Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease (original) (raw)
Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neurosci.14, 1227–1235 (2011). ArticleCASPubMed Google Scholar
Gomez, P. E., Schulz, C. & Geissmann, F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia61, 112–120 (2013). Article Google Scholar
Sieweke, M. H. & Allen, J. E. Beyond stem cells: self-renewal of differentiated macrophages. Science342, 1242974 (2013). ArticleCASPubMed Google Scholar
Prinz, M. & Mildner, A. Microglia in the CNS: immigrants from another world. Glia59, 177–187 (2011). ArticlePubMed Google Scholar
Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nature Immunol.13, 1118–1128 (2012). ArticleCAS Google Scholar
Chow, A., Brown, B. D. & Merad, M. Studying the mononuclear phagocyte system in the molecular age. Nature Rev. Immunol.11, 788–798 (2011). ArticleCAS Google Scholar
Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nature Immunol.14, 986–995 (2013). ArticleCAS Google Scholar
Butovsky, O. et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J. Clin. Invest.122, 3063–3087 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nature Neurosci.16, 273–280 (2013). ArticleCASPubMed Google Scholar
Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science336, 86–90 (2012). ArticleCASPubMed Google Scholar
Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nature Neurosci.16, 1618–1626 (2013). References 10–13 use fate-mapping and genetic tools to show that microglia are derived from the yolk sac. ArticleCASPubMed Google Scholar
Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity38, 79–91 (2013). This study establishes a new line of transgenic mice in which Cre is expressed specifically in microglia. ArticleCASPubMed Google Scholar
Parkhurst, C. N. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell155, 1596–1609 (2013). ArticleCASPubMedPubMed Central Google Scholar
Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity28, 675–686 (2008). ArticleCASPubMed Google Scholar
Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med.11, 146–152 (2005). ArticleCASPubMed Google Scholar
Pfrieger, F. W. & Slezak, M. Genetic approaches to study glial cells in the rodent brain. Glia60, 681–701 (2012). ArticlePubMed Google Scholar
Ding, Z. et al. Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation. J. Exp. Med.211, 189–198 (2014). ArticleCASPubMedPubMed Central Google Scholar
Blank, T. & Prinz, M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia61, 62–70 (2013). ArticlePubMed Google Scholar
Priller, J. in Neuroglia 3rd edn (eds Kettenmann, H. & Ransom, B. R.) 906–916 (Oxford Univ. Press, 2013). Google Scholar
Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science239, 290–292 (1988). ArticleCASPubMed Google Scholar
Hickey, W. F., Vass, K. & Lassmann, H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol.51, 246–256 (1992). ArticleCASPubMed Google Scholar
Bertrand, J. Y. et al. Three pathways to mature macrophages in the early mouse yolk sac. Blood106, 3004–3011 (2005). ArticleCASPubMed Google Scholar
Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu. Rev. Immunol.25, 745–785 (2007). ArticleCASPubMed Google Scholar
Alliot, F., Lecain, E., Grima, B. & Pessac, B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc. Natl Acad. Sci. USA88, 1541–1545 (1991). ArticleCASPubMed Google Scholar
Alliot, F., Godin, I. & Pessac, B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res.117, 145–152 (1999). ArticleCASPubMed Google Scholar
Ashwell, K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res. Dev. Brain Res.58, 1–12 (1991). ArticleCASPubMed Google Scholar
Lawson, L. J., Perry, V. H. & Gordon, S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience48, 405–415 (1992). ArticleCASPubMed Google Scholar
Hutchins, K. D., Dickson, D. W., Rashbaum, W. K. & Lyman, W. D. Localization of morphologically distinct microglial populations in the developing human fetal brain: implications for ontogeny. Brain Res. Dev. Brain Res.55, 95–102 (1990). ArticleCASPubMed Google Scholar
Rezaie, P. & Male, D. Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc. Res. Tech.45, 359–382 (1999). ArticleCASPubMed Google Scholar
Rezaie, P., Dean, A., Male, D. & Ulfig, N. Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb. Cortex15, 938–949 (2005). ArticlePubMed Google Scholar
Esiri, M. M., al Izzi, M. S. & Reading, M. C. Macrophages, microglial cells, and HLA-DR antigens in fetal and infant brain. J. Clin. Pathol.44, 102–106 (1991). ArticleCASPubMedPubMed Central Google Scholar
