Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78, 7634–7638 (1981). ArticleCASPubMedPubMed Central Google Scholar
Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature292, 154–156 (1981). References 2 and 3 are milestones in the field — the establishment of mammalian ESCs in mice. ArticleCASPubMed Google Scholar
Gardner, R. L. & Brook, F. A. Reflections on the biology of embryonic stem (ES) cells. Int. J. Dev. Biol.41, 235–243 (1997). CASPubMed Google Scholar
Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature309, 255–256 (1984). Shows that the genetic contribution of ESCs to the chimaera comprises the germ-cell lineage and can be inherited by the next generation. ArticleCASPubMed Google Scholar
Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development105, 733–737 (1989). CASPubMed Google Scholar
Thomson, J. A. & Marshall, V. S. Primate embryonic stem cells. Curr. Top. Dev. Biol.38, 133–165 (1998). ArticleCASPubMed Google Scholar
Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998). After this paper — which showed the establishment of human ESCs — a medical use for ESCs could be envisioned. ArticleCASPubMed Google Scholar
Prelle, K., Zink, N. & Wolf, E. Pluripotent stem cells — model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat. Histol. Embryol.31, 169–186 (2002). ArticlePubMed Google Scholar
Schoonjans, L. et al. Improved generation of germline-competent embryonic stem cell lines from inbred mouse strains. Stem Cells21, 90–97 (2003). ArticlePubMed Google Scholar
Lauss, M. et al. Single inner cell masses yield embryonic stem cell lines differing in lifr expression and their developmental potential. Biochem. Biophys. Res. Commun.331, 1577–1586 (2005). ArticleCASPubMed Google Scholar
Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol.10, 989–992 (2000). ArticleCASPubMed Google Scholar
Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science292, 740–743 (2001). ArticleCASPubMed Google Scholar
Hwang, W. S. et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science303, 1669–1674 (2004). ArticleCASPubMed Google Scholar
Czyz, J. & Wobus, A. Embryonic stem cell differentiation: the role of extracellular factors. Differentiation68, 167–174 (2001). ArticleCASPubMed Google Scholar
Brandenberger, R. et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nature Biotechnol.22, 707–716 (2004). Article Google Scholar
Sato, N. et al. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev. Biol.260, 404–413 (2003). ArticleCASPubMed Google Scholar
Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature336, 688–690 (1988). This paper reports a big stride in the long journey towards chemically defined, consistent and reproducible culture conditions for mouse ESCs. ArticleCASPubMed Google Scholar
Nichols, J., Chambers, I., Taga, T. & Smith, A. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development128, 2333–2339 (2001). CASPubMed Google Scholar
Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev.12, 2048–2060 (1998). A seminal study about the first described and most important signalling pathway to the nucleus in mouse ESCs. ArticleCASPubMedPubMed Central Google Scholar
Matsuda, T. et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J.18, 4261–4269 (1999). ArticleCASPubMedPubMed Central Google Scholar
Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol.210, 30–43 (1999). ArticleCASPubMed Google Scholar
Boeuf, H., Hauss, C., Graeve, F. D., Baran, N. & Kedinger, C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell Biol.138, 1207–1217 (1997). ArticleCASPubMedPubMed Central Google Scholar
Auernhammer, C. J., Bousquet, C., Chesnokova, V. & Melmed, S. SOCS proteins: modulators of neuroimmunoendocrine functions. Impact on corticotroph LIF signaling. Ann. NY Acad. Sci.917, 658–664 (2000). ArticleCASPubMed Google Scholar
Humphrey, R. K. et al. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells22, 522–530 (2004). ArticleCASPubMed Google Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Med.10, 55–63 (2004). Shows a new signalling pathway that operates in both mouse and human ESCs. ArticleCASPubMed Google Scholar
Duval, D., Reinhardt, B., Kedinger, C. & Boeuf, H. Role of suppressors of cytokine signaling (Socs) in leukemia inhibitory factor (LIF)-dependent embryonic stem cell survival. FASEB J.14, 1577–1584 (2000). ArticleCASPubMed Google Scholar
Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003). Reveals the second most important signalling pathway of mouse ESCs after the one initiated by LIF. ArticleCASPubMed Google Scholar
Fujiwara, T., Dunn, N. R. & Hogan, B. L. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc. Natl Acad. Sci. USA98, 13739–13744 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rajan, P., Panchision, D. M., Newell, L. F. & McKay, R. D. BMPs signal alternately through a SMAD or FRAP–STAT pathway to regulate fate choice in CNS stem cells. J. Cell. Biol.161, 911–921 (2003). ArticleCASPubMedPubMed Central Google Scholar
Haegele, L. et al. Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol. Cell. Neurosci.24, 696–708 (2003). ArticleCASPubMed Google Scholar
