The dynamin superfamily: universal membrane tubulation and fission molecules? (original) (raw)
Grigliatti, T. A., Hall, L., Rosenbluth, R. & Suzuki, D. T. Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Mol. Gen. Genet.120, 107–114 (1973). Identifies the Shibire, Stoned and Paralytic temperature-sensitive loci. The authors also found the Rapid Exhaustion, Bang Sensitive, and Wobbly non-temperature-sensitive loci. CASPubMed Google Scholar
Suzuki, D. T., Grigliatti, T. & Williamson, R. Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proc. Natl Acad. Sci. USA68, 890–893 (1971). CASPubMedPubMed Central Google Scholar
van der Bliek, A. M. & Meyerowitz, E. M. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature351, 411–414 (1991). CASPubMed Google Scholar
Chen, M. S. et al. Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature351, 583–586 (1991). CASPubMed Google Scholar
Shpetner, H. S. & Vallee, R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell59, 421–432 (1989). CASPubMed Google Scholar
Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature347, 256–261 (1990). The first cloning of dynamin showing that it was part of a superfamily of GTPases. CASPubMed Google Scholar
Robinson, P. J., Hauptschein, R., Lovenberg, W. & Dunkley, P. R. Dephosphorylation of synaptosomal proteins P96 and P139 is regulated by both depolarization and calcium, but not by a rise in cytosolic calcium alone. J. Neurochem.48, 187–195 (1987). CASPubMed Google Scholar
Cao, H., Garcia, F. & McNiven, M. A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell9, 2595–2609 (1998). CASPubMedPubMed Central Google Scholar
Nakata, T., Takemura, R. & Hirokawa, N. A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell Sci.105, 1–5 (1993). CASPubMed Google Scholar
Sontag, J. M. et al. Differential expression and regulation of multiple dynamins. J. Biol. Chem.269, 4547–4554 (1994). CASPubMed Google Scholar
Gray, N. W. et al. Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Curr. Biol.13, 510–515 (2003). CASPubMed Google Scholar
Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol.141, 85–99 (1998). CASPubMedPubMed Central Google Scholar
Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol.141, 101–114 (1998). References 12 and 13 are the first clear demonstrations of the involvement of dynamin in vesicle-scission events other than clathrin-mediated vesicle budding. Dynamin has now been implicated in many other budding events. CASPubMedPubMed Central Google Scholar
Ochoa, G. C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol.150, 377–389 (2000). CASPubMedPubMed Central Google Scholar
van Dam, E. M. & Stoorvogel, W. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol. Biol. Cell13, 169–182 (2002). CASPubMedPubMed Central Google Scholar
Orth, J. D. & McNiven, M. A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol.15, 31–39 (2003). CASPubMed Google Scholar
Gammie, A. E., Kurihara, L. J., Vallee, R. B. & Rose, M. D. DNM1, a dynamin-related gene, participates in endosomal trafficking in yeast. J. Cell Biol.130, 553–566 (1995). CASPubMed Google Scholar
Shin, H. W., Shinotsuka, C., Torii, S., Murakami, K. & Nakayama, K. Identification and subcellular localization of a novel mammalian dynamin-related protein homologous to yeast Vps1p and Dnm1p. J. Biochem.122, 525–530 (1997). CASPubMed Google Scholar
Kamimoto, T. et al. Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J. Biol. Chem.273, 1044–1051 (1998). CASPubMed Google Scholar
Hong, Y. R., Chen, C. H., Cheng, D. S., Howng, S. L. & Chow, C. C. Human dynamin-like protein interacts with the glycogen synthase kinase 3β. Biochem. Biophys. Res. Commun.249, 697–703 (1998). CASPubMed Google Scholar
Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol.143, 351–358 (1998). CASPubMedPubMed Central Google Scholar
Imoto, M., Tachibana, I. & Urrutia, R. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J. Cell Sci.111, 1341–1349 (1998). CASPubMed Google Scholar
Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell4, 815–826 (1999). This is a clear demonstration of the function of dynamin-like proteins in mitochondrial division in live animals. CASPubMed Google Scholar
Wienke, D. C., Knetsch, M. L., Neuhaus, E. M., Reedy, M. C. & Manstein, D. J. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol. Biol. Cell10, 225–243 (1999). CASPubMedPubMed Central Google Scholar
Shin, H. W. et al. Intermolecular and interdomain interactions of a dynamin-related GTP-binding protein, Dnm1p/Vps1p-like protein. J. Biol. Chem.274, 2780–2785 (1999). CASPubMed Google Scholar
Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell12, 2245–2256 (2001). CASPubMedPubMed Central Google Scholar
Yoon, Y., Pitts, K. R. & McNiven, M. A. Mammalian dynamin-like protein DLP1 tubulates membranes. Mol. Biol. Cell12, 2894–2905 (2001). CASPubMedPubMed Central Google Scholar
Klockow, B. et al. The dynamin A ring complex: molecular organization and nucleotide-dependent conformational changes. EMBO J.21, 240–250 (2002). CASPubMedPubMed Central Google Scholar
Kim, Y. W. et al. Arabidopsis dynamin-like 2 that binds specifically to phosphatidylinositol-4-phosphate assembles into a high-molecular weight complex in vivo and in vitro. Plant Physiol.127, 1243–1255 (2001). CASPubMedPubMed Central Google Scholar
Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. A putative GTP binding protein homologous to interferon-inducible Mx proteins performs an essential function in yeast protein sorting. Cell61, 1063–1074 (1990). CASPubMed Google Scholar
Wilsbach, K. & Payne, G. S. Vps1p, a member of the dynamin GTPase family, is necessary for Golgi membrane protein retention in Saccharomyces cerevisiae. EMBO J.12, 3049–3059 (1993). CASPubMedPubMed Central Google Scholar
Staeheli, P., Haller, O., Boll, W., Lindenmann, J. & Weissmann, C. Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell44, 147–158 (1986). A direct demonstation of the antiviral effect of MxA. CASPubMed Google Scholar
Janzen, C., Kochs, G. & Haller, O. A monomeric GTPase-negative MxA mutant with antiviral activity. J. Virol.74, 8202–8206 (2000). CASPubMedPubMed Central Google Scholar
Kochs, G., Haener, M., Aebi, U. & Haller, O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem.277, 14172–14176 (2002). CASPubMed Google Scholar
Gao, H., Kadirjan-Kalbach, D., Froehlich, J. E. & Osteryoung, K. W. ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc. Natl Acad. Sci. USA100, 4328–4333 (2003). CASPubMedPubMed Central Google Scholar
Miyagishima, S. Y. et al. A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell15, 655–665 (2003). Uses a very interesting model organism, which has one mitochondrion and one chloroplast. Also shows a ring of dynamin constricting during organelle division. CASPubMedPubMed Central Google Scholar
Satoh, M., Hamamoto, T., Seo, N., Kagawa, Y. & Endo, H. Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun.300, 482–493 (2003). CASPubMed Google Scholar
Olichon, A. et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett.523, 171–176 (2002). CASPubMed Google Scholar
Jones, B. A. & Fangman, W. L. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev.6, 380–389 (1992). CASPubMed Google Scholar
Wong, E. D. et al. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol.160, 303–311 (2003). CASPubMedPubMed Central Google Scholar
Hales, K. G. & Fuller, M. T. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell90, 121–129 (1997). CASPubMed Google Scholar
Hermann, G. J. et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol.143, 359–373 (1998). CASPubMedPubMed Central Google Scholar
Rapaport, D., Brunner, M., Neupert, W. & Westermann, B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem.273, 20150–20155 (1998). CASPubMed Google Scholar
Santel, A. & Fuller, M. T. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci.114, 867–874 (2001). CASPubMed Google Scholar
Prakash, B., Praefcke, G. J. K., Renault, L., Wittinghofer, A. & Herrmann, C. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature403, 567–571 (2000). CASPubMed Google Scholar
