Models, mechanisms and clinical evidence for cancer dormancy (original) (raw)
Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer4, 448–456 (2004). ArticleCAS Google Scholar
Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA100, 7737–7742 (2003). First evidence that breast cancer cells can disseminate in a far less progressed genomic state than previously thought. Genomic aberrations that make them metastatic are acquired after this step. ArticleCASPubMedPubMed Central Google Scholar
Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst.91, 80–85 (1999). ArticleCASPubMed Google Scholar
Pfitzenmaier, J. et al. Telomerase activity in disseminated prostate cancer cells. BJU Int.97, 1309–1313 (2006). ArticlePubMed Google Scholar
Weckermann, D. et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J. Urol.166, 699–703 (2001). ArticleCASPubMed Google Scholar
Talmadge, J. E., Wolman, S. R. & Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science217, 361–363 (1982). First evidence that spontaneous metastases are clonal in origin and that they probably are derived from different progenitor cells. ArticleCASPubMed Google Scholar
Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell8, 227–239 (2005). This paper genetically characterized disseminated single breast tumour cells and determined that cells with normal karyotypes can disseminate, suggesting that dissemination might occur very early. ArticleCASPubMed Google Scholar
Demicheli, R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin. Cancer Biol.11, 297–306 (2001). ArticleCASPubMed Google Scholar
Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer2, 563–572 (2002). ArticleCAS Google Scholar
Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med.56, 1001–1010 (2006). ArticlePubMed Google Scholar
Klein, C. A. & Hölzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle5, 1788–1798 (2006). ArticleCASPubMed Google Scholar
Lacroix, M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer13, 1033–1067 (2006). ArticleCASPubMed Google Scholar
Kovacs, A. F., Ghahremani, M. T., Stefenelli, U. & Bitter, K. Postoperative chemotherapy with cisplatin and 5-fluorouracil in cancer of the oral cavity and the oropharynx--long-term results. J. Chemother.15, 495–502 (2003). CASPubMed Google Scholar
Boudreau, N. & Bissell, M. J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol.10, 640–646 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wicha, M. S. Cancer stem cells and metastasis: lethal seeds. Clin. Cancer Res.12, 5606–5607 (2006). ArticlePubMed Google Scholar
Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res.64, 7336–7345 (2004). Provides evidence that spontaneous or forced downregulation of uPAR induces a state of tumor cell dormancy through decreased ERK signalling and G0–G1 arrest. ArticleCASPubMed Google Scholar
Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol.147, 89–104 (1999). ArticleCASPubMed Google Scholar
White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell6, 159–170 (2004). Provides evidence that mouse mammary epithelial cells transformed with an oncogene require β1 integrin for tumour progression. Absence of this integrin results in a state of tumour cell dormancy. ArticleCASPubMed Google Scholar
Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol.137, 231–245 (1997). Provides evidence that correcting the crosstalk between the tumour cell and the microenvironment can result in loss of malignancy associated with a more differentiated phenotype. ArticleCASPubMedPubMed Central Google Scholar
Liu, D., Aguirre Ghiso, J., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell1, 445–457 (2002). Shows that loss of uPAR expression causes tumour cell dormancy by impairing EGFR activation by integrins that transduce mitogenic signals from the extracellular matrix molecule fibronectin. ArticleCASPubMed Google Scholar
Aguirre Ghiso, J. A. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene21, 2513–2524 (2002). ArticlePubMed Google Scholar
Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell12, 863–879 (2001). ArticleCASPubMedPubMed Central Google Scholar
Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res.63, 1684–1695 (2003). CASPubMed Google Scholar
Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res.66, 1702–1711 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bulavin, D. V. & Fornace, A. J., Jr. p38 MAP kinase's emerging role as a tumor suppressor. Adv. Cancer Res.92, 95–118 (2004). ArticleCASPubMed Google Scholar
Heiss, M. M. et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nature Med.1, 1035–1039 (1995). Shows that patients with tumour relapse had an increase or higher number of disseminated tumour cells in bone marrow aspirates, whereas patients without recurrence had negative or low tumour cell counts. uPAR expression on disseminated tumour cells was correlated with increasing tumour cell counts and poor prognosis. ArticleCASPubMed Google Scholar
Gattelli, A. et al. Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods. Involvement of Wnt pathway activation. Cancer Res.64, 5193–5199 (2004). ArticleCASPubMed Google Scholar
Gattelli, A., Zimberlin, M. N., Meiss, R. P., Castilla, L. H. & Kordon, E. C. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. J. Virol.80, 11409–11415 (2006). ArticleCASPubMedPubMed Central Google Scholar
Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci.112 (Pt 12), 1835–1842 (1999). CASPubMed Google Scholar
Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res.62, 2162–2168 (2002). This paper used an experimental model to show that solitary dormant cells that persist in target organs might be the source of dormancy and recurrence. CASPubMed Google Scholar
Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer3, 55–63 (2003). ArticleCAS Google Scholar
Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D. & Salerno, M. Metastasis suppressor genes: basic biology and potential clinical use. Clin. Breast Cancer4, 51–62 (2003). ArticleCASPubMed Google Scholar
Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature Rev. Cancer6, 449–458 (2006). ArticleCAS Google Scholar
Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med.12, 933–938 (2006). ArticleCASPubMed Google Scholar
Rinker-Schaeffer, C. W., O'Keefe, J. P., Welch, D. R. & Theodorescu, D. Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin. Cancer Res.12, 3882–3889 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hickson, J. A. et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res.66, 2264–2270 (2006). ArticleCASPubMed Google Scholar
Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H. & Rinker-Schaeffer, C. W. Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J. Urol.169, 1122–1133 (2003). ArticlePubMed Google Scholar
Nash, K. T. et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl Cancer Inst.99, 309–321 (2007). First evidence that a metastasis suppressor gene functions though the induction of dormancy. ArticleCASPubMed Google Scholar
Vander Griend, D. J. et al. Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res.65, 10984–10991 (2005). ArticleCASPubMed Google Scholar
Nakayama, K. et al. Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol. Ther.5, 630–634 (2006). ArticleCASPubMed Google Scholar
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science270, 1326–1331 (1995). ArticleCASPubMed Google Scholar
Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol. Ther.5, 729–735 (2006). ArticleCASPubMed Google Scholar
Hunter, K. Host genetics influence tumour metastasis. Nature Rev. Cancer6, 141–146 (2006). ArticleCAS Google Scholar
Crawford, N. P. et al. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res.8, R16 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Park, Y. G. et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genet.37, 1055–1062 (2005). Provides evidence that constitutional genetic polymorphisms in a gene can affect tumour metastasis. ArticleCASPubMed Google Scholar
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer3, 721–732 (2003). ArticleCAS Google Scholar
Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol.29, 15–18 (2002). ArticleCASPubMed Google Scholar
Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle5, 1779–1787 (2006). ArticleCASPubMed Google Scholar
Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer3, 401–410 (2003). ArticleCASPubMed Google Scholar
Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst.98, 316–325 (2006). ArticlePubMed Google Scholar
Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell3, 219–231 (2003). ArticleCASPubMed Google Scholar
