From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus (original) (raw)

1. DeFronzo RA.Lilly Lecture: The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM.Diabetes 1988;37: 667– 687 [PubMed] [Google Scholar]

2. Zimmet P, Whitehouse S, Alford F, Chisholm D.The relationship of insulin response to a glucose stimulus over a wide range of glucose tolerance.Diabetologia 1978;15: 23– 27 [PubMed] [Google Scholar]

3. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH.Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes.Lancet 1989;i: 1356– 1359 [PubMed] [Google Scholar]

4. Lillioja S, Mott DM, Howard BV, Bennett PH, Yki-Jarvinen H, Freymond D, Nyomba BL, Zurlo F, Swinburn B, Bogardus C.Impaired glucose tolerance as a disorder of insulin action: longitudinal and cross-sectional studies in Pima Indians.N Engl J Med 1988;318: 1217– 1225 [PubMed] [Google Scholar]

5. Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR.Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents.Ann Intern Med 1990;113: 909– 915 [PubMed] [Google Scholar]

6. Martin BC, Warren JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR.Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study.Lancet 1992;340: 925– 929 [PubMed] [Google Scholar]

7. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH.The natural history of impaired glucose tolerance in the Pima Indians.N Engl J Med 1988;319: 1500– 1505 [PubMed] [Google Scholar]

8. Jallut D, Golay A, Munger R, Frascarolo P, Schutz Y, Jequier E, Felber JP.Impaired glucose tolerance and diabetes in obesity: a 6 year follow-up study of glucose metabolism.Metabolism 1990;39: 1068– 1075 [PubMed] [Google Scholar]

9. Gulli G, Ferrannini E, Stern M, Haffner S, DeFronzo RA.The metabolic profile of NIDDM is fully established in glucose-tolerant offspring of two Mexican-American NIDDM parents.Diabetes 1992;41: 1575– 1586 [PubMed] [Google Scholar]

10. Haffner SM, Miettinen H, Gaskill SP, Stern MP.Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans.Diabetes 1995;44: 1386– 1391 [PubMed] [Google Scholar]

11. Haffner SM, Miettinen H, Stern MP.Insulin secretion and resistance in nondiabetic Mexican Americans and non-Hispanic whites with a parental history of diabetes.J Clin Endocrinol Metab 1996;81: 1846– 1851 [PubMed] [Google Scholar]

12. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C.Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus.N Engl J Med 1993;329: 1988– 1992 [PubMed] [Google Scholar]

13. Dowse GK, Zimmet PZ, Collins VR.Insulin levels and the natural history of glucose intolerance in Nauruans.Diabetes 1996;45: 1367– 1372 [PubMed] [Google Scholar]

14. Lyssenko V, Almgren P, Anevski D, Perfekt R, Lahti K, Nissen M, Isomaa B, Forsen B, Homstrom N, Saloranta C, Taskinen MR, Groop L, Tuomi T, Botnia study group Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes.Diabetes 2005;54: 166– 174 [PubMed] [Google Scholar]

15. Weyer C, Tataranni PA, Bogardus C, Pratley RE.Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development.Diabetes Care 2001;24: 89– 94 [PubMed] [Google Scholar]

16. Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, Groop L.Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus.N Engl J Med 1989;321: 337– 343 [PubMed] [Google Scholar]

17. DeFronzo RA.Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes.Diabetes Rev 1997;5: 177– 269 [Google Scholar]

18. DeFronzo RA.Pathogenesis of type 2 diabetes mellitus.Med Clin North Am 2004;88: 787– 835 [PubMed] [Google Scholar]

19. Pendergrass M, Bertoldo A, Bonadonna R, Nucci G, Mandarino L, Cobelli C, DeFronzo RA.Muscle glucose transport and phosphorylation in type 2 diabetic, obese non-diabetic, and genetically predisposed individuals.Am J Physiol Endocrinol Metab 2007;292: E92– E100 [PubMed] [Google Scholar]