Prakash, B., Renault, L., Praefcke, G. J., Herrmann, C. & Wittinghofer, A. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism. EMBO J.19, 4555–4564 (2000). CASPubMedPubMed Central Google Scholar
Staeheli, P., Horisberger, M. A. & Haller, O. Mx-dependent resistance to influenza viruses is induced by mouse interferons α and β but not γ. Virology132, 456–461 (1984). CASPubMed Google Scholar
Anderson, S. L., Carton, J. M., Lou, J., Xing, L. & Rubin, B. Y. Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus. Virology256, 8–14 (1999). CASPubMed Google Scholar
Schwemmle, M., Kaspers, B., Irion, A., Staeheli, P. & Schultz, U. Chicken guanylate-binding protein. Conservation of GTPase activity and induction by cytokines. J. Biol. Chem.271, 10304–10308 (1996). CASPubMed Google Scholar
Zhao, X. et al. Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nature Genet.29, 326–331 (2001). CASPubMed Google Scholar
Zhu, P. P. et al. Cellular localization, oligomerization, and membrane association of the hereditary Spastic Paraplegia 3A (SPG3A) protein atlastin. J. Biol. Chem.278, 49063–49071 (2003). CASPubMed Google Scholar
Uthaiah, R. C., Praefcke, G. J., Howard, J. C. & Herrmann, C. IIGP1, an interferon-γ-inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J. Biol. Chem.278, 29336–29343 (2003). CASPubMed Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). CASPubMed Google Scholar
Pai, E. F. et al. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 Å resolution: implications for the mechanism of GTP hydrolysis. EMBO J.9, 2351–2359 (1990). CASPubMedPubMed Central Google Scholar
Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science294, 1299–1304 (2001). CASPubMed Google Scholar
Niemann, H. H., Knetsch, M. L., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001). The first high-resolution structure of the GTPase domain of a close homologue to dynamin 1. CASPubMedPubMed Central Google Scholar
Krishnan, K. S. et al. Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron30, 197–210 (2001). CASPubMed Google Scholar
Shpetner, H. S. & Vallee, R. B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature355, 733–735 (1992). CASPubMed Google Scholar
Tuma, P. L. & Collins, C. A. Activation of dynamin GTPase is a result of positive cooperativity. J. Biol. Chem.269, 30842–30847 (1994). Assembly of dynamin on microtubules or acidic liposomes results in a positive cooperativity of GTP hydrolysis. This study implied that dynamin stimulates its own GTP hydrolysis on assembly. CASPubMed Google Scholar
Warnock, D. E., Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem.271, 22310–22314 (1996). CASPubMed Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999). A study in which the authors suggest an alternative mechanism for dynamin as a regulatory GTPase. CASPubMed Google Scholar
Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999). A demonstration of the mechanochemical properties of dynamin, in which the authors suggest a spring or 'poppase' mechanism for vesicle scission. CASPubMed Google Scholar
Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J.16, 6676–6683 (1997). CASPubMedPubMed Central Google Scholar
Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem.274, 14942–14947 (1999). CASPubMed Google Scholar
Okamoto, P. M., Tripet, B., Litowski, J., Hodges, R. S. & Vallee, R. B. Multiple distinct coiled-coils are involved in dynamin self-assembly. J. Biol. Chem.274, 10277–10286 (1999). CASPubMed Google Scholar
Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol.3, 922–926 (2001). CASPubMed Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995). CASPubMed Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998). A demonstration of the mechanochemical properties of dynamin, in which the authors suggest a 'pinchase' mechanism of vesicle scission. CASPubMed Google Scholar
Gu, X. & Verma, D. P. Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J.15, 695–704 (1996). The first dynamin identified in plants. CASPubMedPubMed Central Google Scholar
