1137 (1996). ArticleCASPubMed Google Scholar
Wang, H.R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science302, 1775–1779 (2003). ArticleCASPubMed Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I.G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol.2, 531–539 (2000). ArticleCASPubMed Google Scholar
Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci.113, 3267–3275 (2000). ArticleCASPubMed Google Scholar
Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat. Cell Biol.2, 540–547 (2000). ArticleCASPubMed Google Scholar
Zhang, H. & Macara, I.G. The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat. Cell Biol.8, 227–237 (2006). ArticleCASPubMed Google Scholar
Chen, X. & Macara, I.G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol.7, 262–269 (2005). ArticleCASPubMed Google Scholar
Habets, G.G. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell77, 537–549 (1994). ArticleCASPubMed Google Scholar
Dustin, M.L., Bromley, S.K., Kan, Z., Peterson, D.A. & Unanue, E.R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA94, 3909–3913 (1997). ArticleCASPubMedPubMed Central Google Scholar
Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity4, 421–430 (1996). ArticleCASPubMed Google Scholar
Round, J.L. et al. Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J. Exp. Med.201, 419–430 (2005). ArticleCASPubMedPubMed Central Google Scholar
Faure, S. et al. ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat. Immunol.5, 272–279 (2004). ArticleCASPubMed Google Scholar
Dulyaninova, N.G., Malashkevich, V.N., Almo, S.C. & Bresnick, A.R. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry44, 6867–6876 (2005). ArticleCASPubMed Google Scholar
Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med.202, 1031–1036 (2005). ArticleCASPubMedPubMed Central Google Scholar
Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat. Immunol.6, 80–89 (2005). ArticleCASPubMed Google Scholar
Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity14, 315–329 (2001). ArticleCASPubMed Google Scholar
Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity9, 607–616 (1998). ArticleCASPubMed Google Scholar
Hanada, T., Lin, L., Chandy, K.G., Oh, S.S. & Chishti, A.H. Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J. Biol. Chem.272, 26899–26904 (1997). ArticleCASPubMed Google Scholar
Hanada, T., Lin, L., Tibaldi, E.V., Reinherz, E.L. & Chishti, A.H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem.275, 28774–28784 (2000). ArticleCASPubMed Google Scholar
Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science295, 1539–1542 (2002). ArticleCASPubMed Google Scholar
Phee, H., Abraham, R.T. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat. Immunol.6, 608–617 (2005). ArticleCASPubMed Google Scholar
Yablonski, D., Kane, L.P., Qian, D. & Weiss, A.A. Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J.17, 5647–5657 (1998). ArticleCASPubMedPubMed Central Google Scholar
Moss, W.C., Irvine, D.J., Davis, M.M. & Krummel, M.F. Quantifying signaling-induced reorientation of TCRs during immunological synapse formation. Proc. Natl. Acad. Sci. USA99, 15024–15029 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol.158, 1263–1275 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wülfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: Intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA95, 6302–6307 (1998). ArticlePubMedPubMed Central Google Scholar
Batista, A., Millan, J., Mittelbrunn, M., Sanchez-Madrid, F. & Alonso, M.A. Recruitment of transferrin receptor to immunological synapse in response to TCR engagement. J. Immunol.172, 6709–6714 (2004). ArticleCASPubMed Google Scholar
Cullinan, P., Sperling, A.I. & Burkhardt, J.K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev.189, 111–122 (2002). ArticleCASPubMed Google Scholar
Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol.6, 117–127 (2005). ArticleCAS Google Scholar
Cannon, J.L. et al. Wasp recruitment to the T cell:APC contact site occurs independently of cdc42 activation. Immunity15, 249–259 (2001). ArticleCASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell106, 489–498 (2001). ArticleCASPubMed Google Scholar
Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science302, 1218–1222 (2003). ArticleCASPubMed Google Scholar
Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating Cells. Cell121, 451–463 (2005). ArticleCASPubMed Google Scholar
Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature421, 753–756 (2003). ArticleCASPubMed Google Scholar
Etienne-Manneville, S., Manneville, J.B., Nicholls, S., Ferenczi, M.A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol.170, 895–901 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). ArticleCASPubMed Google Scholar
Ehrlich, L.I., Ebert, P.J., Krummel, M.F., Weiss, A. & Davis, M.M. Dynamics of p56lck translocation to the T cell immunological synapse following agonist and antagonist stimulation. Immunity17, 809–822 (2002). ArticleCASPubMed Google Scholar
Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci.117, 1009–1016 (2004). ArticleCASPubMed Google Scholar
Egen, J.G. & Allison, J.P. Cytotoxic T lymphocyte associated antigen (CTLA-4) accumulation in the immunological synapse is regulated by TCR signal strength. Immunity16, 23–35 (2002). ArticleCASPubMed Google Scholar
Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature431, 527–532 (2004). ArticleCASPubMed Google Scholar
Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity25, 117–127 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kirsch, K.H. et al. The adapter type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem.276, 4957–4963 (2001). ArticleCASPubMed Google Scholar
Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin-Darby canine kidney cells. Mol. Biol. Cell13, 158–168 (2002). ArticleCASPubMed Google Scholar
Zacchi, P. et al. Rab17 regulates membrane trafficking through apical recycling endosomes in polarized epithelial cells. J. Cell Biol.140, 1039–1053 (1998). ArticleCASPubMedPubMed Central Google Scholar
Terai, T., Nishimura, N., Kanda, I., Yasui, N. & Sasaki, T. JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol. Biol. Cell17, 2465–2475 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shamri, R. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat. Immunol.6, 497–506 (2005). ArticleCASPubMed Google Scholar
Friedman, R.S., Jacobelli, J. & Krummel, M.F. Surface-bound chemokines capture and prime T cells for synapse formation. Nat. Immunol.7, 1101–1108 (2006). ArticleCASPubMed Google Scholar
Mempel, T.R., Henrickson, S.E. & von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature427, 154–159 (2004). ArticleCASPubMed Google Scholar