20. Groop L, Lyssenko V.Genes and type 2 diabetes mellitus.Current Diab Reports 2008;8: 192– 197 [PubMed] [Google Scholar]

21. Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI.Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus.Proc Natl Acad Sci U S A 1995;92: 983– 987 [PMC free article] [PubMed] [Google Scholar]

22. Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Jenkinson CP, Maezono K, DeFronzo RA, Mandarino L.Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated IRS-1 tyrosine phosphorylation.Diabetes 2001;50: 2572– 2578 [PubMed] [Google Scholar]

23. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI.Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents.J Clin Invest 2005;115: 3587– 3593 [PMC free article] [PubMed] [Google Scholar]

24. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo RA, Cusi K.A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes.Diabetes 2003;52: 2461– 2474 [PubMed] [Google Scholar]

25. DeFronzo RA, Ferrannini E, Simonson DC.Fasting hyperglycemia in non-insulin dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake.Metabolism 1989;38: 387– 395 [PubMed] [Google Scholar]

26. Groop LC, Bonadonna RC, Del Prato S, Ratheiser K, Zyck K, DeFronzo RA.Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus: evidence for multiple sites of insulin resistance.J Clin Invest 1989;84: 205– 213 [PMC free article] [PubMed] [Google Scholar]

27. Ferrannini E, Simonson DC, Katz LD, Reichard G, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA.The disposal of an oral glucose load in patients with non-insulin dependent diabetes.Metabolism 1988;37: 79– 85 [PubMed] [Google Scholar]

28. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J.Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (type II) diabetes mellitus.J Clin Invest 1985;76: 149– 155 [PMC free article] [PubMed] [Google Scholar]

29. DeFronzo RA, Diebert D, Hendler R, Felig P.Insulin sensitivity and insulin binding in maturity onset diabetes.J Clin Invest 1979;63: 939– 946 [PMC free article] [PubMed] [Google Scholar] Retracted

30. James WP.The fundamental drivers of the obesity epidemic.Obesity Rev 2008;9(Suppl. 1): 6– 13 [PubMed] [Google Scholar]

31. DeFronzo RA, Soman V, Sherwin RS, Hendler R, Felig P.Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding.J Clin Invest 1978;62: 204– 213 [PMC free article] [PubMed] [Google Scholar] Retracted

32. Koivisto VA, Yki-Järvinen M, DeFronzo RA.Physical training and insulin sensitivity.Diabetes Metab Rev 1986;1: 445– 481 [PubMed] [Google Scholar]

33. Diamond MP, Thornton K, Connolly-Diamond M, Sherwin RS, DeFronzo RA.Reciprocal variation in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance.J Soc Gynecol Invest 1995;2: 708– 715 [PubMed] [Google Scholar]

34. Bergman RN, Finegood DT, Kahn SE.The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes.Eur J Clin Invest 2002;32: 35– 45 [PubMed] [Google Scholar]

35. Jallut D, Golay A, Munger R, Frascarolo P, Schutz Y, Jequier E, Felber JP.Impaired glucose tolerance and diabetes in obesity: a 6-year follow-up study of glucose metabolism.Metabolism 1990;39: 1068– 1075 [PubMed] [Google Scholar]

36. UK Prospective Diabetes Study (UKPDS) GroupIntensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet 1998;352: 837– 853 [PubMed] [Google Scholar]

37. Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR.Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study.Diabet Med 1998;15: 290– 296 [PubMed] [Google Scholar]

38. Abdul-Ghani MA, Matsuda M, Sabbah M, Jenkinson C, Richardson DK, DeFronzo RA.The relative contribution of insulin resistance and beta cell failure to the transition from normal to impaired glucose tolerance varies in different ethnic groups.Diabete Metab Synd 2007;1: 105– 112 [Google Scholar]

39. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA.Beta cell dysfunction and glucose intolerance: results from the San Antonio Metabolism (SAM) study.Diabetologia 2004;47: 31– 39 [PubMed] [Google Scholar]

40. Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA.Beta cell function in subjects spanning the range from normal glucose tolerance to overt diabetes mellitus: a new analysis.J Clin Endocrinol Metab 2005;90: 493– 500 [PubMed] [Google Scholar]

41. Abdul-Ghani M, Jenkinson C, Richardson D, Tripathy D, DeFronzo RA.Insulin secretion and insulin action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study (VAGES).Diabetes 2006;55: 1430– 1435 [PubMed] [Google Scholar]

42. Abdul-Ghani M, Tripathy D, DeFronzo RA.Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose.Diabetes Care 2006;29: 1130– 1139 [PubMed] [Google Scholar]

43. Ahren B, Taborsky GJ.Beta-cell function and insulin secretion. In_Ellenberg Rifkin's Diabetes Mellitus_Porte D, Sherin RS, Baron A. Eds. New York, McGraw Hill, 2003, p. 43– 65 [Google Scholar]

44. Reaven GM, Hollenbeck CB, Chen YD.Relationship between glucose tolerance, insulin secretion, and insulin action in non-obese individuals with varying degrees of glucose tolerance.Diabetologia 1989;32: 52– 55 [PubMed] [Google Scholar]

45. Bergman RN.Lilly Lecture: Toward physiological understanding of glucose tolerance: minimal-model approach.Diabetes 1989;38: 1512– 1527 [PubMed] [Google Scholar]

46. American Diabetes AssociationDiagnosis and classification of diabetes mellitus.Diabetes Care 2008;31(Suppl. 1): S55– S60 [PubMed] [Google Scholar]

47. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC.β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes.Diabetes 2003;52: 102– 110 [PubMed] [Google Scholar]

48. Diabetes Prevention Program Research GroupThe prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program.Diabet Med 2007;24: 137– 144 [PMC free article] [PubMed] [Google Scholar]

49. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B.Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy.Diabetes Care 2006;29: 1963– 1972 [PubMed] [Google Scholar]

50. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. KORA Study GroupPrevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3.Diabetes Care 2008;31: 464– 469 [PubMed] [Google Scholar]

51. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, Hamwi J, Pollari D, Bixby B, Howard J, Singleton JR.Lifestyle intervention for pre-diabetic neuropathy.Diabetes Care 2006;6: 415– 416 [PubMed] [Google Scholar]

52. Muller DC, Elahi D, Tobin JD, Andres R.Insulin response during the oral glucose tolerance test: the role of age, sex, body fat and the pattern of fat distribution.Aging 1996;8: 13– 21 [PubMed] [Google Scholar]

53. Rosenthal M, Doberne L, Greenfield M, Widstrom A, Reaven GM, Rosenthal M, Doberne L, Greenfield M, Widstrom A, Reaven GM.Effect of age on glucose tolerance, insulin secretion, and in vivo insulin action.J Am Geriatrics Soc 1982;30: 562– 567 [PubMed] [Google Scholar]

54. Chang AM, Halter JB.Aging and insulin secretion.Am J Physiol Endocrinol Metab 2003;284: E7– E12 [PubMed] [Google Scholar]

55. Gautier JF, Wilson C, Weyer c, Mott D, Knowler WC, Cavaghan M, Polonsky KS, Bogardus C, Pratley RE.Low acute insulin secretory responses in adult offspring of people with early onset type 2 diabetes.Diabetes 2001;50: 1828– 1833 [PubMed] [Google Scholar]

56. Vauhkonen N, Niskanane L, Vanninen E, Kainulainen S, Uusitupa M, Laakso M.Defects in insulin secretion and insulin action in non-insulin-dependent diabetes mellitus are inherited. Metabolic studies on offspring of diabetic probands.J Clin Invest 1997;100: 86– 96 [PMC free article] [PubMed] [Google Scholar]

57. Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H.Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus.J Clin Invest 1995;95: 690– 698 [PMC free article] [PubMed] [Google Scholar]

58. Barnett AH, Spilipoulos AJ, Pyke DA, Stubbs WA, Burrin J, Alberti KGMM.Metabolic studies in unaffected co-twins of non-insulin-dependent diabetics.BMJ 1981;282: 1656– 1658 [PMC free article] [PubMed] [Google Scholar]

59. Watanabe RM, Valle T, Hauser ER, Ghosh S, Eriksson J, Kohtamaki K, Enholm C, Tuomilehto J, Collins FS, Bergman RN, Boehnke M.Familiarity of quantitative metabolic traits in Finnish families with non-insulin-dependent diabetes mellitus: Finland-United States Investigation of NIDDM Genes (FUSION) Study Investigators.Hum Hered 1999;39: 159– 168 [PubMed] [Google Scholar]

60. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K.Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes.Nat Genet 2006;38: 320– 323 [PubMed] [Google Scholar]

61. Helgason A, Palsson S, Thorleifsson G, Grant SF, Emilsson V, Gunnarsdottir S, Adeyemo A, Chen Y, Chen G, Reynisdottir I, Benediktsson R, Hinney A, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Schafer H, Faruque M, Doumatey A, Zhou J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Sigurdsson G, Hebebrand J, Pedersen O, Thorsteinsdottir U, Gulcher JR, Kong A, Rotimi C, Stefansson K.Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution.Nat Genet 2007;39: 218– 225 [PubMed] [Google Scholar]

62. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K.A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.Nat Genet 2007;39: 770– 775 [PubMed] [Google Scholar]

63. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjogren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L.Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes.J Clin Invest 2007;117: 2155– 2163 [PMC free article] [PubMed] [Google Scholar]

64. Cauchi S, Meyre D, Dina C, Choquet H, Samson C, Gallina S, Balkau B, Charpentier G, Pattou F, Stetsyuk V, Scharfmann R, Staels B, Fruhbeck G, Froguel P.Transcription factor TCF7L2 genetic study in the French population: expression in human β-cells and adipose tissue and strong association with type 2 diabetes.Diabetes 2006;55: 2903– 2908 [PubMed] [Google Scholar]

65. Welters HJ, Kulkarni RN.Wnt signaling: relevance to β-cell biology and diabetes.Trends Endocrinol Metab 2008;19: 349– 355 [PubMed] [Google Scholar]

66. Unger RH.Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications.Diabetes 1995;44: 863– 870 [PubMed] [Google Scholar]

67. Prentki M, Nolan CJ.Islet beta cell failure in type 2 diabetes.J Clin Invest 2006;116: 1802– 1812 [PMC free article] [PubMed] [Google Scholar]

68. Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo RA, Cusi K.A sustained increase in plasma free fatty acids impairs insulin secretion in non-diabetic subjects genetically predisposed to develop type 2 diabetes.Diabetes 2003;52: 2461– 2474 [PubMed] [Google Scholar]

69. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH.Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats.Proc Natl Acad Sci U S A 1999;96: 11513– 11518 [PMC free article] [PubMed] [Google Scholar]

70. Matsui J, Terauchi Y, Kubota N, Takamoto I, Eto K, Yamashita T, Komeda K, Yamauchi T, Kamon J, Kita S, Noda M, Kadowaki T.Pioglitazone reduces islet triglyceride content and restores impaired glucose-stimulated insulin secretion in heterozygous peroxisome proliferator-activated receptor-γ–deficient mice on a high-fat diet.Diabetes 2004;53: 2844– 2854 [PubMed] [Google Scholar]

71. Shimabukuro M, Zhou YT, Lee Y, Unger RH.Troglitazone lowers islet fat and restores beta cell function of Zucker diabetic fatty rats.J Biol Chem 1998;273: 3547– 3550 [PubMed] [Google Scholar]