Zhang, Z., Hong, Z. & Verma, D. P. Phragmoplastin polymerizes into spiral coiled structures via intermolecular interaction of two self-assembly domains. J. Biol. Chem.275, 8779–8784 (2000). CASPubMed Google Scholar
Melen, K. et al. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J. Biol. Chem.267, 25898–25907 (1992). The first demonstration of the oligomerization of a dynamin-superfamily member. CASPubMed Google Scholar
Nakayama, M. et al. Structure of mouse Mx1 protein. Molecular assembly and GTP-dependent conformational change. J. Biol. Chem.268, 15033–15038 (1993). CASPubMed Google Scholar
Schumacher, B. & Staeheli, P. Domains mediating intramolecular folding and oligomerization of MxA GTPase. J. Biol. Chem.273, 28365–28370 (1998). CASPubMed Google Scholar
Accola, M. A., Huang, B., Al Masri, A. & McNiven, M. A. The antiviral dynamin family member, MxA, tubulates lipids and localizes to the smooth endoplasmic reticulum. J. Biol. Chem.277, 21829–21835 (2002). CASPubMed Google Scholar
Klein, D. E., Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem.273, 27725–27733 (1998). CASPubMed Google Scholar
Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J.350, 1–18 (2000). CASPubMedPubMed Central Google Scholar
Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol.9, 257–260 (1999). CASPubMed Google Scholar
Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr. Biol.9, 261–264 (1999). PubMed Google Scholar
Achiriloaie, M., Barylko, B. & Albanesi, J. P. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol. Cell Biol.19, 1410–1415 (1999). CASPubMedPubMed Central Google Scholar
McQuibban, G. A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature423, 537–541 (2003). The cleavage of Mgm1 by a rhomboid protease in the inner mitochondrial membrane is essential for its activity in mitochondrial fusion. CASPubMed Google Scholar
Rojo, M., Legros, F., Chateau, D. & Lombes, A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci.115, 1663–1674 (2002). CASPubMed Google Scholar
Cheng, Y. S., Patterson, C. E. & Staeheli, P. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP. Mol. Cell Biol.11, 4717–4725 (1991). CASPubMedPubMed Central Google Scholar
Gorbacheva, V. Y., Lindner, D., Sen, G. C. & Vestal, D. J. The interferon (IFN)-induced GTPase, mGBP-2. Role in IFN-γ-induced murine fibroblast proliferation. J. Biol. Chem.277, 6080–6087 (2002). CASPubMed Google Scholar
Scheffzek, K. et al. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science277, 333–338 (1997). CASPubMed Google Scholar
Sever, S., Damke, H. & Schmid, S. L. Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J. Cell Biol.150, 1137–1148 (2000). CASPubMedPubMed Central Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). Hydrolysis of GTP by dynamin is required for vesicle scission, whereas GTP binding leads to tubulationin vivo. CASPubMed Google Scholar
Eccleston, J. F., Binns, D. D., Davis, C. T., Albanesi, J. P. & Jameson, D. M. Oligomerization and kinetic mechanism of the dynamin GTPase. Eur. Biophys. J.31, 275–282 (2002). CASPubMed Google Scholar
Newmyer, S. L., Christensen, A. & Sever, S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev. Cell4, 929–940 (2003). CASPubMed Google Scholar
Pitts, K. R., Yoon, Y., Krueger, E. W. & McNiven, M. A. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell10, 4403–4417 (1999). CASPubMedPubMed Central Google Scholar
Otsuga, D. et al. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J. Cell Biol.143, 333–349 (1998). CASPubMedPubMed Central Google Scholar
Fukushima, N. H., Brisch, E., Keegan, B. R., Bleazard, W. & Shaw, J. M. The GTPase effector domain sequence of the Dnm1p GTPase regulates self-assembly and controls a rate-limiting step in mitochondrial fission. Mol. Biol. Cell12, 2756–2766 (2001). CASPubMedPubMed Central Google Scholar
Kang, S. G. et al. Molecular cloning of an Arabidopsis cDNA encoding a dynamin-like protein that is localized to plastids. Plant Mol. Biol.38, 437–447 (1998). CASPubMed Google Scholar
Park, J. M. et al. A dynamin-like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. EMBO J.17, 859–867 (1998). CASPubMedPubMed Central Google Scholar
