Immune attack: the role of inflammation in Alzheimer disease (original) (raw)
Wimo, A. & Prince, M. World Alzheimer Report 2010: The Global Economic Impact of Dementia (Alzheimer's Disease International (ADI), 2010). Google Scholar
Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science297, 353–356 (2002). CASPubMed Google Scholar
Prokop, S., Miller, K. R. & Heppner, F. L. Microglia actions in Alzheimer's disease. Acta Neuropathol.126, 461–477 (2013). ArticleCASPubMed Google Scholar
Perry, V. H. & Holmes, C. Microglial priming in neurodegenerative disease. Nature Rev. Neurol.10, 217–224 (2014). ArticleCAS Google Scholar
Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia61, 71–90 (2013). ArticlePubMed Google Scholar
Sudduth, T. L., Schmitt, F. A., Nelson, P. T. & Wilcock, D. M. Neuroinflammatory phenotype in early Alzheimer's disease. Neurobiol. Aging34, 1051–1059 (2013). ArticleCASPubMed Google Scholar
Krstic, D. & Knuesel, I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Rev. Neurol.9, 25–34 (2013). ArticleCAS Google Scholar
Hickman, S. E. & El Khoury, J. TREM2 and the neuroimmunology of Alzheimer's disease. Biochem. Pharmacol.88, 495–498 (2014). ArticleCASPubMed Google Scholar
Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nature Rev. Immunol.14, 463–477 (2014). ArticleCAS Google Scholar
Jonsson, T. et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature488, 96–99 (2012). ArticleCASPubMed Google Scholar
Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med.2, 864–870 (1996). This report showed that all common forms of familial AD could be integrated into a unified pathogenic scheme. ArticleCASPubMed Google Scholar
Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med.2, a006270 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet372, 216–223 (2008). ArticleCASPubMed Google Scholar
Giacobini, E. & Gold, G. Alzheimer disease therapy — moving from amyloid-β to tau. Nature Rev. Neurol.9, 677–686 (2013). ArticleCAS Google Scholar
Wyss-Coray, T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nature Med.12, 1005–1015 (2006). CASPubMed Google Scholar
Zhang, B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell153, 707–720 (2013). This tour-de-force of bioinformatics illuminated the heretofore cryptic relevance of inflammation-system genes for AD pathogenesis. ArticleCASPubMedPubMed Central Google Scholar
Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N. Engl. J. Med.368, 107–116 (2013). ArticleCASPubMed Google Scholar
Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med.368, 117–127 (2013). These two back-to-back studies identified rare variants of a single myeloid cell receptor as conferring surprisingly high risk for late-onset sporadic AD. ArticleCASPubMed Google Scholar
Bradshaw, E. M. et al. CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology. Nature Neurosci.16, 848–850 (2013). ArticleCASPubMed Google Scholar
Tarkowski, E., Andreasen, N., Tarkowski, A. & Blennow, K. Intrathecal inflammation precedes development of Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry74, 1200–1205 (2003). ArticleCASPubMedPubMed Central Google Scholar
Brosseron, F., Krauthausen, M., Kummer, M. & Heneka, M. T. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol. Neurobiol.50, 534–544 (2014). ArticleCASPubMedPubMed Central Google Scholar
Krstic, D. et al. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J. Neuroinflamm.9, 151 (2012). This study shows that unspecific immune activation maternally and postnatally in wild-type mice can induce full-blown AD pathology, thus causally linking (early) immune stimulation and the development of AD pathology. ArticleCAS Google Scholar
Perry, V. H. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol.120, 277–286 (2010). ArticleCASPubMed Google Scholar
Cunningham, C. et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry65, 304–312 (2009). ArticleCASPubMedPubMed Central Google Scholar
Holmes, C. et al. Systemic inflammation and disease progression in Alzheimer disease. Neurology73, 768–774 (2009). This mechanistic clinical research study showed that AD patients with frequent, mild intercurrent infections deteriorated more rapidly, supporting the influence of systemic inflammation on disease course. ArticleCASPubMedPubMed Central Google Scholar
Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflamm.9, 179 (2012). ArticleCAS Google Scholar
Schwartz, M. & Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nature Rev. Neurol.6, 405–410 (2010). ArticleCAS Google Scholar
Kyrkanides, S. et al. Osteoarthritis accelerates and exacerbates Alzheimer's disease pathology in mice. J. Neuroinflamm.8, 112 (2011). Article Google Scholar
