Siomi, H. & Siomi, M. C. On the road to reading the RNA-interference code. Nature457, 396–404 (2009). CASPubMed Google Scholar
Thomson, T. & Lin, H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol.25, 355–376 (2009). CASPubMedPubMed Central Google Scholar
Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol.11, 1017–1027 (2001). CASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). CASPubMed Google Scholar
Vagin, V. V., Sigova, A., Li, C., Seitz, H., Gvozdev, V. & Zamore, P. D. A distinct small RNA pathway silences selfish genetic elements in the germline. Science313, 320–324 (2006). This paper hinted for the first time that Dicer endonuclease activity — which is essential for miRNA and siRNA biogenesis — might be dispensable for piRNA biogenesis inD. melanogaster. CASPubMed Google Scholar
Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20, 2214–2222 (2006). CASPubMedPubMed Central Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature442, 203–207 (2006). CASPubMed Google Scholar
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature442, 199–202 (2006). PubMed Google Scholar
Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in the mouse spermatogenic cells. Genes Dev.20, 1709–1714 (2006). References 10–12 describe the discovery of piRNAs in the mammalian male germ line. These piRNAs were not enriched in transposon-derived sequences and were later named 'pachytene piRNAs' because they are initially expressed at the pachytene stage of meiosis. CASPubMedPubMed Central Google Scholar
Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell129, 69–82 (2007). CASPubMed Google Scholar
Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science303, 1626–1632 (2004). CASPubMed Google Scholar
Saito, K. & Siomi, M. C. Small RNA-mediated quiescence of transposable elements in animals. Dev. Cell19, 687–697 (2010). CASPubMed Google Scholar
Vagin, V. V. et al. The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol.1, 54–58 (2004). CASPubMed Google Scholar
Kalmykova, A. I., Klenov, M. S. & Gvozdev, V. A. Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res.33, 2052–2059 (2005). CASPubMedPubMed Central Google Scholar
Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A. & Gvozdev, V. Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev.20, 345–354 (2006). CASPubMedPubMed Central Google Scholar
Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell137, 509–521 (2009). CASPubMedPubMed Central Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). CASPubMedPubMed Central Google Scholar
Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development124, 2463–2476 (1997). CASPubMed Google Scholar
Schmidt, A. et al. Genetic and molecular characterization of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics151, 749–760 (1999). CASPubMed Google Scholar
Cox, D. N., Chao, A. & Lin, H. piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development127, 503–514 (2000). CASPubMed Google Scholar
Malone, C. D. et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell137, 522–535 (2009). CASPubMedPubMed Central Google Scholar
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell12, 503–514 (2007). CASPubMed Google Scholar
Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science316, 744–747 (2007). CASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev.22, 908–917 (2008). CASPubMedPubMed Central Google Scholar
Kuramochi-Miyagawa, S. et al. Two mouse piwi-related genes: miwi and mili. Mech. Dev.108, 121–133 (2001). CASPubMed Google Scholar
Aravin, A. A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell31, 785–799 (2008). References 26, 27 and 29 identify the link between piRNA silencing of transposable elements and CpG methylation of their genomic sequences in the male germ line, which is probably mediated by the nuclear MIWI2 complex. As the piRNAs that potentially guide this DNA methylation are expressed early during mouse gametogenesis, they were named 'pre-pachytene piRNAs'. CASPubMedPubMed Central Google Scholar
Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell12, 45–55 (2007). CASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). CASPubMed Google Scholar
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science315, 1587–1590 (2007). References 31 and 32 proposed the amplification loop — also known as the 'ping-pong model' — for piRNA biogenesis by revealing the specific features or 'signature' of piRNAs that are associated with PIWI proteins inD. melanogasterovaries. CASPubMed Google Scholar
Nishida, K. M. et al. Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA13, 1911–1922 (2007). CASPubMedPubMed Central Google Scholar
Saito, K. et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev.24, 2493–2498 (2010). CASPubMedPubMed Central Google Scholar
Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303, 669–672 (2004). CASPubMed Google Scholar
Brower-Toland, B. et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes Dev.21, 2300–2311 (2007). CASPubMedPubMed Central Google Scholar
Yin, H. & Lin, H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature450, 304–308 (2007). CASPubMed Google Scholar
Moshkovich, N. & Lei E. P. HP1 recruitment in the absence of argonaute proteins in Drosophila. PLoS Genet.6, e1000880 (2010). PubMedPubMed Central Google Scholar
Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science320, 1077–1081 (2008). CASPubMedPubMed Central Google Scholar
Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature453, 793–797 (2008). CASPubMed Google Scholar
Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature453, 534–538 (2008). CASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature453, 539–543 (2008). CASPubMed Google Scholar
Li, M. A., Alls, J. D., Avancini, R. M., Koo, K. & Godt, D. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nature Cell Biol.5, 994–1000 (2003). CASPubMed Google Scholar
Saito, K. et al. A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature461, 1296–1299 (2009). References 19, 24 and 44 provided new insights into piRNAs that are specifically expressed in ovarian somatic cells, mainly by providing evidence that the origins of, and processing factors regulating, these somatic piRNAs are unique from those of germline piRNAs. CASPubMed Google Scholar
Rouget, C. et al. Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature467, 1128–1132 (2010). CASPubMedPubMed Central Google Scholar
Klattenhoff, C. et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell138, 1137–1149 (2009). CASPubMedPubMed Central Google Scholar
Aravin, A. A., Hannon, G. J. & Brennecke, J. The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race. Science318, 761–764 (2007). CASPubMed Google Scholar
Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science313, 363–367 (2006). CASPubMed Google Scholar
Houwing, S., Berezikov, E. & Ketting, R. F. Zili is required for germ cell differentiation and meiosis in zebrafish. EMBO J.27, 2702–2711 (2008). CASPubMedPubMed Central Google Scholar
Kawaoka, S. et al. The Bombyx ovary-derived cell line endogenously expresses PIWI/PIWI-interacting RNA complexes. RNA15, 1258–1264 (2009). CASPubMedPubMed Central Google Scholar
Robine, N. et al. A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr. Biol.19, 2066–2076 (2009). CASPubMedPubMed Central Google Scholar
Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell133, 116–127 (2008). CASPubMedPubMed Central Google Scholar
Haase, A. D. et al. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev.24, 2499–2504 (2010). CASPubMedPubMed Central Google Scholar
Olivieri, D., Sykora, M. M., Sachidanandam, R., Mechtler, K. & Brennecke, J. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J.29, 3301–3317 (2010). CASPubMedPubMed Central Google Scholar
Qi, H. et al. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J. Biol. Chem.286, 3789–3797 (2011). References 34, 54 and 55 provided evidence that cytoplasmic Yb-bodies are the sites for primary piRNA biogenesis inD. melanogaster. Both biochemical and genetic approaches suggested a requirement for ARMI, FS(1)YB and other factors, such as ZUC, in the primary piRNA pathway. CASPubMed Google Scholar
Szakmary, A., Reedy, M., Qi, H. & Lin, H. The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J. Cell Biol.185, 613–627 (2009). CASPubMedPubMed Central Google Scholar
Prud'homme, N., Gans, M., Masson, M., Terzian, C. & Bucheton, A. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics139, 697–711 (1995). CASPubMed Google Scholar
Desset, S., Meignin, C., Dastugue, B. & Vaury, C. COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics164, 501–509 (2003). CASPubMedPubMed Central Google Scholar
Mével-Ninio, M., Pelisson, A., Kinder, J., Campos, A. R. & Bucheton, A. The flamenco locus controls the gypsy and ZAM retroviruses and is required for Drosophila oogenesis. Genetics175, 1615–1624 (2007). PubMedPubMed Central Google Scholar
Desset, S., Buchon, N., Meignin, C., Coiffet, M. & Vaury, C. In Drosophila melanogaster the COM locus directs the somatic silencing of two retrotransposons through both Piwi-dependent and -independent pathways. PLoS ONE3, e1526 (2008). PubMedPubMed Central Google Scholar
Nagao, A., Mituyama, T., Huang, H., Chen, D., Siomi, M. C. & Siomi, H. Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. RNA16, 2503–2515 (2010). CASPubMedPubMed Central Google Scholar
Brennecke, J. et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science322, 1387–1392 (2008). CASPubMedPubMed Central Google Scholar
Bourc'his, D. & Voinnet, O. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science330, 617–622 (2010). CASPubMed Google Scholar
Vagin, V. V. Hannon, G. J. & Aravin, A. A. Arginine methylation as a molecular signature of the Piwi small RNA pathway. Cell Cycle8, 4003–4004 (2009). CASPubMed Google Scholar
Siomi, M. C., Mannen, T. & Siomi, H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev.24, 636–646 (2010). CASPubMedPubMed Central Google Scholar
Kirino, Y. et al. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nature Cell Biol.11, 652–658 (2009). CASPubMed Google Scholar
Nishida, K. M. et al. Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J.28, 3820–3831 (2009). CASPubMedPubMed Central Google Scholar
Vagin, V. V. et al. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev.23, 1749–1762 (2009). CASPubMedPubMed Central Google Scholar
Chen, C. et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc. Natl Acad. Sci. USA106, 20336–20341 (2009). CASPubMedPubMed Central Google Scholar
Reuter, M. et al. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nature Struct. Mol. Biol.16, 639–646 (2009). CAS Google Scholar
Shoji, M. et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev. Cell17, 775–787 (2009). CASPubMed Google Scholar