Verney, C., Monier, A., Fallet-Bianco, C. & Gressens, P. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J. Anat.217, 436–448 (2010). ArticlePubMedPubMed Central Google Scholar
Ashwell, K. Microglia and cell death in the developing mouse cerebellum. Brain Res. Dev. Brain Res.55, 219–230 (1990). ArticleCASPubMed Google Scholar
Chan, W. Y., Kohsaka, S. & Rezaie, P. The origin and cell lineage of microglia: new concepts. Brain Res. Rev.53, 344–354 (2007). ArticleCASPubMed Google Scholar
Lichanska, A. M. & Hume, D. A. Origins and functions of phagocytes in the embryo. Exp. Hematol.28, 601–611 (2000). ArticleCASPubMed Google Scholar
Dai, X. M. et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood99, 111–120 (2002). ArticleCASPubMed Google Scholar
Erblich, B., Zhu, L., Etgen, A. M., Dobrenis, K. & Pollard, J. W. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE6, e26317 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wegiel, J. et al. Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res.804, 135–139 (1998). ArticleCASPubMed Google Scholar
Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature345, 442–444 (1990). ArticleCASPubMed Google Scholar
Pixley, F. J. & Stanley, E. R. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol.14, 628–638 (2004). ArticleCASPubMed Google Scholar
Lagasse, E. & Weissman, I. L. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell89, 1021–1031 (1997). ArticleCASPubMed Google Scholar
Nakahata, T., Gross, A. J. & Ogawa, M. A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J. Cell. Physiol.113, 455–458 (1982). ArticleCASPubMed Google Scholar
Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science320, 807–811 (2008). ArticleCASPubMed Google Scholar
Wei, S. et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J. Leukoc. Biol.88, 495–505 (2010). ArticleCASPubMedPubMed Central Google Scholar
Greter, M. et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity37, 1050–1060 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nature Immunol.13, 753–760 (2012). ArticleCAS Google Scholar
Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol.238, 274–288 (2001). ArticleCASPubMed Google Scholar
Otero, K. et al. Macrophage colony-stimulating factor induces the proliferation and survival of macrophages via a pathway involving DAP12 and β-catenin. Nature Immunol.10, 734–743 (2009). ArticleCAS Google Scholar
Rosenbauer, F. & Tenen, D. G. Transcription factors in myeloid development: balancing differentiation with transformation. Nature Rev. Immunol.7, 105–117 (2007). ArticleCAS Google Scholar
McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J.15, 5647–5658 (1996). ArticleCASPubMedPubMed Central Google Scholar
Beers, D. R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA103, 16021–16026 (2006). ArticleCASPubMed Google Scholar
Zusso, M. et al. Regulation of postnatal forebrain amoeboid microglial cell proliferation and development by the transcription factor Runx1. J. Neurosci.32, 11285–11298 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jin, H. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood119, 5239–5249 (2012). ArticleCASPubMedPubMed Central Google Scholar
Holtschke, T. et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell87, 307–317 (1996). ArticleCASPubMed Google Scholar
Masuda, T. et al. IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep.1, 334–340 (2012). ArticleCASPubMedPubMed Central Google Scholar
Horiuchi, M. et al. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J. Neuroinflammation9, 227 (2012). ArticleCASPubMedPubMed Central Google Scholar
Minten, C., Terry, R., Deffrasnes, C., King, N. J. & Campbell, I. L. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS ONE7, e49851 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science308, 1314–1318 (2005). ArticleCASPubMed Google Scholar
Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci.8, 752–758 (2005). ArticleCASPubMed Google Scholar
Sieger, D., Moritz, C., Ziegenhals, T., Prykhozhij, S. & Peri, F. Long-range Ca2+ waves transmit brain-damage signals to microglia. Dev. Cell22, 1138–1148 (2012). ArticleCASPubMed Google Scholar
Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci.10, 1387–1394 (2007). ArticleCASPubMed Google Scholar
Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol.11, 889–896 (2010). ArticleCAS Google Scholar
Roca, H. et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem.284, 34342–34354 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hesse, M. et al. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol.167, 6533–6544 (2001). ArticleCASPubMed Google Scholar
Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nature Rev. Immunol.4, 583–594 (2004). ArticleCAS Google Scholar