Abuabara, K. et al. Cause-specific mortality in patients with severe psoriasis: a population-based cohort study in the U.K. Br. J. Dermatol.163, 586–592 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gisondi, P. et al. Mild cognitive impairment in patients with moderate to severe chronic plaque psoriasis. Dermatology228, 78–85 (2014). ArticlePubMed Google Scholar
Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest.122, 153–162 (2012). ArticleCASPubMed Google Scholar
Takeda, S. et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl Acad. Sci. USA107, 7036–7041 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mayeux, R. et al. Genetic susceptibility and head injury as risk factors for Alzheimer's disease among community-dwelling elderly persons and their first-degree relatives. Ann. Neurol.33, 494–501 (1993). ArticleCASPubMed Google Scholar
Heneka, M. T. et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J. Neurosci.26, 1343–1354 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol.28, 429–436 (2007). ArticleCASPubMed Google Scholar
Bornemann, K. D. et al. Aβ-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am. J. Pathol.158, 63–73 (2001). ArticleCASPubMedPubMed Central Google Scholar
Stalder, A. K. et al. Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J. Neurosci.25, 11125–11132 (2005). ArticleCASPubMedPubMed Central Google Scholar
Eikelenboom, P. et al. Neuroinflammation in Alzheimer's disease and prion disease. Glia40, 232–239 (2002). ArticleCASPubMed Google Scholar
Streit, W. J. Microglia and Alzheimer's disease pathogenesis. J. Neurosci. Res.77, 1–8 (2004). ArticleCASPubMed Google Scholar
Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neurosci.14, 1227–1235 (2011). ArticleCASPubMed Google Scholar
International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature476, 214–219 (2011).
Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genet.43, 436–441 (2011). ArticleCASPubMed Google Scholar
Thambisetty, M. et al. Effect of complement CR1 on brain amyloid burden during aging and its modification by APOE genotype. Biol. Psychiatry73, 422–428 (2013). ArticleCASPubMed Google Scholar
Lambert, J. C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genet.41, 1094–1099 (2009). ArticleCASPubMed Google Scholar
Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet.43, 429–435 (2011). ArticleCASPubMed Google Scholar
Liang, Y. & Tedder, T. F. Identification of a CD20-, FcɛRIβ-, and HTm4-related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics72, 119–127 (2001). ArticleCASPubMed Google Scholar
Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nature Neurosci.15, 1074–1077 (2012). ArticleCASPubMed Google Scholar
Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science344, 519–523 (2014). ArticleCASPubMedPubMed Central Google Scholar
Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA304, 1787–1794 (2010). ArticleCASPubMedPubMed Central Google Scholar
Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Rev. Neurosci.15, 300–312 (2014). ArticleCAS Google Scholar
Du Yan, S. et al. Amyloid-β peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl Acad. Sci. USA94, 5296–5301 (1997). ArticleCASPubMedPubMed Central Google Scholar
El Khoury, J. et al. Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature382, 716–719 (1996). ArticleCASPubMed Google Scholar
Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. & Landreth, G. E. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci.23, 2665–2674 (2003). ArticleCASPubMedPubMed Central Google Scholar
Paresce, D. M., Ghosh, R. N. & Maxfield, F. R. Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor. Neuron17, 553–565 (1996). ArticleCASPubMed Google Scholar
Stewart, C. R. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nature Immunol.11, 155–161 (2010). ArticleCAS Google Scholar
Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunol.14, 812–820 (2013). ArticleCAS Google Scholar
Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci.24, 9838–9846 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fassbender, K. et al. The LPS receptor (CD14) links innate immunity with Alzheimer's disease. FASEB J.18, 203–205 (2004). ArticleCASPubMed Google Scholar
Griffin, W. S. et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. Natl Acad. Sci. USA86, 7611–7615 (1989). ArticleCASPubMedPubMed Central Google Scholar
Patel, N. S. et al. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer's disease. J. Neuroinflamm.2, 9 (2005). ArticleCAS Google Scholar
Vom Berg, J. et al. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nature Med.18, 1812–1819 (2012). This study showed that genetic as well as pharmacological blocking of the IL-12–IL-23 pathway substantially ameliorated AD pathology in an AD mouse model and provided the first hints that IL-12 and IL-23 are upregulted in the CSF of patients with AD, thus offering a druggable immune target made for repurposing existing IL-12 and IL-23 inhibitors. ArticleCASPubMed Google Scholar
