- Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).
Article CAS PubMed Google Scholar
- Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).
Article CAS PubMed Google Scholar
- Hanahan, D. & Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
Article CAS PubMed Google Scholar
- Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Article CAS PubMed Google Scholar
- Weis, S.M. & Cheresh, D.A. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med. 17, 1359–1370 (2011).
Article CAS PubMed Google Scholar
- Lindau, D., Gielen, P., Kroesen, M., Wesseling, P. & Adema, G.J. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105–115 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Shiao, S.L., Ganesan, A.P., Rugo, H.S. & Coussens, L.M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev. 25, 2559–2572 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Mantovani, A., Cassatella, M.A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).
Article CAS PubMed Google Scholar
- Khazaie, K. et al. The significant role of mast cells in cancer. Cancer Metastasis Rev. 30, 45–60 (2011).
Article CAS PubMed Google Scholar
- De Palma, M. & Naldini, L. Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim. Biophys. Acta 1796, 5–10 (2009).
CAS PubMed Google Scholar
- Palucka, K. & Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 12, 265–277 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Sangiovanni, A. et al. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 126, 1005–1014 (2004).
Article PubMed Google Scholar
- Beaugerie, L. et al. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology 145, 166–175 (2013).
Article PubMed Google Scholar
- Barcellos-Hoff, M.H., Lyden, D. & Wang, T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat. Rev. Cancer 13, 511–518 (2013).
Article CAS PubMed Google Scholar
- de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).
Article PubMed Google Scholar
- Stewart, T., Tsai, S.C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796–798 (1995).
Article CAS PubMed Google Scholar
- Gallagher, B., Wang, Z., Schymura, M.J., Kahn, A. & Fordyce, E.J. Cancer incidence in New York State acquired immunodeficiency syndrome patients. Am. J. Epidemiol. 154, 544–556 (2001).
Article CAS PubMed Google Scholar
- Schulz, T.F. Cancer and viral infections in immunocompromised individuals. Int. J. Cancer 125, 1755–1763 (2009).
Article CAS PubMed Google Scholar
- Vajdic, C.M. & van Leeuwen, M.T. Cancer incidence and risk factors after solid organ transplantation. Int. J. Cancer 125, 1747–1754 (2009).
Article CAS PubMed Google Scholar
- Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).
Article CAS PubMed Google Scholar
- Flavell, R.A., Sanjabi, S., Wrzesinski, S.H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nat. Rev. Immunol. 10, 554–567 (2010).
Article CAS PubMed Google Scholar
- Wang, H.W. & Joyce, J.A. Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle 9, 4824–4835 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Hagemann, T. et al. “Re-educating” tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Pyonteck, S.M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Cook, J. & Hagemann, T. Tumour-associated macrophages and cancer. Curr. Opin. Pharmacol. 13, 595–601 (2013).
Article CAS PubMed Google Scholar
- Bissell, M.J. & Hines, W.C. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Egeblad, M., Nakasone, E.S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Condeelis, J. & Pollard, J.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).
Article CAS PubMed Google Scholar
- Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).
Article CAS PubMed Google Scholar
- Coniglio, S.J. et al. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol. Med. 18, 519–527 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Joyce, J.A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).
Article CAS PubMed Google Scholar
- Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Lewis, C. & Murdoch, C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 167, 627–635 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Escribese, M.M., Casas, M. & Corbi, A.L. Influence of low oxygen tensions on macrophage polarization. Immunobiology 217, 1233–1240 (2012).
Article CAS PubMed Google Scholar
- Shime, H. et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc. Natl. Acad. Sci. USA 109, 2066–2071 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Cai, X. et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J. Mol. Cell Biol. 4, 341–343 (2012).
Article CAS PubMed Google Scholar
- Motz, G.T. & Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 39, 61–73 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).
Article CAS PubMed Google Scholar
- Talmadge, J.E. & Gabrilovich, D.I. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 13, 739–752 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Gabrilovich, D.I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).
