Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science319, 1543–1546 (2008). ArticleCAS Google Scholar
Brose, N., Hofmann, K., Hata, Y. & Südhof, T.C. Mammalian homologues of C. elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem.270, 25273–25280 (1995). ArticleCAS Google Scholar
Wang, Y., Okamoto, M., Schmitz, F., Hofman, K. & Südhof, T.C. RIM: a putative Rab3 effector in regulating synaptic vesicle fusion. Nature388, 593–598 (1997). ArticleCAS Google Scholar
Betz, A. et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron30, 183–196 (2001). ArticleCAS Google Scholar
Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature415, 321–326 (2002). ArticleCAS Google Scholar
Dulubova, I. et al. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? EMBO J.24, 2839–2850 (2005). ArticleCAS Google Scholar
Augustin, I. et al. The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J. Neurosci.21, 10–17 (2000). Article Google Scholar
Schlüter, O., Schmitz, F., Jahn, R., Rosenmund, C. & Südhof, T.C. A complete genetic analysis of neuronal Rab3 function. J. Neurosci.24, 6629–6637 (2004). Article Google Scholar
Rhee, J.-S. et al. Phorbol ester- and diacylglycerol-induced augmentation of neurotransmitter release from hippocampal neurons is mediated by Munc13s and not by PKCs. Cell108, 121–133 (2002). ArticleCAS Google Scholar
Junge, H.J. et al. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell118, 389–401 (2004). ArticleCAS Google Scholar
Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol.12, 1017–1018 (2005). ArticleCAS Google Scholar
Xia, Z. & Storm, D.R. The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci.6, 267–276 (2005). ArticleCAS Google Scholar
Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature99, 155–159 (1999). Article Google Scholar
DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature411, 484–489 (2001). ArticleCAS Google Scholar
Wayman, G.A., Lee, Y.S., Tokumitsu, H., Silva, A. & Soderling, T.R. Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron59, 914–931 (2008). ArticleCAS Google Scholar
Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron32, 1119–1131 (2001). ArticleCAS Google Scholar
Huang, Y.Y., Li, X.C. & Kandel, E.R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell79, 69–79 (1994). ArticleCAS Google Scholar
Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A. & Nicoll, R.A. Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science265, 878–882 (1994). Article Google Scholar
Augustin, I., Rosenmund, C., Südhof, T.C. & Brose, N. Munc-13 is essential for fusion competence of glutamatergic synaptic vesicles. Nature400, 457–461 (1999). ArticleCAS Google Scholar
Varoqueaux, F. et al. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA99, 9037–9042 (2002). ArticleCAS Google Scholar
Shiratsuchi, T. et al. Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. Biochem. Biophys. Res. Commun.251, 158–165 (1998). ArticleCAS Google Scholar
Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell115, 461–473 (2003). ArticleCAS Google Scholar
Madison, J.M., Nurrish, S. & Kaplan, J.M. UNC-13 interaction with syntaxin is required for synaptic transmission. Curr. Biol.15, 2236–2242 (2005). ArticleCAS Google Scholar
Stevens, D.R. et al. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr. Biol.15, 2243–2248 (2005). ArticleCAS Google Scholar
Ubach, J., Zhang, X., Shao, X., Südhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J.17, 3921–3930 (1998). ArticleCAS Google Scholar
Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell80, 929–938 (1995). ArticleCAS Google Scholar
Rizo, J. & Südhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem.273, 15879–15882 (1998). ArticleCAS Google Scholar
Shao, X., Fernandez, I., Südhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry37, 16106–16115 (1998). ArticleCAS Google Scholar
Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron32, 1057–1069 (2001). ArticleCAS Google Scholar
Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol.233, 123–138 (1993). ArticleCAS Google Scholar
Benfenati, F., Greengard, P., Brunner, J. & Bahler, M. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayer. J. Cell Biol.108, 1851–1862 (1989). ArticleCAS Google Scholar
Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+ binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem.273, 13995–14001 (1998). ArticleCAS Google Scholar
Zhang, X., Rizo, J. & Südhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998). ArticleCAS Google Scholar
Gerber, S.H., Rizo, J. & Südhof, T.C. Role of electrostatic and hydrophobic interactions in Ca2+-dependent phospholipid binding by the C2A-domain from synaptotagmin I. Diabetes51 Suppl 1, S12–S18 (2002). ArticleCAS Google Scholar
