Cytokine networks in neuroinflammation (original) (raw)
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context ofan inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity.24, 179–189 (2006). ArticleCASPubMed Google Scholar
Korn, T. et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA105, 18460–18465 (2008). ArticlePubMed Google Scholar
Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol.3, 569–581 (2003). ArticleCASPubMed Google Scholar
Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci.16, 358–372 (2015). ArticleCASPubMed Google Scholar
Hatta, T., Moriyama, K., Nakashima, K., Taga, T. & Otani, H. The Role of gp130 in cerebral cortical development: in vivo functional analysis in a mouse ex utero system. J. Neurosci.22, 5516–5524 (2002). This paper reveals the role for cytokine receptor signalling, in particular gp130, in mammalian brain development. ArticleCASPubMedPubMed Central Google Scholar
Boulanger, L. M. Immune proteins in brain development and synaptic plasticity. Neuron64, 93–109 (2009). ArticleCASPubMed Google Scholar
Adachi, T., Takanaga, H., Kunimoto, M. & Asou, H. Influence of LIF and BMP-2 on differentiation and development of glial cells in primary cultures of embryonic rat cerebral hemisphere. J. Neurosci. Res.79, 608–615 (2005). ArticleCASPubMed Google Scholar
Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron48, 253–265 (2005). ArticleCASPubMed Google Scholar
Gregg, C. & Weiss, S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development132, 565–578 (2005). ArticleCASPubMed Google Scholar
Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity37, 1050–1060 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol.13, 753–760 (2012). References 12 and 13 appeared in the same year and described the role of IL-34 in microglia maintenance. They differ, however, in their interpretation of the impact of IL-34 on embryonic microglia development. ArticleCASPubMedPubMed Central Google Scholar
Mizuno, T. et al. Interleukin-34 selectively enhances the neuroprotective effects of microglia to attenuate oligomeric amyloid-beta neurotoxicity. Am. J. Pathol.179, 2016–2027 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science330, 841–845 (2010). This is a seminal study solidifying that microglia are not bone marrow-derived cells, but instead stem from yolk sac macrophages early during development and are not replenished. ArticleCASPubMedPubMed Central Google Scholar
Jin, S. et al. Interleukin-34 restores blood-brain barrier integrity by upregulating tight junction proteins in endothelial cells. PLoS ONE9, e115981 (2014). ArticleCASPubMedPubMed Central Google Scholar
Streit, W. J. & Graeber, M. B. Heterogeneity of microglial and perivascular cell populations: insights gained from the facial nucleus paradigm. Glia7, 68–74 (1993). ArticleCASPubMed Google Scholar
Waisman, A., Liblau, R. S. & Becher, B. Innate and adaptive immune responses in the CNS. Lancet Neurol.14, 945–955 (2015). ArticleCASPubMed Google Scholar
Walsh, J. G., Muruve, D. A. & Power, C. Inflammasomes in the CNS. Nat. Rev. Neurosci.15, 84–97 (2014). ArticleCASPubMed Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). ArticleCASPubMed Google Scholar
Crehan, H., Hardy, J. & Pocock, J. Microglia, Alzheimer's disease, and complement. Int. J. Alzheimers Dis.2012, 983640 (2012). PubMedPubMed Central Google Scholar
Moore, K. J. et al. A CD36-initiated signaling cascade mediates inflammatory effects of β-amyloid. J. Biol. Chem.277, 47373–47379 (2002). ArticleCASPubMed Google Scholar
Lue, L. F. et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol.171, 29–45 (2001). ArticleCASPubMed Google Scholar
Griffin, W. S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA86, 7611–7615 (1989). ArticleCASPubMed Google Scholar
Patel, N. S. et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. J. Neuroinflamm.2, 9 (2005). ArticleCAS Google Scholar
Gadani, S. P., Walsh, J. T., Smirnov, I., Zheng, J. & Kipnis, J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron85, 703–709 (2015). This paper demonstrates that cytokines stored in CNS-resident cells can act as alarmins and trigger reparative immune responses. ArticleCASPubMed Google Scholar
Schwartz, M., Kipnis, J., Rivest, S. & Prat, A. How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci.33, 17587–17596 (2013). ArticleCASPubMedPubMed Central Google Scholar
Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci.14, 1227–1235 (2011). ArticleCASPubMed Google Scholar