Fillit, H. et al. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci. Lett.129, 318–320 (1991). ArticleCASPubMed Google Scholar
Tan, J. et al. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nature Neurosci.5, 1288–1293 (2002). ArticleCASPubMed Google Scholar
Tan, J. et al. Microglial activation resulting from CD40–CD40L interaction after β-amyloid stimulation. Science286, 2352–2355 (1999). ArticleCASPubMed Google Scholar
Jin, J. J., Kim, H. D., Maxwell, J. A., Li, L. & Fukuchi, K. Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer's disease. J. Neuroinflamm.5, 23 (2008). ArticleCAS Google Scholar
Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nature Rev. Mol. Cell Biol.8, 101–112 (2007). ArticleCAS Google Scholar
Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm.117, 949–960 (2010). ArticleCASPubMed Google Scholar
Streit, W. J., Sammons, N. W., Kuhns, A. J. & Sparks, D. L. Dystrophic microglia in the aging human brain. Glia45, 208–212 (2004). ArticlePubMed Google Scholar
Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nature Rev. Neurol.6, 193–201 (2010). Article Google Scholar
Krabbe, G. et al. Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE8, e60921 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice. J. Neurosci.28, 8354–8360 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lucin, K. M. et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease. Neuron79, 873–886 (2013). This paper shows that beclin 1 is altered in microglia derived from AD patients and provides the first molecular explanations of some aspects of microglial impairment in AD. ArticleCASPubMedPubMed Central Google Scholar
Grathwohl, S. A. et al. Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nature Neurosci.12, 1361–1363 (2009). ArticleCASPubMed Google Scholar
Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell155, 1596–1609 (2013). This paper demonstrates that microglia have an important role in learning and memory by providing neurotrophic factors, such as BDNF. ArticleCASPubMedPubMed Central Google Scholar
Hong, S. et al. Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron82, 308–319 (2014). ArticleCASPubMedPubMed Central Google Scholar
Verdier, Y., Zarandi, M. & Penke, B. Amyloid β–peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J. Pept. Sci.10, 229–248 (2004). ArticleCASPubMed Google Scholar
Wake, H., Moorhouse, A. J. & Nabekura, J. Functions of microglia in the central nervous system — beyond the immune response. Neuron Glia Biol.7, 47–53 (2011). ArticlePubMed Google Scholar
Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell158, 15–24 (2014). ArticleCASPubMed Google Scholar
Frank, S. et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia56, 1438–1447 (2008). ArticlePubMed Google Scholar
Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nature Neurosci.16, 1896–1905 (2013). ArticleCASPubMed Google Scholar
Hsieh, C. L. et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem.109, 1144–1156 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kleinberger, G. et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl Med.6, 243ra86 (2014). ArticlePubMedCAS Google Scholar
Jay, T. R. et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. J. Exp. Med.212, 287–295 (2015). These two publications show the importance and function of TREM2 in AD mouse models; that is, to promote the survival of activated microglia and myeloid cells, to recruit these cells to Aβplaques through sensing for Aβ-associated lipids, and to modulate hippocampal Aβburden. ArticleCASPubMedPubMed Central Google Scholar
Ulrich, J. D. et al. Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2. Mol. Neurodegener.9, 20 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lajaunias, F., Dayer, J. M. & Chizzolini, C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur. J. Immunol.35, 243–251 (2005). ArticleCASPubMed Google Scholar
Miller, K. R. & Streit, W. J. The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol.3, 245–253 (2007). ArticlePubMed Google Scholar
El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Med.13, 432–438 (2007). ArticleCASPubMed Google Scholar
Hawkes, C. A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA106, 1261–1266 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science239, 290–292 (1988). ArticleCASPubMed Google Scholar