Article CAS PubMed Google Scholar
- Gabrilovich, D.I., Velders, M.P., Sotomayor, E.M. & Kast, W.M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).
Article CAS PubMed Google Scholar
- Sinha, P., Clements, V.K. & Ostrand-Rosenberg, S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J. Immunol. 174, 636–645 (2005).
Article CAS PubMed Google Scholar
- Liu, C. et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109, 4336–4342 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Diaz-Montero, C.M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).
Article CAS PubMed Google Scholar
- Shirota, Y., Shirota, H. & Klinman, D.M. Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J. Immunol. 188, 1592–1599 (2012).
Article CAS PubMed Google Scholar
- Whiteside, T.L., Schuler, P. & Schilling, B. Induced and natural regulatory T cells in human cancer. Expert Opin. Biol. Ther. 12, 1383–1397 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Gasteiger, G. et al. IL-2–dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J. Exp. Med. 210, 1179–1187 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Bates, G.J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).
Article PubMed Google Scholar
- Fu, J. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328–2339 (2007).
Article PubMed Google Scholar
- Frey, D.M. et al. High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int. J. Cancer 126, 2635–2643 (2010).
CAS PubMed Google Scholar
- von Boehmer, H. & Daniel, C. Therapeutic opportunities for manipulating TReg cells in autoimmunity and cancer. Nat. Rev. Drug Discov. 12, 51–63 (2013).
Article CAS PubMed Google Scholar
- Fridman, W.H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).
Article CAS PubMed Google Scholar
- Blatner, N.R. et al. Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci. Transl. Med. 4, 164ra159 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Rech, A.J. et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci. Transl. Med. 4, 134ra162 (2012).
Article CAS Google Scholar
- Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).
Article CAS PubMed Google Scholar
- Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).
Article CAS PubMed Google Scholar
- Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).
CAS PubMed Google Scholar
- Dumont, N. et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15, 249–262 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Marsh, T., Pietras, K. & McAllister, S.S. Fibroblasts as architects of cancer pathogenesis. Biochim. Biophys. Acta 1832, 1070–1078 (2013).
Article CAS PubMed Google Scholar
- Zeisberg, E.M., Potenta, S., Xie, L., Zeisberg, M. & Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67, 10123–10128 (2007).
Article CAS PubMed Google Scholar
- Petersen, O.W. et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 162, 391–402 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Orr, B. et al. Identification of stromally expressed molecules in the prostate by tag-profiling of cancer-associated fibroblasts, normal fibroblasts and fetal prostate. Oncogene 31, 1130–1142 (2012).
Article CAS PubMed Google Scholar
- Zeisberg, M. et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).
Article CAS PubMed Google Scholar
- Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).
Article CAS PubMed Google Scholar
- Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).
Article CAS PubMed Google Scholar
- Erez, N., Truitt, M., Olson, P., Arron, S.T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB–dependent manner. Cancer Cell 17, 135–147 (2010).
Article CAS PubMed Google Scholar
- Zhang, X.H. et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 154, 1060–1073 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Bergamaschi, A. et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J. Pathol. 214, 357–367 (2008).
Article CAS PubMed Google Scholar
- Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111.014647 (2012).
Article CAS PubMed Google Scholar
- Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).
Article CAS PubMed Google Scholar
- Du, R. et al. HIF1α induces the recruitment of bone marrow–derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Semenza, G.L. Cancer-stromal cell interactions mediated by hypoxia-inducible factors promote angiogenesis, lymphangiogenesis, and metastasis. Oncogene 32, 4057–4063 (2013).
Article CAS PubMed Google Scholar
- Zhu, W. et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol. 80, 267–274 (2006).
Article CAS PubMed Google Scholar
- Ho, I.A. et al. Human bone marrow–derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 31, 146–155 (2013).
Article CAS PubMed Google Scholar
- Roodhart, J.M. et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 20, 370–383 (2011).
Article CAS PubMed Google Scholar
- Cuiffo, B.G. & Karnoub, A.E. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh. Migr. 6, 220–230 (2012).