Hoepfner, D., van den Berg, M., Philippsen, P., Tabak, H. F. & Hettema, E. H. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol.155, 979–990 (2001). CASPubMedPubMed Central Google Scholar
Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem.278, 8597–8605 (2003). CASPubMed Google Scholar
Li, X. & Gould, S. J. The dynamin-like GTPase Dlp1 is essential for peroxisome division and is recruited to peroxisomes in part by Pex11. J. Biol. Chem.278, 17012–17020 (2003). CASPubMed Google Scholar
Herlan, M., Vogel, F., Bornhovd, C., Neupert, W. & Reichert, A. S. Processing of Mgm1 by the Rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem.278, 27781–27788 (2003). CASPubMed Google Scholar
Wong, E. D. et al. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol.151, 341–352 (2000). CASPubMedPubMed Central Google Scholar
Sesaki, H. & Jensen, R. E. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol.147, 699–706 (1999). CASPubMedPubMed Central Google Scholar
Lukowitz, W., Mayer, U. & Jurgens, G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell84, 61–71 (1996). CASPubMed Google Scholar
Samuels, A. L., Giddings, T. H., Jr. & Staehelin, L. A. Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J. Cell Biol.130, 1345–1357 (1995). CASPubMed Google Scholar
Gu, X. & Verma, D. P. Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell9, 157–169 (1997). CASPubMedPubMed Central Google Scholar
Verma, D. P. Cytokinesis and building of the cell plate in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol.52, 751–784 (2001). CASPubMed Google Scholar
Otegui, M. S., Mastronarde, D. N., Kang, B. H., Bednarek, S. Y. & Staehelin, L. A. Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell13, 2033–2051 (2001). CASPubMedPubMed Central Google Scholar
Feng, B., Schwarz, H. & Jesuthasan, S. Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp. Cell Res.279, 14–20 (2002). CASPubMed Google Scholar
Thompson, H. M., Skop, A. R., Euteneuer, U., Meyer, B. J. & McNiven, M. A. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr. Biol.12, 2111–2117 (2002). CASPubMedPubMed Central Google Scholar
Haller, O. & Kochs, G. Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic3, 710–717 (2002). CASPubMed Google Scholar
Kochs, G. & Haller, O. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl Acad. Sci. USA96, 2082–2086 (1999). CASPubMedPubMed Central Google Scholar
Kochs, G. & Haller, O. GTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J. Biol. Chem.274, 4370–4376 (1999). CASPubMed Google Scholar
Guenzi, E. et al. The helical domain of GBP-1 mediates the inhibition of endothelial cell proliferation by inflammatory cytokines. EMBO J.20, 5568–5577 (2001). CASPubMedPubMed Central Google Scholar
Iversen, T. G., Skretting, G., Van Deurs, B. & Sandvig, K. Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc. Natl Acad. Sci. USA100, 5175–5180 (2003). CASPubMedPubMed Central Google Scholar
Kessell, I., Holst, B. D. & Roth, T. F. Membranous intermediates in endocytosis are labile, as shown in a temperature-sensitive mutant. Proc. Natl Acad. Sci. USA86, 4968–4972 (1989). CASPubMedPubMed Central Google Scholar
Koenig, J. H. & Ikeda, K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J. Neurosci.9, 3844–3860 (1989). Analysis of theshibirephenotype showing temperature-dependent reversible depletion and reformation of synaptic vesicles. CASPubMedPubMed Central Google Scholar
Kawasaki, F., Hazen, M. & Ordway, R. W. Fast synaptic fatigue in shibire mutants reveals a rapid requirement for dynamin in synaptic vesicle membrane trafficking. Nature Neurosci.3, 859–860 (2000). CASPubMed Google Scholar
Kang, B. H., Busse, J. S. & Bednarek, S. Y. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. Plant Cell15, 899–913 (2003). CASPubMedPubMed Central Google Scholar
Kang, B. H., Rancour, D. M. & Bednarek, S. Y. The dynamin-like protein ADL1C is essential for plasma membrane maintenance during pollen maturation. Plant J.35, 1–15 (2003). CASPubMed Google Scholar