Vasileva, A., Tiedau, D., Firooznia, A., Müller-Reichert, T. & Jessberger, R. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr. Biol.19, 630–639 (2009). CASPubMedPubMed Central Google Scholar
Wang, J., Saxe, J. P., Tanaka, T., Chuma, S. & Lin, H. Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr. Biol.19, 640–644 (2009). CASPubMedPubMed Central Google Scholar
Kirino, Y. et al. Arginine methylation of vasa protein is conserved across phyla. J. Biol. Chem.285, 8148–8154 (2010). References 66–74 identify direct interactions between the N termini of PIWI proteins — which carry dimethylated arginine residues — and proteins with Tudor domains that recognize this modification. The authors show that the PIWI–Tudor protein interactions are crucial for the proper intracellular localization of the piRNA machinery and its silencing mechanism. CASPubMedPubMed Central Google Scholar
Patil, V. S. & Kai, T. Repression of retroelements in Drosophila germline via piRNA pathway by the tudor domain protein Tejas. Curr. Biol.20, 724–730 (2010). CASPubMed Google Scholar
Boswell, R. E. & Mahowald, A. P. tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell43, 97–104 (1985). CASPubMed Google Scholar
Thomson, T. & Lasko, P. Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning. Genesis40, 164–170 (2004). CASPubMed Google Scholar
Thomson, T. & Lasko, P. Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res.15, 281–291 (2005). CASPubMed Google Scholar
Arkov, A. L., Wang, J. Y. S., Ramos, A. & Lehmann, R. The role of Tudor domains in germline development and polar granule architecture. Development133, 4053–4062 (2006). CASPubMed Google Scholar
Liu, H. et al. Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes Dev.24, 1876–1881 (2010). CASPubMedPubMed Central Google Scholar
Liu, K. et al. Structural basis for recognition of arginine methylated Piwi proteins by the extended Tudor domain. Proc. Natl Acad. Sci. USA107, 18398–18403 (2010). CASPubMedPubMed Central Google Scholar
Lim, A. K & Kai, T. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc. Natl Acad. Sci. USA104, 6714–6719 (2007). CASPubMedPubMed Central Google Scholar
Frost, R. J. et al. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc. Natl Acad. Sci. USA107, 11847–11852 (2010). CASPubMedPubMed Central Google Scholar
Zheng, K. et al. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc. Natl Acad. Sci. USA107, 11841–11846 (2010). CASPubMedPubMed Central Google Scholar
Liang, L., Diehl-Jones, W. & Lasko, P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development120, 1201–1211 (1994). CASPubMed Google Scholar
Toyooka, Y. et al. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev.93, 139–149 (2000). CASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev.24, 887–892 (2010). CASPubMedPubMed Central Google Scholar
Sengoku. T., Nureki. O., Nakamura. A., Kobayashi. S. & Yokoyama. S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell125, 287–300 (2006). CASPubMed Google Scholar
Soper, S. F. et al. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev. Cell15, 285–297 (2008). CASPubMedPubMed Central Google Scholar
Costa, Y. et al. Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum. Mol. Genet.15, 2324–2334 (2006). CASPubMed Google Scholar
Findley, S. D., Tamanaha, M., Clegg, N. J. & Ruohola-Baker, H. Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development130, 859–871 (2003). CASPubMed Google Scholar
Aravin, A. A. et al. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet.5, e1000764 (2009). PubMedPubMed Central Google Scholar
Ma, L. et al. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet.5, e1000635 (2009). PubMedPubMed Central Google Scholar
Anne, J. & Mechler, B. M. Valois, a component of the nuage and pole plasm, is involved in assembly of these structures, and binds to Tudor and the methyltransferase Capsuléen. Development132, 2167–2177 (2005). CASPubMed Google Scholar
Kotaja, N., Lin, H., Parvinen, M. & Sassone-Corsi, P. Interplay of PIWI/Argonaute protein MIWI and kinesin KIF17b in chromatoid bodies of male germ cells. J. Cell Sci.119, 2819–2825 (2006). CASPubMed Google Scholar
Onohara, Y., Fujiwara, T., Yasukochi, T., Himeno, M. & Yokota, S. Localization of mouse vasa homolog protein in chromatoid body and related nuage structures of mammalian spermatogenic cells during spermatogenesis. Histochem. Cell Biol.133, 627–639 (2010). References 92, 95 and 96 revealed that, in mouse germ cells, components of piRNA machinery are localized in specific granular structures that were originally known as CBs or intermitochondrial cement. CASPubMed Google Scholar
Kojima, K. et al. Associations between PIWI proteins and TDRD1/MTR-1 are critical for integrated subcellular localization in murine male germ cells. Genes Cells14, 1155–1165 (2009). CASPubMed Google Scholar
al-Mukhtar, K. A. & Webb, A. C. An ultrastructural study of primordial germ cells, oogonia and early oocytes in Xenopus laevis. J. Embryol. Exp. Morphol.26, 195–217 (1971). CASPubMed Google Scholar
Eddy, E. M. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol.43, 229–280 (1975). CASPubMed Google Scholar
Illmensee, K. & Mahowald, A. P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc. Natl Acad. Sci. USA71, 1016–1020 (1974). CASPubMedPubMed Central Google Scholar
Kotaja, N. et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc. Natl Acad. Sci. USA103, 2647–2652 (2006). CASPubMedPubMed Central Google Scholar