Principles and challenges of genome-wide DNA methylation analysis (original) (raw)
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell126, 1189–1201 (2006). This study provided the first comprehensive DNA methylation analysis of a eukaryotic genome using whole-genome tiling arrays on affinity-enriched DNA. CASPubMed Google Scholar
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet.39, 61–69 (2007). CASPubMed Google Scholar
Zhang, X., Shiu, S., Cal, A. & Borevitz, J. O. Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet.4, e1000032 (2008). PubMedPubMed Central Google Scholar
Jones, P. A. The DNA methylation paradox. Trends Genet.15, 34–37 (1999). CASPubMed Google Scholar
Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science315, 1141–1143 (2007). CASPubMed Google Scholar
Ball, M. P. et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotech.27, 361–368 (2009). CAS Google Scholar
Miura, A. et al. An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J.28, 1078–1086 (2009). CASPubMedPubMed Central Google Scholar
Costello, J. F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genet.24, 132–138 (2000). CASPubMed Google Scholar
Allegrucci, C. et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum. Mol. Genet.16, 1253–1268 (2007). CASPubMed Google Scholar
Kawai, J. et al. Methylation profiles of genomic DNA of mouse developmental brain detected by restriction landmark genomic scanning (RLGS) method. Nucleic Acids Res.21, 5604–5608 (1993). CASPubMedPubMed Central Google Scholar
Plass, C. et al. Identification of Grf1 on mouse chromosome 9 as an imprinted gene by RLGS-M. Nature Genet.14, 106–109 (1996). CASPubMed Google Scholar
Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl Acad. Sci. USA102, 3336–3341 (2005). CASPubMedPubMed Central Google Scholar
Hayashizaki, Y. et al. Restriction landmark genomic scanning method and its various applications. Electrophoresis14, 251–258 (1993). This study demonstrated the principle of genome-scale DNA methylation analysis using RLGS. CASPubMed Google Scholar
Hatada, I. et al. A microarray-based method for detecting methylated loci. J. Hum. Genet.47, 448–451 (2002). CASPubMed Google Scholar
Balog, R. P. et al. Parallel assessment of CpG methylation by two-color hybridization with oligonucleotide arrays. Anal. Biochem.309, 301–310 (2002). CASPubMedPubMed Central Google Scholar
van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genet.27, 304–308 (2001). CASPubMed Google Scholar
Yan, P. S. et al. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin. Cancer Res.6, 1432–1438 (2000). CASPubMed Google Scholar
Huang, T. H., Perry, M. R. & Laux, D. E. Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet.8, 459–470 (1999). CASPubMed Google Scholar
El-Osta, A. & Wolffe, A. P. Analysis of chromatin-immunopurified MeCP2-associated fragments. Biochem. Biophys. Res. Commun.289, 733–737 (2001). CASPubMed Google Scholar
Beck, S., Olek, A. & Walter, J. From genomics to epigenomics: a loftier view of life. Nature Biotech.17, 1144 (1999). CAS Google Scholar
Yan, P. S. et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res.61, 8375–8380 (2001). CASPubMed Google Scholar
Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature452, 215–219 (2008). CASPubMedPubMed Central Google Scholar
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462, 315–322 (2009). CASPubMedPubMed Central Google Scholar
Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell133, 523–536 (2008). References 22–24 provided the first single-base-pair resolution WGSBS of theA. thaliana(references 22 and 24) and human (reference 23) genomes. CASPubMedPubMed Central Google Scholar
Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotech.27, 353–360 (2009). CAS Google Scholar
Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454, 766–770 (2008). This study provided the first genome-scale single-base-pair resolution DNA methylation map of mammalian genomes by RRBS. CASPubMedPubMed Central Google Scholar
Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science324, 929–930 (2009). CASPubMedPubMed Central Google Scholar
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324, 930–935 (2009). CASPubMedPubMed Central Google Scholar
Laird, P. W. The power and the promise of DNA methylation markers. Nature Rev. Cancer3, 253–266 (2003). CAS Google Scholar