Chakrabarty, P. et al. Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J.24, 548–559 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarty, P., Herring, A., Ceballos-Diaz, C., Das, P. & Golde, T. E. Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol. Neurodegener.6, 16 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fillit, H. et al. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci. Lett.129, 318–320 (1991). ArticleCASPubMed Google Scholar
Cheng, X., Yang, L., He, P., Li, R. & Shen, Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer's disease and non-demented patients. J. Alzheimers Dis.19, 621–630 (2010). ArticleCASPubMedPubMed Central Google Scholar
Butchart, J. et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology84, 2161–2168 (2015). A clinical trial of neutralizing TNF in Alzheimer disease. ArticleCASPubMedPubMed Central Google Scholar
Ghosh, S. et al. Sustained interleukin-1β overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer's mouse model. J. Neurosci.33, 5053–5064 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shaftel, S. S. et al. Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J. Neurosci.27, 9301–9309 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kitazawa, M. et al. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer's disease model. J. Immunol.187, 6539–6549 (2011). ArticleCASPubMedPubMed Central Google Scholar
He, P. et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice. J. Cell Biol.178, 829–841 (2007). ArticleCASPubMedPubMed Central Google Scholar
Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature493, 674–678 (2013). Demonstration of inflammasome activation in a mouse model of Alzheimer disease. ArticleCASPubMed Google Scholar
Vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med.18, 1812–1819 (2012). ArticleCASPubMed Google Scholar
Ribizzi, G., Fiordoro, S., Barocci, S., Ferrari, E. & Megna, M. Cytokine polymorphisms and Alzheimer disease: possible associations. Neurol. Sci.31, 321–325 (2010). ArticleCASPubMed Google Scholar
Papassotiropoulos, A. et al. A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann. Neurol.45, 666–668 (1999). ArticleCASPubMed Google Scholar
Yu, J. T. et al. Interleukin-18 promoter polymorphisms and risk of late onset Alzheimer's disease. Brain Res.1253, 169–175 (2009). ArticleCASPubMed Google Scholar
Ben-Nun, A., Wekerle, H. & Cohen, I. R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature292, 60–61 (1981). ArticleCASPubMed Google Scholar
The International Multiple Sclerosis Genetics Consortium & The Welcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature476, 214–219 (2011).
Kothur, K., Wienholt, L., Brilot, F. & Dale, R. C. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine77, 227–237 (2016). ArticleCASPubMed Google Scholar
Gutcher, I. & Becher, B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest.117, 1119–1127 (2007). ArticleCASPubMedPubMed Central Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity.13, 715–725 (2000). ArticleCASPubMed Google Scholar
Segal, B. M. & Shevach, E. M. IL-12 unmasks latent autoimmune disease in resistant mice. J. Exp. Med.184, 771–775 (1996). ArticleCASPubMed Google Scholar
Becher, B., Durell, B. G. & Noelle, R. J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Investig.110, 493–497 (2002). This is the first report showing that IL-23 and not IL-12 is required for the pathogenesis of EAE. ArticleCASPubMed Google Scholar
Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). Formal demonstration that the IL-23p19 subunit is mandatory for EAE development. ArticleCASPubMed Google Scholar
Li, Y. et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain130, 490–501 (2007). ArticlePubMed Google Scholar
Eugster, H. P., Frei, K., Kopf, M., Lassmann, H. & Fontana, A. IL-6-deficient mice resist myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. Eur. J. Immunol.28, 2178–2187 (1998). ArticleCASPubMed Google Scholar
Sonderegger, I. et al. GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J. Exp. Med.205, 2281–2294 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vahedi, G., Kanno, Y., Sartorelli, V. & O'Shea, J. J. Transcription factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology139, 294–298 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pepper, M. et al. Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells. Nat. Immunol.11, 83–89 (2010). This report demonstrates that TH17 cell polarization is short-lived and that TH17 cells do not form memory populations. ArticleCASPubMed Google Scholar
Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature523, 221–225 (2015). ArticleCASPubMedPubMed Central Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). This paper shows that IL-23 induces a THcell polarization distinct from TH1 cells and that IL-23 induces expression ofIl17a, among other genes. ArticleCASPubMedPubMed Central Google Scholar
Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol.179, 8098–8104 (2007). ArticleCASPubMed Google Scholar
Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol.12, 560–567 (2011). This report shows that T cells must produce GM-CSF to be encephalitogenic. ArticleCASPubMed Google Scholar
Sabat, R., Ouyang, W. & Wolk, K. Therapeutic opportunities of the IL-22-IL-22R1 system. Nat. Rev. Drug Discov.13, 21–38 (2014). ArticleCASPubMed Google Scholar
Miossec, P. & Kolls, J. K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov.11, 763–776 (2012). ArticleCASPubMed Google Scholar
Perriard, G. et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J. Neuroinflamm.12, 119 (2015). ArticleCAS Google Scholar
Das Sarma, J. et al. Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis. J. Neuroinflamm.6, 14 (2009). ArticleCAS Google Scholar
Waisman, A., Hauptmann, J. & Regen, T. The role of IL-17 in CNS diseases. Acta Neuropathol.129, 625–637 (2015). ArticleCASPubMed Google Scholar
Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest.119, 61–69 (2009). CASPubMed Google Scholar
Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol.177, 566–573 (2006). ArticleCASPubMed Google Scholar
Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med.13, 1173–1175 (2007). ArticleCASPubMedPubMed Central Google Scholar
Huppert, J. et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J.24, 1023–1034 (2010). ArticleCASPubMed Google Scholar
Simmons, S. B., Liggitt, D. & Goverman, J. M. Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during experimental autoimmune encephalomyelitis. J. Immunol.193, 555–563 (2014). This report shows that neutrophils are differentially required to mediate tissue damage in the brain but not in the spinal cord, highlighting the difference in response to inflammatory cells in these CNS microenvironments. ArticleCASPubMedPubMed Central Google Scholar
Kang, Z. et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity32, 414–425 (2010). ArticleCASPubMedPubMed Central Google Scholar
Renauld, J. C. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat. Rev. Immunol.3, 667–676 (2003). ArticleCASPubMed Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). ArticleCASPubMed Google Scholar
Duarte, J. H., Di Meglio, P., Hirota, K., Ahlfors, H. & Stockinger, B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS ONE8, e79819 (2013). ArticleCASPubMedPubMed Central Google Scholar
Panitch, H. S., Hirsch, R. L., Schindler, J. & Johnson, K. P. Treatment of multiple sclerosis with γ interferon: exacerbations associated with activation of the immune system. Neurology37, 1097–1102 (1987). An early multiple sclerosis trial showing that treatment with IFNγexacerbates disease. ArticleCASPubMed Google Scholar
Ottum, P. A., Arellano, G., Reyes, L. I., Iruretagoyena, M. & Naves, R. Opposing roles of interferon-γ on cells of the central nervous system in autoimmune neuroinflammation. Front. Immunol.6, 539 (2015). ArticleCASPubMedPubMed Central Google Scholar
Simmons, R. D. & Willenborg, D. O. Direct injection of cytokines into the spinal-cord causes autoimmune encephalomyelitis-like inflammation. J. Neurol. Sci.100, 37–42 (1990). ArticleCASPubMed Google Scholar
Sethna, M. P. & Lampson, L. A. Immune modulation within the brain – recruitment of inflammatory cells and increased major histocompatibility antigen expression following intracerebral injection of interferon-γ. J. Neuroimmunol.34, 121–132 (1991). ArticleCASPubMed Google Scholar
Billiau, A. et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-γ. J. Immunol.140, 1506–1510 (1988). CASPubMed Google Scholar
Steinman, L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med.13, 139–145 (2007). ArticleCASPubMed Google Scholar
Naves, R. et al. The interdependent, overlapping, and differential roles of type I and II IFNs in the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol.191, 2967–2977 (2013). ArticleCASPubMedPubMed Central Google Scholar
Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6, 1123–1132 (2005). ArticleCASPubMed Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6, 1133–1141 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wang, Z. et al. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. J. Clin. Invest.116, 2434–2441 (2006). CASPubMedPubMed Central Google Scholar