Lai, A. Y. & McLaurin, J. Clearance of amyloid-β peptides by microglia and macrophages: the issue of what, when and where. Future Neurol.7, 165–176 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci.31, 11159–11171 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gomez-Nicola, D., Schetters, S. T. & Perry, V. H. Differential role of CCR2 in the dynamics of microglia and perivascular macrophages during prion disease. Glia62, 1041–1052 (2014). ArticlePubMedPubMed Central Google Scholar
Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol.119, 7–35 (2010). ArticlePubMed Google Scholar
Medeiros, R. & LaFerla, F. M. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp. Neurol.239, 133–138 (2013). ArticleCASPubMed Google Scholar
Heneka, M. T. et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflamm.2, 22 (2005). ArticleCAS Google Scholar
Olabarria, M., Noristani, H. N., Verkhratsky, A. & Rodriguez, J. J. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer's disease mouse model: mechanism for deficient glutamatergic transmission? Mol. Neurodegener.6, 55 (2011). ArticleCASPubMedPubMed Central Google Scholar
Olabarria, M., Noristani, H. N., Verkhratsky, A. & Rodriguez, J. J. Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease. Glia58, 831–838 (2010). PubMed Google Scholar
Furman, J. L. et al. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer's disease. J. Neurosci.32, 16129–16140 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nagele, R. G., D'Andrea, M. R., Lee, H., Venkataraman, V. & Wang, H. Y. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res.971, 197–209 (2003). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med.9, 453–457 (2003). This paper demonstrates that astrocytes can have an important impact on catabolising Aβ. ArticleCASPubMed Google Scholar
Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med.10, 719–726 (2004). ArticleCASPubMed Google Scholar
Terwel, D. et al. Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis. J. Neurosci.31, 7049–7059 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pihlaja, R. et al. Multiple cellular and molecular mechanisms are involved in human Aβ clearance by transplanted adult astrocytes. Glia59, 1643–1657 (2011). ArticlePubMed Google Scholar
Wyss-Coray, T. & Rogers, J. Inflammation in Alzheimer disease — a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med.2, a006346 (2012). ArticlePubMedPubMed Central Google Scholar
Roth, A. D., Ramirez, G., Alarcon, R. & Von Bernhardi, R. Oligodendrocytes damage in Alzheimer's disease: beta amyloid toxicity and inflammation. Biol. Res.38, 381–387 (2005). ArticleCASPubMed Google Scholar
Mitew, S. et al. Focal demyelination in Alzheimer's disease and transgenic mouse models. Acta Neuropathol.119, 567–577 (2010). ArticleCASPubMed Google Scholar
Hosokawa, M., Klegeris, A., Maguire, J. & McGeer, P. L. Expression of complement messenger RNAs and proteins by human oligodendroglial cells. Glia42, 417–423 (2003). ArticlePubMed Google Scholar
Yamada, T., Akiyama, H. & McGeer, P. L. Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d. Neurosci. Lett.112, 161–166 (1990). ArticleCASPubMed Google Scholar
Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA95, 10896–10901 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. et al. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am. J. Pathol.177, 2549–2562 (2010). ArticleCASPubMedPubMed Central Google Scholar
Singhrao, S. K., Muller, C. T., Gilbert, S. J., Duance, V. C. & Archer, C. W. An immunofluorescence method for postembedded tissue in the acrylic resin Technovit 9100 New using fluorescein isothiocyanate secondary detection. Microsc. Res. Tech.72, 501–506 (2009). ArticleCASPubMed Google Scholar
Yang, L. B., Li, R., Meri, S., Rogers, J. & Shen, Y. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer's disease. J. Neurosci.20, 7505–7509 (2000). ArticleCASPubMedPubMed Central Google Scholar
Walker, D. G., Dalsing-Hernandez, J. E., Campbell, N. A. & Lue, L. F. Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation. Exp. Neurol.215, 5–19 (2009). ArticleCASPubMed Google Scholar
Sagare, A. P., Bell, R. D. & Zlokovic, B. V. Neurovascular dysfunction and faulty amyloid β-peptide clearance in Alzheimer disease. Cold Spring Harb. Perspect. Med.2, a011452 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Vukic, V. et al. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK–AP1 signaling pathway. Neurobiol. Dis.34, 95–106 (2009). ArticleCASPubMed Google Scholar
Palmer, J. C., Barker, R., Kehoe, P. G. & Love, S. Endothelin-1 is elevated in Alzheimer's disease and upregulated by amyloid-β. J. Alzheimers Dis.29, 853–861 (2012). ArticleCASPubMed Google Scholar
Grammas, P. Neurovascular dysfunction, inflammation and endothelial activation: implications for the pathogenesis of Alzheimer's disease. J. Neuroinflamm.8, 26 (2011). ArticleCAS Google Scholar