Schones, D. E. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet.9, 179–191 (2008). CASPubMed Google Scholar
Fraga, M. F. & Esteller, M. DNA methylation: a profile of methods and applications. Biotechniques33, 632–649 (2002). CASPubMed Google Scholar
Pomraning, K. R., Smith, K. M. & Freitag, M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods47, 142–150 (2009). CASPubMed Google Scholar
Callinan, P. A. & Feinberg, A. P. The emerging science of epigenomics. Hum. Mol. Genet.15, R95–R101 (2006). CASPubMed Google Scholar
Beck, S. & Rakyan, V. K. The methylome: approaches for global DNA methylation profiling. Trends Genet.24, 231–237 (2008). CASPubMed Google Scholar
Ushijima, T. Detection and interpretation of altered methylation patterns in cancer cells. Nature Rev. Cancer5, 223–231 (2005). CAS Google Scholar
Hatada, I. Emerging technologies for genome-wide DNA methylation profiling in cancer. Crit. Rev. Oncog.12, 205–223 (2006). PubMed Google Scholar
Wilson, I. M. et al. Epigenomics: mapping the methylome. Cell Cycle5, 155–158 (2006). CASPubMed Google Scholar
Lister, R. & Ecker, J. R. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res.19, 959–966 (2009). CASPubMedPubMed Central Google Scholar
Lieb, J. D. et al. Applying whole-genome studies of epigenetic regulation to study human disease. Cytogenet. Genome Res.114, 1–15 (2006). CASPubMed Google Scholar
Jacinto, F. V., Ballestar, E. & Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques44, 35–43 (2008). CASPubMed Google Scholar
Berman, B. P., Weisenberger, D. J. & Laird, P. W. Locking in on the human methylome. Nature Biotech.27, 341–342 (2009). CAS Google Scholar
Jeddeloh, J. A., Greally, J. M. & Rando, O. J. Reduced-representation methylation mapping. Genome Biol.9, 231 (2008). PubMedPubMed Central Google Scholar
Tompa, R. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr. Biol.12, 65–68 (2002). CASPubMed Google Scholar
van der Ploeg, L. H. & Flavell, R. A. DNA methylation in the human γδβ-globin locus in erythroid and nonerythroid tissues. Cell19, 947–958 (1980). CASPubMed Google Scholar
Waalwijk, C. & Flavell, R. A. DNA methylation at a CCGG sequence in the large intron of the rabbit β-globin gene: tissue-specific variations. Nucleic Acids Res.5, 4631–4634 (1978). CASPubMedPubMed Central Google Scholar
Kaput, J. & Sneider, T. W. Methylation of somatic vs germ cell DNAs analyzed by restriction endonuclease digestions. Nucleic Acids Res.7, 2303–2322 (1979). CASPubMedPubMed Central Google Scholar
Gautier, F., Bunemann, H. & Grotjahn, L. Analysis of calf-thymus satellite DNA: evidence for specific methylation of cytosine in C-G. sequences. Eur. J. Biochem.80, 175–183 (1977). CASPubMed Google Scholar
Liang, G., Gonzalgo, M. L., Salem, C. & Jones, P. A. Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods27, 150–155 (2002). CASPubMed Google Scholar
Frigola, J., Ribas, M., Risques, R. A. & Peinado, M. A. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res.30, e28 (2002). PubMedPubMed Central Google Scholar
Estecio, M. R. et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res.17, 1529–1536 (2007). CASPubMedPubMed Central Google Scholar
Toyota, M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res.59, 2307–2312 (1999). CASPubMed Google Scholar
Chung, W. et al. Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS ONE3, e2079 (2008). PubMedPubMed Central Google Scholar
Omura, N. et al. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol. Ther.7, 1146–1156 (2008). CASPubMed Google Scholar
Shen, L. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc. Natl Acad. Sci. USA104, 18654–18659 (2007). CASPubMedPubMed Central Google Scholar
Yan, P. S., Potter, D., Deatherage, D. E., Huang, T. H. & Lin, S. Differential methylation hybridization: profiling DNA methylation with a high-density CpG island microarray. Methods Mol. Biol.507, 89–106 (2009). CASPubMed Google Scholar
Cross, S. H., Charlton, J. A., Nan, X. & Bird, A. P. Purification of CpG islands using a methylated DNA binding column. Nature Genet.6, 236–244 (1994). The first demonstration of affinity enrichment of methylated DNA. CASPubMed Google Scholar
Tran, R. K. et al. DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes. Curr. Biol.15, 154–159 (2005). CASPubMed Google Scholar