Shin, O.H., Rizo, J. & Südhof, T.C. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat. Neurosci.5, 649–656 (2002). ArticleCAS Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001). ArticleCAS Google Scholar
Pang, Z.P., Shin, O.H., Meyer, A.C., Rosenmund, C. & Südhof, T.C. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble _N_-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. J. Neurosci.26, 12556–12565 (2006). ArticleCAS Google Scholar
Bennett, M.K., Calakos, N. & Scheller, R.H. Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science257, 255–259 (1992). ArticleCAS Google Scholar
Li, C. et al. Ca2+-dependent and Ca2+-independent activities of neural and nonneural synaptotagmins. Nature375, 594–599 (1995). ArticleCAS Google Scholar
Chapman, E.R., Hanson, P.I., An, S. & Jahn, R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem.270, 23667–23671 (1995). ArticleCAS Google Scholar
Rosenmund, C. et al. Differential control of vesicle priming and short-term plasticity by Munc13 Isoforms. Neuron33, 411–424 (2002). ArticleCAS Google Scholar
Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron16, 1197–1207 (1996). ArticleCAS Google Scholar
Geppert, M. et al. A major Ca2+ sensor for transmitter release at a central synapse. Cell79, 717–727 (1994). ArticleCAS Google Scholar
Corbalan-Garcia, S. & Gomez-Fernandez, J.C. Protein kinase C regulatory domains: the art of decoding many different signals in membranes. Biochim. Biophys. Acta1761, 633–654 (2006). ArticleCAS Google Scholar
Wierda, K.D., Toonen, R.F., de Wit, H., Brussaard, A.B. & Verhage, M. Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron54, 275–290 (2007). ArticleCAS Google Scholar
Rhee, J.-S. et al. Phorbol ester- and DAG-induced augmentation of neurotransmitter release from hippocampal neurons is mediated by Munc13s and not by PKCs. Cell108, 121–133 (2002). ArticleCAS Google Scholar
Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci.27, 1200–1210 (2007). ArticleCAS Google Scholar
Ford, M.G. et al. Curvature of clathrin-coated pits driven by epsin. Nature419, 361–366 (2002). ArticleCAS Google Scholar
Rhee, J.-S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA102, 18664–18669 (2005). ArticleCAS Google Scholar
Eberhard, D.A. & Holz, R.W. Calcium promotes the accumulation of polyphosphoinositides in intact and permeabilized bovine adrenal Chromaffin cells. Cell. Mol. Neurobiol.11, 357–370 (1991). ArticleCAS Google Scholar
Wenk, M.R. et al. PIP kinase Iγ is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron32, 79–88 (2001). ArticleCAS Google Scholar
Itoh, T., Ishihara, H., Shibasaki, Y., Oka, Y. & Takenawa, T. Autophosphorylation of type I phosphatidylinositol phosphate kinase regulates its lipid kinase activity. J. Biol. Chem.275, 19389–19394 (2000). ArticleCAS Google Scholar
Park, S.J., Itoh, T. & Takenawa, T. Phosphatidylinositol 4-phosphate 5-kinase type I is regulated through phosphorylation response by extracellular stimuli. J. Biol. Chem.276, 4781–4787 (2001). ArticleCAS Google Scholar
Südhof, T.C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature375, 645–653 (1995). Article Google Scholar
Gerber, S.H. et al. Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science321, 1507–1510 (2008). ArticleCAS Google Scholar
Rizo, J. & Rosenmund, C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol.15, 665–674 (2008). ArticleCAS Google Scholar
Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science316, 1205–1208 (2007). ArticleCAS Google Scholar
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on Unix pipes. J. Biomol. NMR6, 277–293 (1995). ArticleCAS Google Scholar
Johnson, B.A. & Blevins, R.A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR4, 603–614 (1994). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Navaza, J. Amore: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994). Article Google Scholar
McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr.61, 458–464 (2005). Article Google Scholar
Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D Biol. Crystallogr.57, 1445–1450 (2001). ArticleCAS Google Scholar
Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCAS Google Scholar
Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr.50, 760–763 (1994).
Pyott, S.J. & Rosenmund, C. The effects of temperature on vesicular supply and release in autaptic cultures of rat and mouse hippocampal neurons. J. Physiol. (Lond.)539, 523–535 (2002). ArticleCAS Google Scholar
Maximov, A., Pang, Z., Tervo, D.G.R. & Südhof, T.C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods161, 75–87 (2007). Article Google Scholar