Gravitational Lensing Research Papers - Academia.edu (original) (raw)

Studio di una stringa cosmica ed effetto lente gravitazionale che ha su un fascio luminoso.

The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental... more

The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully

In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example,... more

In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

This book focuses on Albert Einstein and his interactions with, and responses to, various scientists, both famous and lesser-known. It takes as its starting point that the discussions between Einstein and other scientists all represented... more

This book focuses on Albert Einstein and his interactions with, and responses to, various scientists, both famous and lesser-known. It takes as its starting point that the discussions between Einstein and other scientists all represented a contribution to the edifice of general relativity and relativistic cosmology. These scientists with whom Einstein implicitly or explicitly interacted form a complicated web of collaboration, which this study explores, focusing on their implicit and explicit responses to Einstein's work. This analysis uncovers latent undercurrents, indiscernible to other approaches to tracking the intellectual pathway of Einstein to his general theory of relativity. The interconnections and interactions presented here reveal the central figures who influenced Einstein during this intellectual period. Despite current approaches to history presupposing that the efforts of scientists such as Max Abraham and Gunnar Nordström, which differed from Einstein’s own views, be relegated to the background, this book shows that they all had an impact on the development of Einstein’s theories, stressing the limits of approaches focusing solely on Einstein. As such, General Relativity Conflict and Rivalries proves that the general theory of relativity was not developed as a single, coherent construction by an isolated, brooding individual, but, rather, that it came to fruition through Einstein's conflicts and interactions with other scientists, and was consolidated by his creative processes during these exchanges.

We investigate a point-like massive source in non-linear f(R) theories in the case of arbitrary number of spatial dimensions D\geq 3. If D>3 then extra dimensions undergo toroidal compactification. We consider a weak-field approximation... more

We investigate a point-like massive source in non-linear f(R) theories in the case of arbitrary number of spatial dimensions D\geq 3. If D>3 then extra dimensions undergo toroidal compactification. We consider a weak-field approximation with Minkowski and de Sitter background solutions. In both these cases point-like massive sources demonstrate good agreement with experimental data only in the case of ordinary three-dimensional (D=3) space. We generalize this result to the case of perfect fluid with dust-like equations of state in the external and internal spaces. This perfect fluid is uniformly smeared over all extra dimensions and enclosed in a three-dimensional sphere. In ordinary three dimensional (D=3) space, our formulas are useful for experimental constraints on parameters of f(R) models.

In this research-paper, many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity & even without Newtonian-approach. The authors first raise... more

In this research-paper, many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity & even without Newtonian-approach. The authors first raise questions on the validity of both, the Newtonian and the relativistic approach; and then propose a novel alternative-explanation. The new alternative explanation is based on refraction-phenomenon of optics. Estimation of results with new approach are in agreement with known values. Though physics is different, but it is argued that general-relativity based gravitational-bending and refraction based bending have more in common than is generally realized. Also discussed are black-hole and gravitational-lensing in the new perspective of refraction. The new refraction-based theory makes a few new predictions and also suggests a few tests.

On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite... more

On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exoplanets to test our new perspective on the birth and evolution of solar systems. Till date 403 exoplanets have been discovered in 390 extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf - Star systems and 2 Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exoplanets. All planets are born at inner Clarke Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. This vindicates our basic premise that planets are always born at inner Clarke Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title ,New Perspective on the Birth & Evolution of Solar Systems.

Blackledge, Jonathan Electromagnetic Scattering Solutions for Digital Signal Processing Jyväskylä: University of Jyväskylä, 2009, 297 p. (nid.), 2010 (PDF) (Jyväskylä Studies in Computing ISSN 1456-5390; 108) ISBN 978-951-39-3944-1 (PDF),... more

Blackledge, Jonathan Electromagnetic Scattering Solutions for Digital Signal Processing Jyväskylä: University of Jyväskylä, 2009, 297 p. (nid.), 2010 (PDF) (Jyväskylä Studies in Computing ISSN 1456-5390; 108) ISBN 978-951-39-3944-1 (PDF), 978-951-39-3741-6 (nid.) Electromagnetic scattering theory is fundamental to understanding the interaction between electromagnetic waves and inhomogeneous dielectric materials. The theory unpins the engineering of electromagnetic imaging systems over a broad range of frequencies, from optics to radio and microwave imaging, for example. Developing accurate scattering models is particularly important in the field of image understanding and the interpretation of electromagnetic signals generated by scattering events. To this end there are a number of approaches that can be taken. For relatively simple geometric configurations, approximation methods are used to develop a transformation from the object plane (where scattering events take place) to the i...

We report the discovery of an almost complete Einstein ring of diameter 10" in Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Spectroscopic data from the 6m telescope of the Special Astrophysical Observatory reveals that the... more

We report the discovery of an almost complete Einstein ring of diameter 10" in Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Spectroscopic data from the 6m telescope of the Special Astrophysical Observatory reveals that the deflecting galaxy has a line-of-sight velocity dispersion in excess of 400 km/s and a redshift of 0.444, whilst the source is a star-forming galaxy with a redshift of 2.379. From its color and luminosity, we conclude that the lens is an exceptionally massive Luminous Red Galaxy (LRG) with a mass within the Einstein radius of 5 x 10^12 solar masses. This remarkable system provides a laboratory for probing the dark matter distribution in LRGs at distances out to 3 effective radii, and studying the properties of high redshift star-forming galaxies.