Arimura, S. & Tsutsumi, N. A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc. Natl Acad. Sci. USA99, 5727–5731 (2002). CASPubMedPubMed Central Google Scholar
Lam, B. C., Sage, T. L., Bianchi, F. & Blumwald, E. Regulation of ADL6 activity by its associated molecular network. Plant J.31, 565–576 (2002). CASPubMed Google Scholar
Jin, J. B. et al. A new dynamin-like protein, ADL6, is involved in trafficking from the trans-Golgi network to the central vacuole in Arabidopsis. Plant Cell13, 1511–1526 (2001). CASPubMedPubMed Central Google Scholar
Nishida, K. et al. Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc. Natl Acad. Sci. USA100, 2146–2151 (2003). CASPubMedPubMed Central Google Scholar
Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol. Biol. Cell10, 501–513 (1999). CASPubMedPubMed Central Google Scholar
Olichon, A. et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem.278, 7743–7746 (2003). CASPubMed Google Scholar
Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet.26, 207–210 (2000). CASPubMed Google Scholar
Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genet.26, 211–215 (2000). References 125 and 126 show the link between dominant optic atrophy (DOA) and mutations in a dynamin-superfamily memberOPA1. CASPubMed Google Scholar
Toomes, C. et al. Spectrum, frequency and penetrance of OPA1 mutations in dominant optic atrophy. Hum. Mol. Genet.10, 1369–1378 (2001). CASPubMed Google Scholar
Pesch, U. E. et al. OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum. Mol. Genet.10, 1359–1368 (2001). CASPubMed Google Scholar
Thiselton, D. L. et al. A comprehensive survey of mutations in the OPA1 gene in patients with autosomal dominant optic atrophy. Invest. Ophthalmol. Vis. Sci.43, 1715–1724 (2002). PubMed Google Scholar
Delettre, C., Lenaers, G., Pelloquin, L., Belenguer, P. & Hamel, C. P. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab.75, 97–107 (2002). CASPubMed Google Scholar
Marchbank, N. J. et al. Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J. Med. Genet.39, e47 (2002). CASPubMedPubMed Central Google Scholar
Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and γ-phosphate analogues. J. Biol. Chem.272, 28030–28035 (1997). CASPubMed Google Scholar
Owen, D. J. et al. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J.17, 5273–5285 (1998). CASPubMedPubMed Central Google Scholar
Kochs, G., Janzen, C., Hohenberg, H. & Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl Acad. Sci. USA99, 3153–3158 (2002). CASPubMedPubMed Central Google Scholar
Mozdy, A. D., McCaffery, J. M. & Shaw, J. M. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol.151, 367–380 (2000). CASPubMedPubMed Central Google Scholar
Binns, D. D. et al. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Biochemistry39, 7188–7196 (2000). CASPubMed Google Scholar
Richter, M. F., Schwemmle, M., Herrmann, C., Wittinghofer, A. & Staeheli, P. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J. Biol. Chem.270, 13512–13517 (1995). CASPubMed Google Scholar
Schwemmle, M. & Staeheli, P. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP. J. Biol. Chem.269, 11299–11305 (1994). CASPubMed Google Scholar
Praefcke, G. J., Geyer, M., Schwemmle, M., Robert Kalbitzer, H. & Herrmann, C. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J. Mol. Biol.292, 321–332 (1999). CASPubMed Google Scholar
Schweins, T. et al. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nature Struct. Biol.2, 36–44 (1995). CASPubMed Google Scholar
John, J. et al. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry29, 6058–6065 (1990). CASPubMed Google Scholar
Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell86, 445–452 (1996). CASPubMed Google Scholar
McEwen, D. P., Gee, K. R., Kang, H. C. & Neubig, R. R. Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal. Biochem.291, 109–117 (2001). CASPubMed Google Scholar
Otero, A. D. Transphosphorylation and G protein activation. Biochem. Pharmacol.39, 1399–1404 (1990). CASPubMed Google Scholar
Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature348, 125–132 (1990). CASPubMed Google Scholar