Pietrobono, R. et al. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5- azadeoxycytidine. Nucleic Acids Res.30, 3278–3285 (2002). CASPubMedPubMed Central Google Scholar
Nouzova, M. et al. Epigenomic changes during leukemia cell differentiation: analysis of histone acetylation and cytosine methylation using CpG island microarrays. J. Pharmacol. Exp. Ther.311, 968–981 (2004). CASPubMed Google Scholar
Ordway, J. M. et al. Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE2, e1314 (2007). PubMedPubMed Central Google Scholar
Ordway, J. M. et al. Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. Carcinogenesis27, 2409–2423 (2006). CASPubMed Google Scholar
Irizarry, R. A. et al. Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res.18, 780–790 (2008). CASPubMedPubMed Central Google Scholar
Ibrahim, A. E. et al. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res.34, e136 (2006). PubMedPubMed Central Google Scholar
Schumacher, A. et al. Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res.34, 528–542 (2006). CASPubMedPubMed Central Google Scholar
Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res.16, 1046–1055 (2006). CASPubMedPubMed Central Google Scholar
Oda, M. et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res.37, 3829–3839 (2009). CASPubMedPubMed Central Google Scholar
Brunner, A. L. et al. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res.19, 1044–1056 (2009). CASPubMedPubMed Central Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816 (2007). CASPubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). CASPubMed Google Scholar
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448, 553–560 (2007). CASPubMedPubMed Central Google Scholar
Guccione, E. et al. Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature449, 933–937 (2007). CASPubMed Google Scholar
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell130, 77–88 (2007). ArticleCASPubMedPubMed Central Google Scholar
Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods4, 651–657 (2007). CASPubMed Google Scholar
Mukhopadhyay, R. et al. The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res.14, 1594–1602 (2004). CASPubMedPubMed Central Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet.39, 457–466 (2007). CASPubMed Google Scholar
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet.37, 853–862 (2005). CASPubMed Google Scholar
Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet.38, 149–153 (2006). References 76–78 provided the first genome-wide analyses of mammalian genomes using affinity enrichment of methylated DNA. CASPubMed Google Scholar
Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet.4, e1000116 (2008). PubMedPubMed Central Google Scholar
Fouse, S. D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell2, 160–169 (2008). CASPubMedPubMed Central Google Scholar
Dindot, S. V., Person, R., Strivens, M., Garcia, R. & Beaudet, A. L. Epigenetic profiling at mouse imprinted gene clusters reveals novel epigenetic and genetic features at differentially methylated regions. Genome Res.19, 1374–1383 (2009). CASPubMedPubMed Central Google Scholar
Hayashi, H. et al. High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum. Genet.120, 701–711 (2007). CASPubMed Google Scholar
Cheng, A. S. et al. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res.68, 1786–1796 (2008). CASPubMedPubMed Central Google Scholar
Gal-Yam, E. N. et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl Acad. Sci. USA105, 12979–12984 (2008). PubMedPubMed Central Google Scholar
Koga, Y. et al. Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res.19, 1462–1470 (2009). CASPubMedPubMed Central Google Scholar
Straussman, R. et al. Developmental programming of CpG island methylation profiles in the human genome. Nature Struct. Mol. Biol.16, 564–571 (2009). CAS Google Scholar
Down, T. A. et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotech.26, 779–785 (2008). CAS Google Scholar
Gebhard, C. et al. Rapid and sensitive detection of CpG-methylation using methyl-binding (MB)-PCR. Nucleic Acids Res.34, e82 (2006). PubMedPubMed Central Google Scholar
Gebhard, C. et al. Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res.66, 6118–6128 (2006). CASPubMed Google Scholar