Lyros, E., Bakogiannis, C., Liu, Y. & Fassbender, K. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer's disease. Curr. Alzheimer Res.11, 18–26 (2014). ArticleCASPubMed Google Scholar
Chiang, K. & Koo, E. H. Emerging therapeutics for Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol.54, 381–405 (2014). ArticleCASPubMed Google Scholar
Michelucci, A., Heurtaux, T., Grandbarbe, L., Morga, E. & Heuschling, P. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-β. J. Neuroimmunol.210, 3–12 (2009). ArticleCASPubMed Google Scholar
Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep.6, 13 (2014). ArticlePubMedPubMed Central Google Scholar
Anand, P., Singh, B., Jaggi, A. S. & Singh, N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch. Pharmacol.385, 657–670 (2012). ArticleCASPubMed Google Scholar
Piette, F. et al. Masitinib as an adjunct therapy for mild-to-moderate Alzheimer's disease: a randomised, placebo-controlled phase 2 trial. Alzheimers Res. Ther.3, 16 (2011). ArticleCASPubMedPubMed Central Google Scholar
Breitner, J. C. & Zandi, P. P. Do nonsteroidal antiinflammatory drugs reduce the risk of Alzheimer's disease? N. Engl. J. Med.345, 1567–1568 (2001). ArticleCASPubMed Google Scholar
in t' Veld, B. A. et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease. N. Engl. J. Med.345, 1515–1521 (2001). ArticleCASPubMed Google Scholar
Aisen, P. S. The potential of anti-inflammatory drugs for the treatment of Alzheimer's disease. Lancet Neurol.1, 279–284 (2002). ArticleCASPubMed Google Scholar
Group, A. R. et al. Cognitive function over time in the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol.65, 896–905 (2008). Article Google Scholar
Group, A. R. et al. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology68, 1800–1808 (2007). ArticleCAS Google Scholar
Aisen, P. S. et al. Effects of rofecoxib or naproxen versus placebo on Alzheimer disease progression: a randomized controlled trial. JAMA289, 2819–2826 (2003). ArticleCASPubMed Google Scholar
Breitner, J. C. et al. Extended results of the Alzheimer's disease anti-inflammatory prevention trial. Alzheimers Dement.7, 402–411 (2011). ArticlePubMedPubMed Central Google Scholar
Lo, A. W., Ho, C., Cummings, J. & Kosik, K. S. Parallel discovery of Alzheimer's therapeutics. Sci. Transl Med.6, 241cm5 (2014). ArticlePubMed Google Scholar
Guerreiro, R. J. et al. Peripheral inflammatory cytokines as biomarkers in Alzheimer's disease and mild cognitive impairment. Neurodegener. Dis.4, 406–412 (2007). ArticleCASPubMed Google Scholar
Hu, W. T. et al. Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology79, 897–905 (2012). Using an unbiased proteome approach, this study provides evidence for changes in immune-relevant factors in the plasma of MCI and AD patients. ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. et al. Interleukin-23 receptor polymorphisms are associated with Alzheimer's disease in Han Chinese. J. Neuroimmunol.271, 43–48 (2014). ArticleCASPubMed Google Scholar
Tan, M. S. et al. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J. Alzheimers Dis.38, 633–646 (2014). ArticleCASPubMed Google Scholar
Griffin, W. S. Neuroinflammatory cytokine signaling and Alzheimer's disease. N. Engl. J. Med.368, 770–771 (2013). ArticleCASPubMed Google Scholar
Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunol.9, 857–865 (2008). ArticleCAS Google Scholar
Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature493, 674–678 (2013). This study shows that NLRP3 activation occurs in microglia in patients with AD and provides evidence that inhibition of NLRP3 reduces AD pathologyin vivo. ArticleCASPubMed Google Scholar
Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Med.21, 248–255 (2015). ArticleCASPubMed Google Scholar
Yamanaka, M. et al. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci.32, 17321–17331 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science335, 1503–1506 (2012). ArticleCASPubMedPubMed Central Google Scholar
Veeraraghavalu, K. et al. Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science340, 924-f (2013). ArticlePubMedCAS Google Scholar
Tesseur, I. et al. Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science340, 924-e (2013). ArticlePubMedCAS Google Scholar
Price, A. R. et al. Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science340, 924-d (2013). ArticlePubMedCAS Google Scholar
Fitz, N. F., Cronican, A. A., Lefterov, I. & Koldamova, R. Comment on “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models”. Science340, 924-c (2013). ArticlePubMedCAS Google Scholar
Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nature Neurosci.13, 411–413 (2010). ArticleCASPubMed Google Scholar
Nash, K. R. et al. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging34, 1540–1548 (2013). ArticleCASPubMedPubMed Central Google Scholar