Chin, Y. E., Kitagawa, M., Kuida, K., Flavell, R. A. & Fu, X. Y. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol. Cell. Biol.17, 5328–5337 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kwidzinski, E. et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J.19, 1347–1349 (2005). ArticleCASPubMed Google Scholar
Lin, W. et al. The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. J. Clin. Invest.117, 448–456 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ding, X. et al. Silencing IFN-γ binding/signaling in astrocytes versus microglia leads to opposite effects on central nervous system autoimmunity. J. Immunol.194, 4251–4264 (2015). ArticleCASPubMedPubMed Central Google Scholar
Hindinger, C. et al. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability. PLoS ONE7, e42088 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ni, C. et al. Interferon-γ safeguards blood-brain barrier during experimental autoimmune encephalomyelitis. Am. J. Pathol.184, 3308–3320 (2014). ArticleCASPubMed Google Scholar
Sosa, R. A., Murphey, C., Robinson, R. R. & Forsthuber, T. G. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation. Proc. Natl Acad. Sci. USA112, E5038–E5047 (2015). ArticleCASPubMed Google Scholar
Wensky, A. K. et al. IFN-γ determines distinct clinical outcomes in autoimmune encephalomyelitis. J. Immunol.174, 1416–1423 (2005). ArticleCASPubMed Google Scholar
Lees, J. R., Golumbek, P. T., Sim, J., Dorsey, D. & Russell, J. H. Regional CNS responses to IFN-γ determine lesion localization patterns during EAE pathogenesis. J. Exp. Med.205, 2633–2642 (2008). ArticleCASPubMedPubMed Central Google Scholar
Baruch, K. et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer's disease. Nat. Med.22, 135–137 (2016). ArticleCASPubMed Google Scholar
Browne, T. C. et al. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J. Immunol.190, 2241–2251 (2013). ArticleCASPubMed Google Scholar
Beck, J. et al. Increased production of interferon γ and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol. Scand.78, 318–323 (1988). ArticleCASPubMed Google Scholar
Rieckmann, P. et al. Tumor necrosis factor-α messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann. Neurol.37, 82–88 (1995). ArticleCASPubMed Google Scholar
Hovelmeyer, N. et al. Apoptosis of oligodendrocytes via Fas and TNF-R1 is a key event in the induction of experimental autoimmune encephalomyelitis. J. Immunol.175, 5875–5884 (2005). ArticlePubMed Google Scholar
Korn, T., Magnus, T. & Jung, S. Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-α. FASEB J.19, 1878–1880 (2005). ArticleCASPubMed Google Scholar
Rosenman, S. J., Shrikant, P., Dubb, L., Benveniste, E. N. & Ransohoff, R. M. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J. Immunol.154, 1888–1899 (1995). CASPubMed Google Scholar
Benveniste, E. N., Sparacio, S. M. & Bethea, J. R. Tumor necrosis factor-alpha enhances interferon-γ-mediated class II antigen expression on astrocytes. J. Neuroimmunol.25, 209–219 (1989). ArticleCASPubMed Google Scholar
Agresti, C. et al. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-γ and TNF-α in oligodendrocytes. Eur. J. Neurosci.10, 2975–2983 (1998). ArticleCASPubMed Google Scholar
The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology53, 457–465 (1999). This report of a clinical trial shows that TNF-blockade exacerbates multiple sclerosis.
Mohan, N. et al. Demyelination occurring during anti-tumor necrosis factor α therapy for inflammatory arthritides. Arthritis Rheum.44, 2862–2869 (2001). ArticleCASPubMed Google Scholar
Eugster, H. P. et al. Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur. J. Immunol.29, 626–632 (1999). ArticleCASPubMed Google Scholar
Suvannavejh, G. C. et al. Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG(35–55)-induced experimental autoimmune encephalomyelitis. Cell. Immunol.205, 24–33 (2000). ArticleCASPubMed Google Scholar
Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol.13, 349–361 (2013). ArticleCASPubMedPubMed Central Google Scholar
Naegele, M. et al. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J. Neuroimmunol.242, 60–71 (2012). ArticleCASPubMed Google Scholar
Rumble, J. M. et al. Neutrophil-related factors as biomarkers in EAE and MS. J. Exp. Med.212, 23–35 (2015). This report suggests a role of CNS-invading neutrophils in neuroinflammation. ArticleCASPubMedPubMed Central Google Scholar
Pierson, E. R., Wagner, C. A. & Goverman, J. M. The contribution of neutrophils to CNS autoimmunity. Clin. Immunol. doi:10.1016/j.clim.2016.06.017 (2016).