Schmidl, C. et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res.19, 1165–1174 (2009). CASPubMedPubMed Central Google Scholar
Jorgensen, H. F., Adie, K., Chaubert, P. & Bird, A. P. Engineering a high-affinity methyl-CpG-binding protein. Nucleic Acids Res.34, e96 (2006). PubMedPubMed Central Google Scholar
Rauch, T. & Pfeifer, G. P. Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab. Invest.85, 1172–1180 (2005). CASPubMed Google Scholar
Rauch, T. A. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc. Natl Acad. Sci. USA105, 252–257 (2008). CASPubMed Google Scholar
Ballestar, E. et al. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J.22, 6335–6345 (2003). CASPubMedPubMed Central Google Scholar
Hayatsu, H. Discovery of bisulfite-mediated cytosine conversion to uracil, the key reaction for DNA methylation analysis — a personal account. Proc. Jpn Acad. Ser. B Phys. Biol. Sci.84, 321–330 (2008). CASPubMedPubMed Central Google Scholar
Wang, R. Y., Gehrke, C. W. & Ehrlich, M. Comparison of bisulfite modification of 5-methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res.8, 4777–4790 (1980). CASPubMedPubMed Central Google Scholar
Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA89, 1827–1831 (1992). Although differential deamination of methylated and unmethylated cytosine residues had been described previously, this study provided a practical demonstration of the technique for the analysis of DNA methylation at the single-base-pair level using PCR amplification. CASPubMedPubMed Central Google Scholar
Clark, S. J., Harrison, J., Paul, C. L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.22, 2990–2997 (1994). CASPubMedPubMed Central Google Scholar
Paul, C. L. & Clark, S. J. Cytosine methylation: quantitation by automated genomic sequencing and GENESCAN analysis. Biotechniques21, 126–133 (1996). CASPubMed Google Scholar
Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet.38, 1378–1385 (2006). The first example of 'brute force' bisulphite Sanger sequencing of many targets in mammalian genomes. CASPubMed Google Scholar
Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res.30, e21 (2002). PubMedPubMed Central Google Scholar
Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. & Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res.12, 158–164 (2002). CASPubMedPubMed Central Google Scholar
Reinders, J. et al. Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion. Genome Res.18, 469–476 (2008). CASPubMedPubMed Central Google Scholar
Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res.16, 383–393 (2006). CASPubMedPubMed Central Google Scholar
Bibikova, M. et al. Human embryonic stem cells have a unique epigenetic signature. Genome Res.16, 1075–1083 (2006). CASPubMedPubMed Central Google Scholar
Bibikova, M. & Fan, J. B. GoldenGate assay for DNA methylation profiling. Methods Mol. Biol.507, 149–163 (2009). CASPubMed Google Scholar
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature455, 1061–1068 (2008).
Byun, H. M. et al. Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum. Mol. Genet.18, 4808–4817 (2009). CASPubMedPubMed Central Google Scholar
Ladd-Acosta, C. et al. DNA methylation signatures within the human brain. Am. J. Hum. Genet.81, 1304–1315 (2007). CASPubMedPubMed Central Google Scholar
Katari, S. et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet.18, 3769–3778 (2009). CASPubMedPubMed Central Google Scholar
Martinez, R. et al. A microarray-based DNA methylation study of glioblastoma multiforme. Epigenetics4, 255–264 (2009). CASPubMed Google Scholar
Christensen, B. C. et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet.5, e1000602 (2009). PubMedPubMed Central Google Scholar
Houseman, E. A. et al. Model-based clustering of DNA methylation array data: a recursive- partitioning algorithm for high-dimensional data arising as a mixture of β distributions. BMC Bioinformatics9, 365 (2008). PubMedPubMed Central Google Scholar
Hinoue, T. et al. Analysis of the association between CIMP and BRAFV600E in colorectal cancer by DNA methylation profiling. PLoS ONE4, e8357 (2009). PubMedPubMed Central Google Scholar
Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics1, 177–200 (2009). CASPubMed Google Scholar
Steemers, F. J. & Gunderson, K. L. Whole genome genotyping technologies on the BeadArray platform. Biotechnol. J.2, 41–49 (2007). CASPubMed Google Scholar