David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nature Rev. Neurosci.12, 388–399 (2011). ArticleCAS Google Scholar
Kim, H. J. et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol.172, 7144–7153 (2004). ArticleCASPubMed Google Scholar
Durafourt, B. A. et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia60, 717–727 (2012). ArticlePubMed Google Scholar
Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci.29, 13435–13444 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke43, 3063–3070 (2012). ArticleCASPubMed Google Scholar
Wang, G. et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab.33, 1864–1874 (2013). ArticleCASPubMedPubMed Central Google Scholar
Choi, S. H., Aid, S., Kim, H. W., Jackson, S. H. & Bosetti, F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J. Neurochem.120, 292–301 (2012). ArticleCASPubMed Google Scholar
Komohara, Y., Ohnishi, K., Kuratsu, J. & Takeya, M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol.216, 15–24 (2008). ArticleCASPubMed Google Scholar
Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Med.19, 1264–1272 (2013). ArticleCASPubMed Google Scholar
Dal, B. A. et al. Multiple sclerosis and Alzheimer's disease. Ann. Neurol.63, 174–183 (2008). Article Google Scholar
Vogel, D. Y. et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflammation10, 35 (2013). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K., Prinz, M., Stagi, M., Chechneva, O. & Neumann, H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoSMed.4, e124 (2007). Google Scholar
Guerreiro, R. et al. TREM2 variants in Alzheimer's disease. N. Engl. J. Med.368, 117–127 (2013). ArticleCASPubMed Google Scholar
Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature493, 674–678 (2012). ArticleCASPubMedPubMed Central Google Scholar
Moore, C. S. et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann. Neurol.74, 709–720 (2013). ArticleCASPubMed Google Scholar
Wang, Y. et al. Transforming growth factor beta-activated kinase 1 (TAK1)-dependent checkpoint in the survival of dendritic cells promotes immune homeostasis and function. Proc. Natl Acad. Sci. USA109, E343–E352 (2012). ArticlePubMed Google Scholar
Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neurosci.16, 1211–1218 (2013). ArticleCASPubMed Google Scholar
Mikita, J. et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler.17, 2–15 (2011). ArticleCASPubMed Google Scholar
Chiu, I. M. et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep.4, 385–401 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci.10, 1538–1543 (2007). ArticleCASPubMed Google Scholar
Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nature Neurosci.14, 1142–1149 (2011). ArticleCASPubMed Google Scholar
Giovanoli, S. et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science339, 1095–1099 (2013). ArticleCASPubMed Google Scholar
Lazic, S. E. Comment on “Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice”. Science340, 811 (2013). ArticleCASPubMed Google Scholar
Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci.29, 3974–3980 (2009). ArticleCASPubMedPubMed Central Google Scholar
Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science333, 1456–1458 (2011). ArticleCASPubMed Google Scholar
Tremblay, M. E., Lowery, R. L. & Majewska, A. K. Microglial interactions with synapses are modulated by visual experience. PLoSBiol.8, e1000527 (2010). Google Scholar
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron74, 691–705 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schafer, D. P. & Stevens, B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr. Opin. Neurobiol.23, 1034–1040 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nature Neurosci.16, 1896–1905 (2013). ArticleCASPubMed Google Scholar
Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet.71, 656–662 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genet.43, 429–435 (2011). ArticleCASPubMed Google Scholar
Naj, A. C. et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genet.43, 436–441 (2011). ArticleCASPubMed Google Scholar
Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol.70, 78–84 (2013). ArticlePubMedPubMed Central Google Scholar
Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nature Genet.44, 200–205 (2012). The first description of a primary 'microgliopathy' in humans. ArticleCAS Google Scholar
De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nature Genet.41, 776–782 (2009). ArticleCASPubMed Google Scholar
International Multiple Sclerosis Genetics Consortium. The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: a multicenter case-control study. PLoS ONE6, e18813 (2011).
Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity19, 71–82 (2003). ArticleCASPubMed Google Scholar
Carlin, L. M. et al. _Nr4a1_-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell153, 362–375 (2013). ArticleCASPubMedPubMed Central Google Scholar
Michaud, J. P., Bellavance, M. A., Prefontaine, P. & Rivest, S. Real-time in vivo imaging reveals the ability of monocytes to clear vascular amyloid β. Cell Rep.5, 646–653 (2013). ArticleCASPubMed Google Scholar
Mildner, A. et al. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci.31, 11159–11171 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hawkes, C. A. & McLaurin, J. Selective targeting of perivascular macrophages for clearance of β-amyloid in cerebral amyloid angiopathy. Proc. Natl Acad. Sci. USA106, 1261–1266 (2009). ArticlePubMed Google Scholar
Fiala, M. et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J. Alzheimers. Dis.7, 221–232 (2005). ArticleCASPubMed Google Scholar
Fiala, M. et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer's disease patients are improved by bisdemethoxycurcumin. Proc. Natl Acad. Sci. USA104, 12849–12854 (2007). ArticleCASPubMed Google Scholar
Saunders, A. M. et al. Association of apolipoprotein E allele ɛ 4 with late-onset familial and sporadic Alzheimer's disease. Neurology43, 1467–1472 (1993). ArticleCASPubMed Google Scholar
Lucin, K. M. et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease. Neuron79, 873–886 (2013). ArticleCASPubMedPubMed Central Google Scholar
Krabbe, G. et al. Functional impairment of microglia coincides with β-amyloid deposition in mice with Alzheimer-like pathology. PLoS ONE8, e60921 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature382, 685–691 (1996). ArticleCASPubMed Google Scholar
Xie, Z. et al. Peroxynitrite mediates neurotoxicity of amyloid β-peptide1–42- and lipopolysaccharide-activated microglia. J. Neurosci.22, 3484–3492 (2002). ArticleCASPubMed Google Scholar
Grathwohl, S. A. et al. Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nature Neurosci.12, 1361–1363 (2009). ArticleCASPubMed Google Scholar
Doody, R. S. et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med.370, 311–321 (2014). ArticleCASPubMed Google Scholar
Holmes, C. et al. Long-term effects of Aβ42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet372, 216–223 (2008). ArticleCASPubMed Google Scholar
Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoSMed.6, e1000113 (2009). Google Scholar
Popovich, P. G. et al. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol.158, 351–365 (1999). ArticleCASPubMed Google Scholar
Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity38, 555–569 (2013). ArticleCASPubMedPubMed Central Google Scholar
King, I. L., Dickendesher, T. L. & Segal, B. M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood113, 3190–3197 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain132, 2487–2500 (2009). ArticlePubMed Google Scholar
Boche, D., Denham, N., Holmes, C. & Nicoll, J. A. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol.120, 369–384 (2010). ArticleCASPubMed Google Scholar
Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nature Med.7, 1356–1361 (2001). ArticleCASPubMed Google Scholar
Djukic, M. et al. Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice. Brain129, 2394–2403 (2006). ArticlePubMed Google Scholar
Simard, A. R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J.18, 998–1000 (2004). ArticleCASPubMed Google Scholar
Nakano, K., Migita, M., Mochizuki, H. & Shimada, T. Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation71, 1735–1740 (2001). ArticleCASPubMed Google Scholar
Corti, S. et al. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J. Neurosci. Res.70, 721–733 (2002). ArticleCASPubMed Google Scholar
Vallieres, L. & Sawchenko, P. E. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J. Neurosci.23, 5197–5207 (2003). ArticleCASPubMedPubMed Central Google Scholar
Flugel, A., Bradl, M., Kreutzberg, G. W. & Graeber, M. B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res.66, 74–82 (2001). ArticleCASPubMed Google Scholar
Cogle, C. R. et al. Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet363, 1432–1437 (2004). ArticleCASPubMed Google Scholar