Frenkel, D. et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nature Commun.4, 2030 (2013). ArticleCAS Google Scholar
Wyss-Coray, T. et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc. Natl Acad. Sci. USA99, 10837–10842 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fonseca, M. I., Zhou, J., Botto, M. & Tenner, A. J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer's disease. J. Neurosci.24, 6457–6465 (2004). ArticleCASPubMedPubMed Central Google Scholar
Maier, M. et al. Complement C3 deficiency leads to accelerated amyloid β plaque deposition and neurodegeneration and modulation of the microglia/macrophage phenotype in amyloid precursor protein transgenic mice. J. Neurosci.28, 6333–6341 (2008). ArticleCASPubMedPubMed Central Google Scholar
Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science333, 1456–1458 (2011). ArticleCASPubMed Google Scholar
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron74, 691–705 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci.35, 369–389 (2012). ArticleCASPubMed Google Scholar
van der Wal, E. A., Gómez-Pinilla, F. & Cotman, C. W. Transforming growth factor-beta 1 is in plaques in Alzheimer and Down pathologies. Neuroreport4, 69–72 (1993). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nature Med.7, 612–618 (2001). ArticleCASPubMed Google Scholar
Town, T. et al. Blocking TGF-β–Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nature Med.14, 681–687 (2008). This paper demonstrates that inhibition of TGFβin myeloid cells can reduce AD pathology in mice. ArticleCASPubMed Google Scholar
Swardfager, W. et al. A meta-analysis of cytokines in Alzheimer's disease. Biol. Psychiatry68, 930–941 (2010). ArticleCASPubMed Google Scholar
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron49, 489–502 (2006). ArticleCASPubMed Google Scholar
Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nature Med.6, 916–919 (2000). ArticleCASPubMed Google Scholar
Garcia-Alloza, M. et al. A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol. Dis.28, 286–292 (2007). ArticleCASPubMedPubMed Central Google Scholar
Golde, T. E., Das, P. & Levites, Y. Quantitative and mechanistic studies of Aβ immunotherapy. CNS Neurol. Disord. Drug Targets8, 31–49 (2009). ArticleCASPubMed Google Scholar
Koenigsknecht-Talboo, J. et al. Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice. J. Neurosci.28, 14156–14164 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wilcock, D. M. et al. Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanisms both independent of and associated with microglial activation. J. Neurosci.23, 3745–3751 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wilcock, D. M. et al. Microglial activation facilitates Aβ plaque removal following intracranial anti-Aβ antibody administration. Neurobiol. Dis.15, 11–20 (2004). ArticleCASPubMed Google Scholar
Wilcock, D. M. et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J. Neurosci.24, 6144–6151 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wang, A., Das, P., Switzer, R. C. 3rd, Golde, T. E. & Jankowsky, J. L. Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-β immunotherapy. J. Neurosci.31, 4124–4136 (2011). ArticleCASPubMedPubMed Central Google Scholar
Citron, M. Alzheimer's disease: strategies for disease modification. Nature Rev. Drug Discov.9, 387–398 (2010). ArticleCAS Google Scholar
Medeiros, R. et al. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am. J. Pathol.182, 1780–1789 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kiyota, T. et al. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther.19, 724–733 (2012). ArticleCASPubMed Google Scholar
Chakrabarty, P. et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron85, 519–533 (2015). ArticleCASPubMedPubMed Central Google Scholar
Jin, P. et al. Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2,4-bis(p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer's disease mice model. J. Neuroinflamm.10, 2 (2013). CAS Google Scholar
Chakrabarty, P. et al. Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Mol. Neurodegener.7, 36 (2012). ArticleCASPubMedPubMed Central Google Scholar
Imbimbo, B. P. et al. CHF5074, a novel γ-secretase modulator, attenuates brain β-amyloid pathology and learning deficit in a mouse model of Alzheimer's disease. Br. J. Pharmacol.156, 982–993 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sivilia, S. et al. Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice. BMC Neurosci.14, 44 (2013). ArticleCASPubMedPubMed Central Google Scholar
CERESPIR. CERESPIR Incorporated is pleased with positive interim Phase 2 results for CHF 5074 in patients with mild cognitive impairment, presented by Chiesi at the AAIC 2013 Meeting in Boston. CERESPIR[online], (2013).