Article PubMed PubMed Central Google Scholar
- Alitalo, A. & Detmar, M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31, 4499–4508 (2012).
Article CAS PubMed Google Scholar
- Schoppmann, S.F. et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161, 947–956 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Kerjaschki, D. et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat. Med. 12, 230–234 (2006).
Article CAS PubMed Google Scholar
- Zumsteg, A. et al. Myeloid cells contribute to tumor lymphangiogenesis. PLoS ONE 4, e7067 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Hunter, K.E. et al. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors. Oncogene published online, doi:10.1038/onc.2013.142 (6 May 2013).
Article CAS PubMed PubMed Central Google Scholar
- Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nat. Rev. Cancer 9, 285–293 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Mani, S.A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Thiery, J.P., Acloque, H., Huang, R.Y. & Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).
Article CAS PubMed Google Scholar
- Gao, D. et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 72, 1384–1394 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Chao, Y., Wu, Q., Acquafondata, M., Dhir, R. & Wells, A. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 5, 19–28 (2012).
Article CAS PubMed Google Scholar
- Chaffer, C.L., Thompson, E.W. & Williams, E.D. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 185, 7–19 (2007).
Article PubMed Google Scholar
- Bonde, A.K., Tischler, V., Kumar, S., Soltermann, A. & Schwendener, R.A. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer 12, 35 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Gay, L.J. & Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer 11, 123–134 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Labelle, M., Begum, S. & Hynes, R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal–like transition and promotes metastasis. Cancer Cell 20, 576–590 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Nishimura, K., Semba, S., Aoyagi, K., Sasaki, H. & Yokozaki, H. Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology 79, 290–306 (2012).
Article CAS PubMed Google Scholar
- Condeelis, J. & Segall, J.E. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921–930 (2003).
Article CAS PubMed Google Scholar
- Wyckoff, J.B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).
Article CAS PubMed Google Scholar
- van Zijl, F. et al. Hepatic tumor-stroma crosstalk guides epithelial to mesenchymal transition at the tumor edge. Oncogene 28, 4022–4033 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Chouaib, S. et al. Hypoxia promotes tumor growth in linking angiogenesis to immune escape. Front. Immunol. 3, 21 (2012).
Article PubMed PubMed Central Google Scholar
- Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).
Article CAS PubMed Google Scholar
- Corzo, C.A. et al. HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Halama, N. et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011).
Article CAS PubMed Google Scholar
- Murdoch, C., Giannoudis, A. & Lewis, C.E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234 (2004).
Article CAS PubMed Google Scholar
- Nguyen, D.X., Bos, P.D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer 9, 274–284 (2009).
Article CAS PubMed Google Scholar
- Condeelis, J. & Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol. 2, a003848 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Sidani, M., Wyckoff, J., Xue, C., Segall, J.E. & Condeelis, J. Probing the microenvironment of mammary tumors using multiphoton microscopy. J. Mammary Gland Biol. Neoplasia 11, 151–163 (2006).
Article PubMed Google Scholar
- Robinson, B.D. et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin. Cancer Res. 15, 2433–2441 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Lucci, A. et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 13, 688–695 (2012).
Article PubMed Google Scholar
- Krishnamurthy, S. et al. Detection of minimal residual disease in blood and bone marrow in early stage breast cancer. Cancer 116, 3330–3337 (2010).
Article PubMed Google Scholar
- Stoecklein, N.H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441–453 (2008).
Article CAS PubMed Google Scholar
- Redente, E.F. et al. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow–derived monocyte polarization. Am. J. Pathol. 176, 2972–2985 (2010).
Article PubMed PubMed Central Google Scholar
- Chambers, A.F. et al. Critical steps in hematogenous metastasis: an overview. Surg. Oncol. Clin. N. Am. 10, 243–255, vii (2001).
Article CAS PubMed Google Scholar
- Palumbo, J.S. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells. Blood 105, 178–185 (2005).
Article CAS PubMed Google Scholar
- Ruggeri, Z.M. & Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).