Korshunova, Y. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res.18, 19–29 (2008). CASPubMedPubMed Central Google Scholar
Taylor, K. H. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res.67, 8511–8518 (2007). CASPubMed Google Scholar
Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res.33, 5868–5877 (2005). CASPubMedPubMed Central Google Scholar
Hodges, E. et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. _Genome Res._6 Jul 2009 (doi: 10.1101/gr.095190.109). CASPubMedPubMed Central Google Scholar
Li, J. B. et al. Multiplex padlock targeted sequencing reveals human hypermutable CpG variations. Genome Res.19, 1606–1615 (2009). PubMedPubMed Central Google Scholar
Dunn, J. J., McCorkle, S. R., Everett, L. & Anderson, C. W. Paired-end genomic signature tags: a method for the functional analysis of genomes and epigenomes. Genet. Eng. (NY)28, 159–173 (2007). CAS Google Scholar
Dempsey, M. P. et al. Paired-end sequence mapping detects extensive genomic rearrangement and translocation during divergence of Francisella tularensis subsp. tularensis and Francisella tularensis subsp. holarctica populations. J. Bacteriol.188, 5904–5914 (2006). CASPubMedPubMed Central Google Scholar
Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science318, 420–426 (2007). CASPubMedPubMed Central Google Scholar
Tost, J., Schatz, P., Schuster, M., Berlin, K. & Gut, I. G. Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res.31, e50 (2003). PubMedPubMed Central Google Scholar
Ehrich, M. et al. Cytosine methylation profiling of cancer cell lines. Proc. Natl Acad. Sci. USA105, 4844–4849 (2008). CASPubMedPubMed Central Google Scholar
Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl Acad. Sci. USA102, 15785–15790 (2005). CASPubMedPubMed Central Google Scholar
Docherty, S. J., Davis, O. S., Haworth, C. M., Plomin, R. & Mill, J. Bisulfite-based epityping on pooled genomic DNA provides an accurate estimate of average group DNA methylation. Epigenetics Chromatin2, 3 (2009). PubMedPubMed Central Google Scholar
Killian, J. K. et al. Large-scale profiling of archival lymph nodes reveals pervasive remodeling of the follicular lymphoma methylome. Cancer Res.69, 758–764 (2009). CASPubMedPubMed Central Google Scholar
Tetzner, R. Prevention of PCR cross-contamination by UNG treatment of bisulfite-treated DNA. Methods Mol. Biol.507, 357–370 (2009). CASPubMed Google Scholar
Tetzner, R., Dietrich, D. & Distler, J. Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res.35, e4 (2007). PubMed Google Scholar
Dohm, J. C., Lottaz, C., Borodina, T. & Himmelbauer, H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res.36, e105 (2008). PubMedPubMed Central Google Scholar
Warnecke, P. M. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res.25, 4422–4426 (1997). CASPubMedPubMed Central Google Scholar
Campan, M., Weisenberger, D. J., Trinh, B. & Laird, P. W. MethyLight. Methods Mol. Biol.507, 325–337 (2009). CASPubMed Google Scholar
Weisenberger, D. J. et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res.33, 6823–6836 (2005). CASPubMedPubMed Central Google Scholar
Kerkel, K. et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet.40, 904–908 (2008). CASPubMed Google Scholar
Houseman, E. A. et al. Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics25, 1999–2005 (2009). CASPubMedPubMed Central Google Scholar
Siegmund, K. D., Marjoram, P., Woo, Y. J., Tavare, S. & Shibata, D. Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc. Natl Acad. Sci. USA106, 4828–4833 (2009). CASPubMedPubMed Central Google Scholar
Fatemi, M. et al. Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res.33, e176 (2005). PubMedPubMed Central Google Scholar
Weisenberger, D. J. et al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res.36, 4689–4698 (2008). CASPubMedPubMed Central Google Scholar
Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nature Biotech.27, 858–863 (2009). Google Scholar
Chhibber, A. & Schroeder, B. G. Single-molecule polymerase chain reaction reduces bias: application to DNA methylation analysis by bisulfite sequencing. Anal. Biochem.377, 46–54 (2008). CASPubMed Google Scholar
Bock, C. & Lengauer, T. Computational epigenetics. Bioinformatics24, 1–10 (2008). CASPubMed Google Scholar