Ross, J. et al. CHF5074 reduces biomarkers of neuroinflammation in patients with mild cognitive impairment: a 12-week, double-blind, placebo-controlled study. Curr. Alzheimer Res.10, 742–753 (2013). ArticleCASPubMed Google Scholar
Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Med.20, 659–663 (2014). These two studies show that changes in blood-borne factors including immune molecules such as the chemokine CCL11 are linked to impaired neurogenesis and decline in cognitive performance during ageing, which can be rescued by transfer of young blood to aged mice. ArticleCASPubMed Google Scholar
Nathan, C. F., Murray, H. W., Wiebe, M. E. & Rubin, B. Y. Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J. Exp. Med.158, 670–689 (1983). ArticleCASPubMed Google Scholar
Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med.176, 287–292 (1992). ArticleCASPubMed Google Scholar
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol.164, 6166–6173 (2000). ArticleCASPubMed Google Scholar
Vahedi, G., Kanno, Y., Sartorelli, V. & O'Shea, J. J. Transcription factors and CD4 T cells seeking identity: masters, minions, setters and spikers. Immunology139, 294–298 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Rev. Immunol.11, 750–761 (2011). ArticleCAS Google Scholar
Lacey, D. C. et al. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol.188, 5752–5765 (2012). ArticleCASPubMed Google Scholar
Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity40, 274–288 (2014). ArticleCASPubMedPubMed Central Google Scholar
Chiu, I. M. et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep.4, 385–401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mucke, L. & Selkoe, D. J. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb. Perspect. Med.2, a006338 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Cui, Y. H. et al. Up-regulation of FPR2, a chemotactic receptor for amyloid β 1–42 (Aβ42), in murine microglial cells by TNFα. Neurobiol. Dis.10, 366–377 (2002). ArticleCASPubMed Google Scholar
Lotz, M. et al. Amyloid beta peptide 1–40 enhances the action of Toll-like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J. Neurochem.94, 289–298 (2005). ArticleCASPubMed Google Scholar
Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. & Landreth, G. E. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci.29, 11982–11992 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hu, J., Akama, K. T., Krafft, G. A., Chromy, B. A. & Van Eldik, L. J. Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release. Brain Res.785, 195–206 (1998). ArticleCASPubMed Google Scholar
Larson, M. et al. The complex PrPc–Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer's disease. J. Neurosci.32, 16857-71a (2012). PubMed Google Scholar
Papassotiropoulos, A. et al. A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer's disease. Ann. Neurol.45, 666–668 (1999). ArticleCASPubMed Google Scholar
Chakrabarty, P. et al. Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo: evidence against inflammation as a driving force for amyloid deposition. FASEB J.24, 548–559 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarty, P., Herring, A., Ceballos-Diaz, C., Das, P. & Golde, T. E. Hippocampal expression of murine TNFα results in attenuation of amyloid deposition in vivo. Mol. Neurodegener.6, 16 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, R. et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J. Neurosci.24, 1760–1771 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cheng, X., Yang, L., He, P., Li, R. & Shen, Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer's disease and non-demented patients. J. Alzheimers Dis.19, 621–630 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tobinick, E. L. & Gross, H. Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration. J. Neuroinflamm.5, 2 (2008). ArticleCAS Google Scholar
Ryu, J. K. & McLarnon, J. G. Block of purinergic P2X7 receptor is neuroprotective in an animal model of Alzheimer's disease. Neuroreport19, 1715–1719 (2008). ArticleCASPubMed Google Scholar
Diaz-Hernandez, J. I. et al. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3β and secretases. Neurobiol. Aging33, 1816–1828 (2012). ArticleCASPubMed Google Scholar