Article CAS PubMed Google Scholar
- Schumacher, D., Strilic, B., Sivaraj, K.K., Wettschureck, N. & Offermanns, S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24, 130–137 (2013).
Article CAS PubMed Google Scholar
- Taucher, S. et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb. Haemost. 89, 1098–1106 (2003).
Article CAS PubMed Google Scholar
- Brown, K.M., Domin, C., Aranha, G.V., Yong, S. & Shoup, M. Increased preoperative platelet count is associated with decreased survival after resection for adenocarcinoma of the pancreas. Am. J. Surg. 189, 278–282 (2005).
Article PubMed Google Scholar
- Brockmann, M.A. et al. Preoperative thrombocytosis predicts poor survival in patients with glioblastoma. Neuro-oncol. 9, 335–342 (2007).
Article PubMed PubMed Central Google Scholar
- Kaplan, R.N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Chen, Q., Zhang, X.H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Erler, J.T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).
Article CAS PubMed Google Scholar
- Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).
Article CAS PubMed Google Scholar
- Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2012).
Article CAS Google Scholar
- Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556 (2012).
Article CAS PubMed Google Scholar
- Lugini, L. et al. Immune surveillance properties of human NK cell–derived exosomes. J. Immunol. 189, 2833–2842 (2012).
Article CAS PubMed Google Scholar
- Morse, M.A. et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3, 9 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Escudier, B. et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Näslund, T.I., Gehrmann, U., Qazi, K.R., Karlsson, M.C. & Gabrielsson, S. Dendritic cell–derived exosomes need to activate both T and B cells to induce antitumor immunity. J. Immunol. 190, 2712–2719 (2013).
Article CAS PubMed Google Scholar
- Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Catena, R. et al. Bone marrow–derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 3, 578–589 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 7, 834–846 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Schreiber, R.D., Old, L.J. & Smyth, M.J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).
Article CAS PubMed Google Scholar
- Hensel, J.A., Flaig, T.W. & Theodorescu, D. Clinical opportunities and challenges in targeting tumour dormancy. Nat. Rev. Clin. Oncol. 10, 41–51 (2013).
Article CAS PubMed Google Scholar
- Naumov, G.N., Akslen, L.A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).
Article CAS PubMed Google Scholar
- Ghajar, C.M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Conejo-Garcia, J.R. et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat. Med. 10, 950–958 (2004).
Article CAS PubMed Google Scholar
- Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).
Article CAS PubMed Google Scholar
- Lyden, D. et al. Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).
Article CAS PubMed Google Scholar
- Purhonen, S. et al. Bone marrow–derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc. Natl. Acad. Sci. USA 105, 6620–6625 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Dawson, M.R., Duda, D.G., Fukumura, D. & Jain, R.K. VEGFR1-activity–independent metastasis formation. Nature 461, E4 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kerbel, R.S. et al. Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proc. Natl. Acad. Sci. U S A 105, E54; author reply E55 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Pierga, J.Y. et al. Clinical significance of proliferative potential of occult metastatic cells in bone marrow of patients with breast cancer. Br. J. Cancer 89, 539–545 (2003).
Article PubMed PubMed Central Google Scholar
- Braun, S. et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med. 342, 525–533 (2000).
Article CAS PubMed Google Scholar
- Naumov, G.N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002).
CAS PubMed Google Scholar
- Liu, D., Aguirre Ghiso, J., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1, 445–457 (2002).
Article CAS PubMed Google Scholar
- Ranganathan, A.C., Adam, A.P. & Aguirre-Ghiso, J.A. Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5, 1799–1807 (2006).
Article CAS PubMed Google Scholar
- Lujambio, A. et al. Non–cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Gao, H. et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).
Article CAS PubMed Google Scholar
- Koebel, C.M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).
Article CAS PubMed Google Scholar
- Khong, H.T. & Restifo, N.P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 3, 999–1005 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Yoshikawa, K. et al. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci. 103, 2012–2020 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Mantovani, G. et al. Tumor-associated lympho-monocytes from neoplastic effusions are immunologically defective in comparison with patient autologous PBMCs but are capable of releasing high amounts of various cytokines. Int. J. Cancer 71, 724–731 (1997).