McQualter, J. L. et al. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med.194, 873–882 (2001). The first paper showing that mice lacking GM-CSF are resistant to the development of EAE. ArticleCASPubMedPubMed Central Google Scholar
El-Behi, M. et al. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol.12, 568–575 (2011). ArticleCASPubMedPubMed Central Google Scholar
Croxford, A. L., Spath, S. & Becher, B. GM-CSF in neuroinflammation: licensing myeloid cells for tissue damage. Trends Immunol.36, 651–662 (2015). ArticleCASPubMed Google Scholar
Reynolds, B. C. et al. Exposure to inflammatory cytokines selectively limits GM-CSF production by induced T regulatory cells. Eur. J. Immunol.44, 3342–3352 (2014). ArticleCASPubMedPubMed Central Google Scholar
Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2(+) monocytes and licenses autoimmunity. Immunity43, 502–514 (2015). This paper shows that GM-CSF-produced by encephalitogenic T cells targets monocytes to develop into pathogenic-tissue invading phagocytes. ArticleCASPubMed Google Scholar
Huang, D. R., Wang, J., Kivisakk, P., Rollins, B. J. & Ransohoff, R. M. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J. Exp. Med.193, 713–726 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain132, 2487–2500 (2009). This report shows that monocytes are crucial for the development of EAE. ArticlePubMed Google Scholar
Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. & Luster, A. D. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med.192, 1075–1080 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fife, B. T., Huffnagle, G. B., Kuziel, W. A. & Karpus, W. J. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med.192, 899–905 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gaupp, S., Pitt, D., Kuziel, W. A., Cannella, B. & Raine, C. S. Experimental autoimmune encephalomyelitis (EAE) in CCR2(−/−) mice: susceptibility in multiple strains. Am. J. Pathol.162, 139–150 (2003). ArticlePubMedPubMed Central Google Scholar
Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med.211, 1533–1549 (2014). ArticleCASPubMedPubMed Central Google Scholar
Vogel, D. Y. et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflamm.10, 35 (2013). ArticleCAS Google Scholar
Bechmann, I., Galea, I. & Perry, V. H. What is the blood-brain barrier (not)? Trends Immunol.28, 5–11 (2007). ArticleCASPubMed Google Scholar
Perry, V. H., Anthony, D. C., Bolton, S. J. & Brown, H. C. The blood-brain barrier and the inflammatory response. Mol. Med. Today3, 335–341 (1997). ArticleCASPubMed Google Scholar
Billingham, R. E. & Boswell, T. Studies on the problem of corneal homografts. Proc. R. Soc. B Biol. Sci.141, 392–406 (1953). ArticleCAS Google Scholar
Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol.28, 12–18 (2007). ArticleCASPubMed Google Scholar
Schreiner, B. et al. Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep.12, 1377–1384 (2015). ArticleCASPubMed Google Scholar
Ransohoff, R. M. & El Khoury, J. Microglia in Health and Disease. Cold Spring Harb. Perspect. Biol.8 (2015).
Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol.65, 457–469 (2009). ArticleCASPubMedPubMed Central Google Scholar
Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med.11, 328–334 (2005). ArticleCASPubMed Google Scholar
Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol.14, 571–578 (2014). ArticleCASPubMedPubMed Central Google Scholar
Dominguez, P. M. & Ardavin, C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol. Rev.234, 90–104 (2010). ArticleCASPubMed Google Scholar
Neal, J. W. & Gasque, P. How does the brain limit the severity of inflammation and tissue injury during bacterial meningitis? J. Neuropathol. Exp. Neurol.72, 370–385 (2013). ArticleCASPubMed Google Scholar