We numerically construct a symmetric wormhole solution in pure Einstein gravity supported by a massive 3-form field with a potential that contains a quartic self-interaction term. The wormhole spacetimes have only a single throat and they... more

We numerically construct a symmetric wormhole solution in pure Einstein gravity supported by a massive 3-form field with a potential that contains a quartic self-interaction term. The wormhole spacetimes have only a single throat and they are everywhere regular and asymptotically flat. Furthermore, their mass and throat circumference increase almost linearly as the coefficient of the quartic self-interaction term Λ increases. The amount of violation of the null energy condition (NEC) is proportional to the magnitude of 3-form, thus the NEC is less violated as Λ increases, since the magnitude of 3-form decreases with Λ. In addition, we investigate the geodesics of particles moving around the wormhole. The unstable photon orbit is located at the throat. We also find that the wormhole can cast a shadow whose apparent size is smaller than that cast by the Schwarzschild black hole, but reduces to it when \LambdaΛ acquires a large value. The behavior of the innermost stable circular orbit around this wormhole is also discussed. The results of this paper hint toward the possibility that the 3-form wormholes could be potential black hole mimickers, as long as Λ is sufficiently large, precisely when NEC is weakly violated.

In Kaluza-Klein models, we investigate soliton solutions of Einstein equation. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and PPN parameters. We find that the solitonic parameter k should... more

In Kaluza-Klein models, we investigate soliton solutions of Einstein equation. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and PPN parameters. We find that the solitonic parameter k should be very big: |k|\geq 2.3\times10^4. We define a soliton solution which corresponds to a point-like mass source. In this case the soliton parameter k=2, which is clearly contrary to this restriction. Similar problem with the observations takes place for static spherically symmetric perfect fluid with the dust-like equation of state in all dimensions. The common for both of these models is the same equations of state in our three dimensions and in the extra dimensions. All dimensions are treated at equal footing. To be in agreement with observations, it is necessary to break the symmetry between the external/our and internal spaces. It takes place for black strings which are particular examples of solitons with k\to \infty. For such k, black strings are in concordance with the observations. Moreover, we show that they are the only solitons which are at the same level of agreement with the observations as in general relativity. Black strings can be treated as perfect fluid with dust-like equation of state p_0=0 in the external/our space and very specific equation of state p_1=-(1/2)\epsilon in the internal space. The latter equation is due to negative tension in the extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this case we get the latter equation of state. We show that the black string equations of state satisfy the necessary condition of the internal space stabilization. Therefore, black strings are good candidates for a viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative tension for particles constituting these objects.

The null geodesic equations that describe motion of photons in Kerr spacetime are solved exactly in the presence of the cosmological constant Λ. The exact solution for the deflection angle for generic light orbits (i.e. non-polar,... more

The null geodesic equations that describe motion of photons in Kerr spacetime are solved exactly in the presence of the cosmological constant Λ. The exact solution for the deflection angle for generic light orbits (i.e. non-polar, non-equatorial) is calculated in terms of the generalized hypergeometric functions of Appell and Lauricella. We then consider the more involved issue in which the black hole acts as a `gravitational lens'. The constructed Kerr black hole gravitational lens geometry consists of an observer and a source located far away and placed at arbitrary inclination with respect to the black hole's equatorial plane. The resulting lens equations are solved elegantly in terms of Appell-Lauricella hypergeometric functions and the Weierstrass elliptic function. We then, systematically, apply our closed form solutions for calculating the image and source positions of generic photon orbits that solve the lens equations and reach an observer located at various values ...

Many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity & without Newtonian-approach. The authors first cast doubts on both, the Newtonian and the... more

Many of the general-relativity-tests such as bending of light near a star and gravitational red/blue shift are explained without general-relativity & without Newtonian-approach. The authors first cast doubts on both, the Newtonian and the relativistic approach; and proposes a novel alternative-explanation. The new alternative explanation is based on refraction-phenomenon of optics. Estimation of results, with new approach, are in agreement with known values. Though physics is different, but it is argued that general-relativity based gravitational-bending and refraction-based bending have more in common than is generally realized. Also discussed are black-hole and gravitational-lensing in the new perspective of refraction. The new refraction-based theory makes a few new predictions and also suggests a few tests..

In this work we study gravitational lensing of neutrinos by Schwarzschild black holes. In particular, we analyze the case of a neutrino transient source associated with a gamma-ray burst lensed by a supermassive black hole located at the... more

In this work we study gravitational lensing of neutrinos by Schwarzschild black holes. In particular, we analyze the case of a neutrino transient source associated with a gamma-ray burst lensed by a supermassive black hole located at the center of an interposed galaxy. We show that the primary and secondary images have an angular separation beyond the resolution of forthcoming km-scale detectors, but the signals from each image have time delays between them that in most cases are longer than the typical duration of the intrinsic events. In this way, the signal from different images can be detected as separate events coming from the very same location in the sky. This would render an event that otherwise might have had a low signal-to-noise ratio a clear detection, since the probability of a repetition of a signal from the same direction is negligible. The relativistic images are so faint and proximate that are beyond the sensitivity and resolution of the next-generation instruments.