Unger, E. R. et al. Male donor-derived cells in the brains of female sex-mismatched bone marrow transplant recipients: a Y-chromosome specific in situ hybridization study. J. Neuropathol. Exp. Neurol.52, 460–470 (1993). ArticleCASPubMed Google Scholar
Kennedy, D. W. & Abkowitz, J. L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood90, 986–993 (1997). CASPubMed Google Scholar
Lassmann, H. & Hickey, W. F. Radiation bone marrow chimeras as a tool to study microglia turnover in normal brain and inflammation. Clin. Neuropathol.12, 284–285 (1993). CASPubMed Google Scholar
Krall, W. J., Challita, P. M., Perlmutter, L. S., Skelton, D. C. & Kohn, D. B. Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood83, 2737–2748 (1994). CASPubMed Google Scholar
Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci.10, 1544–1553 (2007). Together with reference 90, this study provides the first description of microglial self-renewal occurring independently of circulating myeloid cells. ArticleCASPubMed Google Scholar
Capotondo, A. et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc. Natl Acad. Sci. USA109, 15018–15023 (2012). ArticlePubMed Google Scholar
Bottcher, C., Fernandez-Klett, F., Gladow, N., Rolfes, S. & Priller, J. Targeting myeloid cells to the brain using non-myeloablative conditioning. PLoS ONE8, e80260 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wilkinson, F. L. et al. Busulfan conditioning enhances engraftment of hematopoietic donor-derived cells in the brain compared with irradiation. Mol. Ther.21, 868–876 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kierdorf, K., Katzmarski, N., Haas, C. A. & Prinz, M. Bone marrow cell recruitment to the brain in the absence of irradiation or parabiosis bias. PLoS ONE8, e58544 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science326, 818–823 (2009). ArticleCASPubMed Google Scholar
Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science341, 1233158 (2013). ArticleCASPubMed Google Scholar
Biffi, A., Aubourg, P. & Cartier, N. Gene therapy for leukodystrophies. Hum. Mol. Genet.20, R42–R53 (2011). ArticleCASPubMed Google Scholar
Eichler, F. S. et al. Is microglial apoptosis an early pathogenic change in cerebral X-linked adrenoleukodystrophy? Ann. Neurol.63, 729–742 (2008). ArticlePubMed Google Scholar
Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science312, 1389–1392 (2006). ArticleCASPubMed Google Scholar
Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron49, 489–502 (2006). ArticleCASPubMed Google Scholar
El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Med.13, 432–438 (2007). ArticleCASPubMed Google Scholar
Castro, J., Mellios, N. & Sur, M. Mechanisms and therapeutic challenges in autism spectrum disorders: insights from Rett syndrome. Curr. Opin. Neurol.26, 154–159 (2013). ArticleCASPubMed Google Scholar
Derecki, N. C. et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature484, 105–109 (2012). Together with reference 158, this report suggests that dysfunction of microglia may induce behavioural disturbances. ArticleCASPubMedPubMed Central Google Scholar
Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med.209, 1167–1181 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chorro, L. et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med.206, 3089–3100 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity38, 792–804 (2013). ArticleCASPubMed Google Scholar
Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med.210, 1977–1992 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity39, 925–938 (2013). ArticleCASPubMed Google Scholar
Hsu, A. P. et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood121, 3830–3837 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bigley, V. & Collin, M. Dendritic cell, monocyte, B and NK lymphoid deficiency defines the lost lineages of a new GATA-2 dependent myelodysplastic syndrome. Haematologica96, 1081–1083 (2011). ArticlePubMedPubMed Central Google Scholar
Blevins, G. & Fedoroff, S. Microglia in colony-stimulating factor 1-deficient op/op mice. J. Neurosci. Res.40, 535–544 (1995). ArticleCASPubMed Google Scholar