Volpert, O. V. & Alani, R. M. Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1. Cancer Cell3, 199–200 (2003). ArticleCASPubMed Google Scholar
Okajima, E. & Thorgeirsson, U. P. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem. Biophys. Res. Commun.270, 108–111 (2000). ArticleCASPubMed Google Scholar
Guba, M. et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res.61, 5575–5579 (2001). CASPubMed Google Scholar
Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl Acad. Sci. USA103, 16266–16271 (2006). ArticleCASPubMedPubMed Central Google Scholar
Indraccolo, S. et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc. Natl Acad. Sci. USA103, 4216–4221 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ruegg, C. & Mutter, N. Anti-angiogenic therapies in cancer: achievements and open questions. Bull. Cancer94, 753–762 (2007). CASPubMed Google Scholar
Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med.1, 149–153 (1995). Shows in a mouse model that the balance between apoptosis and mitosis caused by lack of vascularization can induce angiogenic dormancy. ArticleCASPubMed Google Scholar
Al-Mehdi, A. B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med.6, 100–102 (2000). Shows in a mouse model that disseminated tumour cells can start growing intravascularly into metastases, bypassing any initial need for blood vessels. ArticleCASPubMed Google Scholar
Pantel, K. & Otte, M. Disseminated tumor cells: diagnosis, prognostic relevance, and phenotyping. Recent Results Cancer Res.158, 14–24 (2001). ArticleCASPubMed Google Scholar
Finn, O. J. Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol. Res.36, 73–82 (2006). ArticleCASPubMed Google Scholar
Weinhold, K. J., Miller, D. A. & Wheelock, E. F. The tumor dormant state. Comparison of L5178Y cells used to establish dormancy with those that emerge after its termination. J. Exp. Med.149, 745–757 (1979). ArticleCASPubMed Google Scholar
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer5, 263–274 (2005). ArticleCAS Google Scholar
Weinhold, K. J., Goldstein, L. T. & Wheelock, E. F. The tumor dormant state. Quantitation of L5178Y cells and host immune responses during the establishment and course of dormancy in syngeneic DBA/2 mice. J. Exp. Med.149, 732–744 (1979). ArticleCASPubMed Google Scholar
Matsuzawa, A., Takeda, Y., Narita, M. & Ozawa, H. Survival of leukemic cells in a dormant state following cyclophosphamide-induced cure of strongly immunogenic mouse leukemia (DL811). Int. J. Cancer49, 303–309 (1991). ArticleCASPubMed Google Scholar
Rabinovsky, R., Uhr, J. W., Vitetta, E. S. & Yefenof, E. Cancer dormancy: lessons from a B cell lymphoma and adenocarcinoma of the prostate. Adv. Cancer Res.97, 189–202 (2007). ArticleCASPubMed Google Scholar
Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-g in establishing and maintaining the tumor-dormant state. J. Immunol.162, 2842–2849 (1999). CASPubMed Google Scholar
Saudemont, A. & Quesnel, B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood104, 2124–2133 (2004). ArticleCASPubMed Google Scholar
Mahnke, Y. D., Schwendemann, J., Beckhove, P. & Schirrmacher, V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology115, 325–336 (2005). ArticleCASPubMedPubMed Central Google Scholar
Feuerer, M. et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer92, 96–105 (2001). ArticleCASPubMed Google Scholar
Muller, M. et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res.58, 5439–5446 (1998). CASPubMed Google Scholar
Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature437, 141–146 (2005). ArticleCASPubMed Google Scholar
Marches, R., Scheuermann, R. H. & Uhr, J. Cancer dormancy from mice to man: a review. Cell Cycle5, 1772–1778 (2006). ArticleCASPubMed Google Scholar
Allgayer, H. et al. Urokinase plasminogen activator receptor (uPA-R.): one potential characteristic of metastatic phenotypes in minimal residual tumor disease. Cancer Res.57, 1394–1399 (1997). CASPubMed Google Scholar
Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res.10, 8152–8162 (2004). Provides evidence that patients with breast cancer who have been free of disease for 22 years still carry circulating tumour cells in their blood. It is proposed that an occult replicating population is present and sheds cells into the circulation, which eventually die. ArticlePubMed Google Scholar
Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res.12, 5615–5621 (2006). ArticleCASPubMed Google Scholar
Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol.11, 307–311 (2001). ArticleCASPubMed Google Scholar
Heiss, M. M. et al. Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance of urokinase receptor expression by disseminated tumor cells in the bone marrow. J. Clin. Oncol.20, 2005–2016 (2002). ArticleCASPubMed Google Scholar
Meng, S. et al. uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc. Natl Acad. Sci. USA103, 17361–17365 (2006). Provides evidence that circulating tumour cells and tumour tissues from patients with cancer display co-amplification of uPAR and ERBB2. ArticleCASPubMedPubMed Central Google Scholar
Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell2, 451–461 (2002). ArticleCASPubMed Google Scholar
Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell4, 199–207 (1999). ArticleCASPubMed Google Scholar
Gestl, S. A., Leonard, T. L., Biddle, J. L., Debies, M. T. & Gunther, E. J. Dormant wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Mol. Cell. Biol.27, 195–207 (2007). ArticleCASPubMed Google Scholar
Chaurasia, P. et al. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J. Biol. Chem.281, 14852–14863 (2006). ArticleCASPubMed Google Scholar
Hoyer-Hansen, G. et al. Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor. Biochem. J.358, 673–679 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science304, 1338–1340 (2004). ArticleCASPubMed Google Scholar
Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science303, 359–363 (2004). ArticleCASPubMed Google Scholar
Talpaz, M. et al. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J. Clin. Invest.94, 1383–1389 (1994). ArticleCASPubMedPubMed Central Google Scholar
Kitzis, A. et al. Persistence of transcriptionally silent BCR-ABL rearrangements in chronic myeloid leukemia patients in sustained complete cytogenetic remission. Leuk. Lymphoma42, 933–944 (2001). ArticleCASPubMed Google Scholar
Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat.82, 199–206 (2003). Provides evidence that solitary non-dividing dormant tumour cells are resistant to chemotherapy. ArticleCASPubMed Google Scholar
Schmidt, M. et al. Differential roles of p21(Waf1) and p27(Kip1) in modulating chemosensitivity and their possible application in drug discovery studies. Mol. Pharmacol.60, 900–906 (2001). ArticleCASPubMed Google Scholar
Weaver, V. M. et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell2, 205–216 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fu, Y., Li, J. & Lee, A. S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res.67, 3734–3740 (2007). ArticleCASPubMed Google Scholar
Lee, E. et al. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res.66, 7849–7853 (2006). ArticleCASPubMed Google Scholar
Pootrakul, L. et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin. Cancer Res.12, 5987–5993 (2006). ArticleCASPubMed Google Scholar
Scharenberg, C. W., Harkey, M. A. & Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood99, 507–512 (2002). ArticleCASPubMed Google Scholar
Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer5, 275–284 (2005). ArticleCAS Google Scholar
Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101, 14228–14233 (2004). ArticleCASPubMedPubMed Central Google Scholar
Roepman, P. et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nature Genet.37, 182–186 (2005). ArticleCASPubMed Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science297, 63–64 (2002). ArticleCASPubMed Google Scholar
Vessella, R. L., Pantel, K. & Mohla, S. Tumor cell dormancy: an NCI workshop report. Cancer Biol. Ther. 6 (2007).
Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer6, 472–476 (2006). ArticleCAS Google Scholar
Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nature Cell Biol.9, 493–505 (2007). ArticleCASPubMed Google Scholar
Roninson, I. B. Tumor cell senescence in cancer treatment. Cancer Res.63, 2705–2715 (2003). CASPubMed Google Scholar
Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA82, 5365–5369 (1985). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature441, 518–522 (2006). ArticleCASPubMed Google Scholar
Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006). A comprehensive gene-profiling analysis of quiescence programmes induced by three different stimuli.