Article CAS PubMed Google Scholar
- Gil-Bernabé, A.M. et al. Recruitment of monocytes/macrophages by tissue factor–mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164–3175 (2012).
Article CAS PubMed Google Scholar
- Palumbo, J.S. Mechanisms linking tumor cell–associated procoagulant function to tumor dissemination. Semin. Thromb. Hemost. 34, 154–160 (2008).
Article CAS PubMed Google Scholar
- Amirkhosravi, A. et al. Tissue factor pathway inhibitor reduces experimental lung metastasis of B16 melanoma. Thromb. Haemost. 87, 930–936 (2002).
Article CAS PubMed Google Scholar
- Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).
Article CAS PubMed Google Scholar
- Garraway, L.A. & Lander, E.S. Lessons from the cancer genome. Cell 153, 17–37 (2013).
Article CAS PubMed Google Scholar
- Fang, H. & Declerck, Y.A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res. 73, 4965–4977 (2013).
Article CAS PubMed Google Scholar
- Carmeliet, P. & Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Sharma, P., Wagner, K., Wolchok, J.D. & Allison, J.P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer 11, 805–812 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Restifo, N.P., Dudley, M.E. & Rosenberg, S.A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Hwu, P. Treating cancer by targeting the immune system. N. Engl. J. Med. 363, 779–781 (2010).
Article CAS PubMed Google Scholar
- Wolchok, J.D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Vonderheide, R.H. & Glennie, M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Beatty, G.L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Coussens, L.M., Zitvogel, L. & Palucka, A.K. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339, 286–291 (2013).
Article CAS PubMed PubMed Central Google Scholar
- DeNardo, D.G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).
Article CAS PubMed Google Scholar
- Murdoch, C., Muthana, M., Coffelt, S.B. & Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).
Article CAS PubMed Google Scholar
- Fridlender, Z.G. & Albelda, S.M. Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955 (2012).
Article CAS PubMed Google Scholar
- Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).
Article CAS PubMed Google Scholar
- Bos, P.D. & Rudensky, A.Y. Treg cells in cancer: a case of multiple personality disorder. Sci. Transl. Med. 4, 164fs144 (2012).
Article CAS Google Scholar
- Mahmoud, S.M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).
Article PubMed Google Scholar
- de Visser, K.E., Korets, L.V. & Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005).
Article CAS PubMed Google Scholar
- Calle, E.E., Rodriguez, C., Walker-Thurmond, K. & Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).
Article PubMed Google Scholar
- Behan, J.W. et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 69, 7867–7874 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Morris, P.G. et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. (Phila.) 4, 1021–1029 (2011).
Article CAS Google Scholar
- Nieman, K.M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, Y. et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment. Cancer Res. 72, 5198–5208 (2012).
Article CAS PubMed Google Scholar
- Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).
Article CAS PubMed Google Scholar
- Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).
Article CAS PubMed Google Scholar
- Liebig, C. et al. Perineural invasion is an independent predictor of outcome in colorectal cancer. J. Clin. Oncol. 27, 5131–5137 (2009).
Article PubMed PubMed Central Google Scholar
- Ayala, G.E. et al. Cancer-related axonogenesis and neurogenesis in prostate cancer. Clin. Cancer Res. 14, 7593–7603 (2008).
Article CAS PubMed Google Scholar
- Demir, I.E., Friess, H. & Ceyhan, G.O. Nerve-cancer interactions in the stromal biology of pancreatic cancer. Front. Physiol. 3, 97 (2012).
Article PubMed PubMed Central Google Scholar
- Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).
Article PubMed Google Scholar
- Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Holmgaard, R.B., Zamarin, D., Munn, D.H., Wolchok, J.D. & Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).
Article CAS PubMed Google Scholar
- De Palma, M. & Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23, 277–286 (2013).
Article CAS PubMed Google Scholar