Cadigan, K. M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev.11, 3286–3305 (1997). ArticleCASPubMed Google Scholar
Mohamed, O. A., Dufort, D. & Clarke, H. J. Expression and estradiol regulation of Wnt genes in the mouse blastocyst identify a candidate pathway for embryo-maternal signaling at implantation. Biol. Reprod.71, 417–424 (2004). ArticleCASPubMed Google Scholar
He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science281, 1509–1512 (1998). ArticleCASPubMed Google Scholar
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem.267, 6321–6330 (2000). ArticleCASPubMed Google Scholar
Tang, H. et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3- kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol. Cell. Biol.21, 8671–8683 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stolovich, M. et al. Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol. Cell. Biol.22, 8101–8113 (2002). ArticleCASPubMedPubMed Central Google Scholar
Murakami, M. et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol. Cell. Biol.24, 6710–6718 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gangloff, Y. G. et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol. Cell. Biol.24, 9508–9516 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev.16, 1472–1487 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kimura, T. et al. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development130, 1691–1700 (2003). ArticleCASPubMed Google Scholar
Kishimoto, H. et al. Physiological functions of Pten in mouse tissues. Cell Struct. Funct.28, 11–21 (2003). ArticleCASPubMed Google Scholar
Sun, H. et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA96, 6199–6204 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev.19, 489–501 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. 'Stemness': transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). ArticleCASPubMed Google Scholar
Ivanova, N. B. et al. A stem cell molecular signature. Science298, 601–604 (2002). A milestone — a set of expressed genes is shared in mouse and human haematopoietic stem cells, embryonic and neural stem cells. ArticleCASPubMed Google Scholar
Schöler, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N. & Gruss, P. Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J.8, 2551–2557 (1989). Shows first evidence of an octamer-binding transcription factor having a special relationship to pluripotent cells of the embryo. ArticlePubMedPubMed Central Google Scholar
Schöler, H. R., Hatzopoulos, A. K., Balling, R., Suzuki, N. & Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J.8, 2543–2550 (1989). ArticlePubMedPubMed Central Google Scholar
Rosner, M. H. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature345, 686–692 (1990). ArticleCASPubMed Google Scholar
Okamoto, K. et al. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell60, 461–472 (1990). ArticleCASPubMed Google Scholar
Donovan, P. J. & de Miguel, M. P. Turning germ cells into stem cells. Curr. Opin. Genet. Dev.13, 463–471 (2003). ArticleCASPubMed Google Scholar
Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell119, 1001–1012 (2004). ArticleCASPubMed Google Scholar
Shimozaki, K., Nakashima, K., Niwa, H. & Taga, T. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development130, 2505–2512 (2003). ArticleCASPubMed Google Scholar
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). Shows thatOct4is a paradigm for genes essential for ESC formation. ArticleCASPubMed Google Scholar
Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet.24, 372–376 (2000). Whereas the common view of the phenotypic effects of gene expression holds that differences result from genes being expressed or not (binary on/off system), here it is elegantly shown that the precise level of gene expression produces different phenotypic effects in ESCs. ArticleCASPubMed Google Scholar
Du, Z., Cong, H. & Yao, Z. Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridization. Biochem. Biophys. Res. Commun.282, 701–706 (2001). ArticleCASPubMed Google Scholar
Saijoh, Y. et al. Identification of putative downstream genes of Oct-3, a pluripotent cell-specific transcription factor. Genes Cells1, 239–252 (1996). ArticleCASPubMed Google Scholar
Pevny, L. H. & Lovell-Badge, R. Sox genes find their feet. Curr. Opin. Genet. Dev.7, 338–344 (1997). ArticleCASPubMed Google Scholar
Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of SOX2 and Oct-3. Genes Dev.9, 2635–2645 (1995). ArticleCASPubMed Google Scholar
Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S. & Labosky, P. A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev.16, 2650–2661 (2002). ArticleCASPubMedPubMed Central Google Scholar
Guo, Y. et al. The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Proc. Natl Acad. Sci. USA99, 3663–3667 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, S. H., Tsai, M. S., Chiang, M. F. & Li, H. A novel NK-type homeobox gene, ENK (early embryo specific NK), preferentially expressed in embryonic stem cells. Gene Expr. Patterns3, 99–103 (2003). ArticleCASPubMed Google Scholar
Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell113, 643–655 (2003). References 70 and 71 cast doubts on the idea of a 'master' gene in mammalian pluripotency: after more than ten years withOct4being regarded almost as the sole transcription factor that was undoubtedly linked to pluripotency,Nanogis shown to be as important asOct4. ArticleCASPubMed Google Scholar
Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113, 631–642 (2003). ArticleCASPubMed Google Scholar
Hart, A. H., Hartley, L., Ibrahim, M. & Robb, L. Identification, cloning and expression analysis of the pluripotency promoting Nanog genes in mouse and human. Dev. Dyn.230, 187–198 (2004). ArticleCASPubMed Google Scholar
Hatano, S. Y. et al. Pluripotential competence of cells associated with Nanog activity. Mech. Dev.122, 67–79 (2005). ArticleCASPubMed Google Scholar
Bowles, J., Teasdale, R. P., James, K. & Koopman, P. Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenet. Genome Res.101, 261–265 (2003). ArticleCASPubMed Google Scholar
Lin, T. et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nature Cell Biol.7, 165–171 (2005). ArticleCASPubMed Google Scholar
Lam, M. Y. & Nadeau, J. H. Genetic control of susceptibility to spontaneous testicular germ cell tumors in mice. APMIS111, 184–190 (2003). ArticlePubMed Google Scholar
Fan, Y., Melhem, M. F. & Chaillet, J. R. Forced expression of the homeobox-containing gene PEM blocks differentiation of embryonic stem cells. Dev. Biol.210, 481–496 (1999). ArticleCASPubMed Google Scholar
Ben-Shushan, E., Thompson, J. R., Gudas, L. J. & Bergman, Y. Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol. Cell. Biol.18, 1866–1878 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dailey, L., Yuan, H. & Basilico, C. Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol. Cell. Biol.14, 7758–7769 (1994). ArticleCASPubMedPubMed Central Google Scholar
Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol.19, 5453–5465 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tomioka, M. Identification of Sox-2 regulatory region which is under the control of Oct-3/4–Sox-2 complex. Nucleic Acids Res.30, 3202–3213 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fuhrmann, G. et al. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev. Cell1, 377–387 (2001). ArticleCASPubMed Google Scholar
Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet.22, 361–365 (1999). ArticleCASPubMed Google Scholar
Papkoff, J., Rubinfeld, B., Schryver, B. & Polakis, P. Wnt-1 regulates free pools of catenins and stabilizes APC–catenin complexes. Mol. Cell. Biol.16, 2128–2134 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kielman, M. F. et al. Apc modulates embryonic stem-cell differentiation by controlling the dosage of β-catenin signaling. Nature Genet.32, 594–605 (2002). ArticleCASPubMed Google Scholar
Kuroda, T. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol.25, 2475–2485 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol.23, 2699–2708 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hwang, W. S. et al. Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science308, 1777–1783 (2005). ArticleCASPubMed Google Scholar
Rideout, W. M. 3rd, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002). ArticleCASPubMed Google Scholar
Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nature Biotechnol.21, 1200–1207 (2003). ArticleCAS Google Scholar
Bortvin, A. et al. Incomplete reactivation of _Oct4_-related genes in mouse embryos cloned from somatic nuclei. Development130, 1673–1680 (2003). ArticleCASPubMed Google Scholar
Boiani, M., Eckardt, S., Schöler, H. R. & McLaughlin, K. J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). ArticleCASPubMedPubMed Central Google Scholar
Eggan, K. et al. X-Chromosome inactivation in cloned mouse embryos. Science290, 1578–1581 (2000). ArticleCASPubMed Google Scholar
Mann, M. R. et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod.69, 902–914 (2003). ArticleCASPubMed Google Scholar
Humpherys, D. et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl Acad. Sci. USA99, 12889–12894 (2002). ArticleCASPubMedPubMed Central Google Scholar
Takagi, N., Yoshida, M. A., Sugawara, O. & Sasaki, M. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell34, 1053–1062 (1983). ArticleCASPubMed Google Scholar
Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol.11, 1553–1558 (2001). ArticleCASPubMed Google Scholar
Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature422, 897–901 (2003). ArticleCASPubMed Google Scholar
Vassilopoulos, G., Wang, P. R. & Russell, D. W. Transplanted bone marrow regenerates liver by cell fusion. Nature422, 901–904 (2003). ArticleCASPubMed Google Scholar
Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416, 542–545 (2002). ArticleCASPubMed Google Scholar
Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature416, 545–548 (2002). ArticleCASPubMed Google Scholar
Jang, Y. Y., Collector, M. I., Baylin, S. B., Diehl, A. M. & Sharkis, S. J. Hematopoietic stem cells convert into liver cells within days without fusion. Nature Cell Biol.6, 532–539 (2004). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol.30, 896–904 (2002). ArticleCASPubMed Google Scholar