Larsson, O., Zetterberg, A. & Engstrom, W. Cell-cycle-specific induction of quiescence achieved by limited inhibition of protein synthesis: counteractive effect of addition of purified growth factors. J. Cell Sci.73, 375–387 (1985). CASPubMed Google Scholar
Wang, J. & Kim, S. K. Global analysis of dauer gene expression in Caenorhabditis elegans. Development130, 1621–1634 (2003). ArticleCASPubMed Google Scholar
Koornneef, M., Bentsink, L. & Hilhorst, H. Seed dormancy and germination. Curr. Opin. Plant Biol.5, 33–36 (2002). ArticleCASPubMed Google Scholar
Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science313, 971–975 (2006). ArticleCASPubMed Google Scholar
Kondo, M. et al. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech. Ageing Dev.126, 642–647 (2005). ArticleCASPubMed Google Scholar
Fukuyama, M., Rougvie, A. E. & Rothman, J. H. C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr. Biol.16, 773–779 (2006). ArticleCASPubMed Google Scholar
Long, X. et al. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol.12, 1448–1461 (2002). ArticleCASPubMed Google Scholar
Solomon, A. et al. Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics167, 161–170 (2004). ArticleCASPubMedPubMed Central Google Scholar
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer6, 924–935 (2006). ArticleCAS Google Scholar
Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nature Rev. Cancer4, 227–235 (2004). Suggests that inducing genuine dormancy (that is, cellular dormancy) is important to prevent the tumour heterogeneity from increasing and limiting robustness of cancer as a system (that is, the ability to maintain stable functioning despite perturbations, such as therapy). ArticleCAS Google Scholar
Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell9, 605–615 (2005). ArticleCASPubMed Google Scholar
Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature448, 375–379 (2007). ArticleCASPubMed Google Scholar
Naumov, G. N., MacDonald, I. C., Chambers, A. F. & Groom, A. C. Solitary cancer cells as a possible source of tumour dormancy? Semin. Cancer Biol.11, 271–276 (2001). ArticleCASPubMed Google Scholar
Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature431, 1112–1117 (2004). ArticleCASPubMed Google Scholar
Dawson, D. W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science285, 245–248 (1999). ArticleCASPubMed Google Scholar
Kvalheim, G., Naume, B. & Nesland, J. M. Minimal residual disease in breast cancer. Cancer Metastasis Rev.18, 101–108 (1999). ArticleCASPubMed Google Scholar
Merrie, A. E., Yun, K., van Rij, A. M. & McCall, J. L. Detection and significance of minimal residual disease in colorectal cancer. Histol. Histopathol.14, 561–569 (1999). CASPubMed Google Scholar
Gath, H. J. & Brakenhoff, R. H. Minimal residual disease in head and neck cancer. Cancer Metastasis Rev.18, 109–126 (1999). ArticleCASPubMed Google Scholar
Cheung, I. Y., Feng, Y., Vickers, A., Gerald, W. & Cheung, N. K. Cyclin D1, a novel molecular marker of minimal residual disease, in metastatic neuroblastoma. J. Mol. Diagn.9, 237–241 (2007). ArticleCASPubMedPubMed Central Google Scholar
Roberts, W. M. et al. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N. Engl. J. Med.336, 317–323 (1997). ArticleCASPubMed Google Scholar
Bruggemann, M., Pott, C., Ritgen, M. & Kneba, M. Significance of minimal residual disease in lymphoid malignancies. Acta Haematol.112, 111–119 (2004). ArticlePubMed Google Scholar
Schwarzenbach, H. et al. Detection of tumor-specific DNA in blood and bone marrow plasma from patients with prostate cancer. Int. J. Cancer120, 1465–1471 (2007). ArticleCASPubMed Google Scholar
Morgan, T. M., Lange, P. H. & Vessella, R. L. Detection and characterization of circulating and disseminated prostate cancer cells. Front. Biosci.12, 3000–3009 (2007). ArticleCASPubMed Google Scholar
Pfitzenmaier, J. et al. The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol. Oncol.25, 214–220 (2007). ArticleCASPubMed Google Scholar
Kienle, P. & Koch, M. Minimal residual disease in gastrointestinal cancer. Semin. Surg. Oncol.20, 282–293 (2001). ArticleCASPubMed Google Scholar
Max, N. & Keilholz, U. Minimal residual disease in melanoma. Semin. Surg. Oncol.20, 319–328 (2001). ArticleCASPubMed Google Scholar
Blaheta, H. J. et al. Detection of melanoma cells in sentinel lymph nodes, bone marrow and peripheral blood by a reverse transcription-polymerase chain reaction assay in patients with primary cutaneous melanoma: association with Breslow's tumour thickness. Br. J. Dermatol.145, 195–202 (2001). ArticleCASPubMed Google Scholar
Hosch, S. B., Scheunemann, P. & Izbicki, J. R. Minimal residual disease in non-small-cell lung cancer. Semin. Surg. Oncol.20, 278–281 (2001). ArticleCASPubMed Google Scholar
Willeke, F. & Sturm, J. W. Minimal residual disease in soft-tissue sarcomas. Semin. Surg. Oncol.20, 294–303 (2001). ArticleCASPubMed Google Scholar