Pennisi, E. Research funding. Are epigeneticists ready for big science? Science319, 1177 (2008). PubMed Google Scholar
Jones, P. A. et al. Moving AHEAD with an international human epigenome project. Nature454, 711–715 (2008). CAS Google Scholar
Pushkarev, D., Neff, N. F. & Quake, S. R. Single-molecule sequencing of an individual human genome. Nature Biotech.27, 847–852 (2009). CAS Google Scholar
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). CASPubMed Google Scholar
Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotech.26, 1146–1153 (2008). CAS Google Scholar
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnol.4, 265–270 (2009). CAS Google Scholar
Model, F., Adorjan, P., Olek, A. & Piepenbrock, C. Feature selection for DNA methylation based cancer classification. Bioinformatics17, S157–S164 (2001). PubMed Google Scholar
Rohde, C. et al. Bisulfite sequencing Data Presentation and Compilation (BDPC) web server — a useful tool for DNA methylation analysis. Nucleic Acids Res.36, e34 (2008). PubMedPubMed Central Google Scholar
Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics10, 232 (2009). PubMedPubMed Central Google Scholar
Xu, Y. H., Manoharan, H. T. & Pitot, H. C. CpG Analyzer, a Windows-based utility program for investigation of DNA methylation. Biotechniques39, 656–662 (2005). CASPubMed Google Scholar
Hackenberg, M. et al. CpGcluster: a distance-based algorithm for CpG-island detection. BMC Bioinformatics7, 446 (2006). PubMedPubMed Central Google Scholar
Wang, Y. & Leung, F. C. An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics20, 1170–1177 (2004). CASPubMed Google Scholar
Takai, D. & Jones, P. A. The CpG Island Searcher: a new WWW resource. In Silico Biol.3, 235–240 (2003). CASPubMed Google Scholar
Xu, Y. H., Manoharan, H. T. & Pitot, H. C. CpG PatternFinder: a Windows-based utility program for easy and rapid identification of the CpG methylation status of DNA. Biotechniques43, 334–342 (2007). CASPubMed Google Scholar
Ioshikhes, I. P. & Zhang, M. Q. Large-scale human promoter mapping using CpG islands. Nature Genet.26, 61–63 (2000). CASPubMed Google Scholar
Carr, I. M., Valleley, E. M., Cordery, S. F., Markham, A. F. & Bonthron, D. T. Sequence analysis and editing for bisulphite genomic sequencing projects. Nucleic Acids Res.35, e79 (2007). PubMedPubMed Central Google Scholar
Hetzl, J., Foerster, A. M., Raidl, G. & Mittelsten Scheid, O. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J.51, 526–536 (2007). CASPubMed Google Scholar
Pelizzola, M. et al. MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res.18, 1652–1659 (2008). CASPubMedPubMed Central Google Scholar
Pattyn, F. et al. methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics7, 496 (2006). PubMedPubMed Central Google Scholar
Grunau, C., Renault, E., Rosenthal, A. & Roizes, G. MethDB — a public database for DNA methylation data. Nucleic Acids Res.29, 270–274 (2001). CASPubMedPubMed Central Google Scholar
Grunau, C., Renault, E. & Roizes, G. DNA Methylation Database 'MethDB': a user guide. J. Nutr.132, 2435S–2439S (2002). CASPubMed Google Scholar
Amoreira, C., Hindermann, W. & Grunau, C. An improved version of the DNA methylation database (MethDB). Nucleic Acids Res.31, 75–77 (2003). CASPubMedPubMed Central Google Scholar
Negre, V. & Grunau, C. The MethDB DAS server: adding an epigenetic information layer to the human genome. Epigenetics1, 101–105 (2006). PubMed Google Scholar
Li, L. C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics18, 1427–1431 (2002). CASPubMed Google Scholar
Grunau, C., Schattevoy, R., Mache, N. & Rosenthal, A. MethTools — a toolbox to visualize and analyze DNA methylation data. Nucleic Acids Res.28, 1053–1058 (2000). CASPubMedPubMed Central Google Scholar
He, X. et al. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res.36, D836–D841 (2008). CASPubMed Google Scholar
Rakyan, V. K. et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res.18, 1518–1529 (2008). CASPubMedPubMed Central Google Scholar
Ongenaert, M. et al. PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res.36, D842–D846 (2008). CASPubMed Google Scholar
Kumaki, Y., Oda, M. & Okano, M. QUMA: quantification tool for methylation analysis. Nucleic Acids Res.36, W170–W175 (2008). CASPubMedPubMed Central Google Scholar