Melton, D. A., Daley, G. Q. & Jennings, C. G. Altered nuclear transfer in stem-cell research — a flawed proposal. N. Engl. J. Med.351, 2791–2792 (2004). ArticleCASPubMed Google Scholar
Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell80, 179–185 (1995). ArticleCASPubMed Google Scholar
Zandstra, P. W., Le, H. V., Daley, G. Q., Griffith, L. G. & Lauffenburger, D. A. Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation. Biotechnol. Bioeng.69, 607–617 (2000). ArticleCASPubMed Google Scholar
Prudhomme, W., Daley, G. Q., Zandstra, P. & Lauffenburger, D. A. Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc. Natl Acad. Sci. USA101, 2900–2905 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gardner, R. L. Mouse chimeras obtained by the injection of cells into the blastocyst. Nature220, 596–597 (1968). A technical revolution and the first genetic modification of a mammal before the advent of transgenesis — the first evidence that exogenous embryonic cells could be injected and incorporated in developing blastocysts, thereby becoming fixed in the germ-cell lineage. ArticleCASPubMed Google Scholar
Moustafa, L. A. & Brinster, R. L. Induced chimaerism by transplanting embryonic cells into mouse blastocysts. J. Exp. Zool.181, 193–201 (1972). ArticleCASPubMedPubMed Central Google Scholar
Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med.140, 1049–1056 (1974). ArticleCASPubMedPubMed Central Google Scholar
Brinster, R. L. Participation of teratocarcinoma cells in mouse embryo development. Cancer Res.36, 3412–3414 (1976). CASPubMed Google Scholar
Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA72, 3585–3589 (1975). This paper anticipates the concept of the stem-cell 'niche' by providing evidence that cancer cells could be incorporated and lose their malignant phenotype when transplanted inside the cavity of a developing blastocyst. ArticleCASPubMedPubMed Central Google Scholar
Illmensee, K. & Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl Acad. Sci. USA73, 549–553 (1976). ArticleCASPubMedPubMed Central Google Scholar
Papaioannou, V. E., McBurney, M. W., Gardner, R. L. & Evans, M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature258, 70–73 (1975). ArticleCASPubMed Google Scholar
Durr, M. et al. Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene22, 9185–9191 (2003). ArticlePubMedCAS Google Scholar
Berstine, E. G., Hooper, M. L., Grandchamp, S. & Ephrussi, B. Alkaline phosphatase activity in mouse teratoma. Proc. Natl Acad. Sci. USA70, 3899–3903 (1973). ArticleCASPubMed Google Scholar
Nicolas, J. F., Dubois, P., Jakob, H., Gaillard, J. & Jacob, F. [Mouse teratocarcinoma: differentiation in cultures of a multipotential primitive cell line (author's transl)]. Ann. Microbiol. (Paris)126, 3–22 (1975) (in French). CAS Google Scholar
Mintz, B. & Cronmiller, C. METT-1: a karyotypically normal in vitro line of developmentally totipotent mouse teratocarcinoma cells. Somatic Cell Genet.7, 489–505 (1981). ArticleCASPubMed Google Scholar
Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA101, 13985–13990 (2004). CASPubMedPubMed Central Google Scholar
Axelrod, H. R. Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev. Biol.101, 225–228 (1984). ArticleCASPubMed Google Scholar
Pesce, M. & Schöler, H. R. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells19, 271–278 (2001). ArticleCASPubMed Google Scholar
Botquin, V. et al. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev.12, 2073–2090 (1998). ArticleCASPubMedPubMed Central Google Scholar
Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science267, 246–249 (1995). ArticleCASPubMed Google Scholar
Schöler, H. R., Ruppert, S., Suzuki, N., Chowdhury, K. & Gruss, P. New type of POU domain in germ line-specific protein Oct-4. Nature344, 435–439 (1990). ArticlePubMed Google Scholar
Schöler, H. R., Dressler, G. R., Balling, R., Rohdewohld, H. & Gruss, P. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J.9, 2185–2195 (1990). ArticlePubMedPubMed Central Google Scholar
Fukushima, A. et al. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol.19, 5453–5465 (1999). ArticlePubMedPubMed Central Google Scholar
Soares, M. J. & Wolfe, M. W. Human embryonic stem cells assemble and fulfill their developmental destiny. Endocrinology145, 1514–1516 (2004). ArticleCASPubMed Google Scholar
Zwaka, T. P. & Thomson, J. A. A germ cell origin of embryonic stem cells? Development132, 227–233 (2005). ArticleCASPubMed Google Scholar
Hübner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science300, 1251–1256 (2003). ArticlePubMedCAS Google Scholar
Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA100, 11457–11462 (2003). ArticleCASPubMedPubMed Central Google Scholar
Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature427, 148–154 (2004). ArticleCASPubMed Google Scholar
Boiani, M. & Schöler, H. in Principles of Cloning (eds. Cibelli, J., Lanza, R. P., Campbell, K. H. S. & West, M. D.) 109–152 (Academic Press, San Diego, 2002). Book Google Scholar