72. Paolisso G, Tagliamonte MR, Rizzo MR, Gualdiero P, Saccomanno F, Gambardella A, Giugliano D, D'Onofrio F, Howard BV.Lowering fatty acids potentiates acute insulin response in first degree relatives of people with type II diabetes.Diabetologia 1998;41: 1127– 1132 [PubMed] [Google Scholar]

73. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M., Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P.Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated.Diabetes 2002;51: 1437– 1442 [PubMed] [Google Scholar]

74. Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, Marchetti P, Del Prato S.Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion.Am J Physiol Endocrinol Metab 2004;286: E560– E567 [PubMed] [Google Scholar]

75. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA.Thiazolidinediones improve beta-cell function in type 2 diabetic patients.Am J Physiol Endocrinol Metab 2007;292: E871– E883 [PubMed] [Google Scholar]

76. Rossetti L, Giaccari A, DeFronzo RA.Glucose toxicity (Review).Diabetes Care 1990;13: 610– 630 [PubMed] [Google Scholar]

77. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA.Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats.J Clin Invest 1987;80: 1037– 1044 [PMC free article] [PubMed] [Google Scholar]

78. Patane G, Anello M, Piro S, Vigneri R, Purrello F, Rabuazzo AM.Role of ATP production and uncoupling protein-2 in the insulin secretory defect induced by chronic exposure to high glucose or free fatty acids and effects of peroxisome proliferator–activated receptor-γ inhibition.Diabetes 2002;51: 2749– 2756 [PubMed] [Google Scholar]

79. Andreozzi F, D'Alessandris C, Federici M, Laratta E, Del Guerra S, Del Prato S, Marchetti P, Lauro R, Perticone F, Sesti G.Activation of the hexosamine pathway leads to phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 and impairs the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin insulin biosynthetic pathway in RIN pancreatic beta-cells.Endocrinology 2004;145: 2845– 2857 [PubMed] [Google Scholar]

80. Leahy JL, Cooper HE, Deal DA, Weir GC.Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion: a study in normal rats using chronic in vivo glucose infusions.J Clin Invest 1986;77: 908– 915 [PMC free article] [PubMed] [Google Scholar]

81. Leahy JL, Cooper HE, Weir GC.Impaired insulin secretion associated with near normoglycemia: study in normal rats with 96-h in vivo glucose infusions.Diabetes 1987;36: 459– 464 [PubMed] [Google Scholar]

82. Garvey WT, Olefsky JM, Griffin J, Hamman RF, Kolterman OG.The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus.Diabetes 1985;34: 222– 234 [PubMed] [Google Scholar]

83. Kosaka K, Kuzuya T, Akanuma Y, Hagura R.Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment.Diabetologia 1980;18: 23– 28 [PubMed] [Google Scholar]

84. Andrews WJ, Vasquez B, Nagulesparan M, Klimes I, Foley J, Unger R, Reaven GM.Insulin therapy in obese, non-insulin-dependent diabetes induces improvements in insulin action and secretion that are maintained for two weeks after insulin withdrawal.Diabetes 1984;33: 634– 642 [PubMed] [Google Scholar]

85. Eriksson J, Nakazato M, Miyazato M, Shiomi K, Matsukura S, Groop L.Islet amyloid polypeptide plasma concentrations in individuals at increased risk of developing type 2 (non-insulin-dependent) diabetes mellitus.Diabetologia 1992;35: 291– 293 [PubMed] [Google Scholar]

86. Johnson KH, O'Brien TD, Betsholtz C, Westermark P.Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus.N Engl J Med 1989;321: 513– 518 [PubMed] [Google Scholar]

87. Ohsawa H, Kanatsuka A, Yamaguchi T, Makino H, Yoshida S.Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets.Biochem Biophy Res Com 1989;160: 961– 967 [PubMed] [Google Scholar]

88. Bretherton-Watt D, Ghatei MA, Bloom SR, Jamal H, Ferrier GJ, Girgis SI, Legon S.Altered islet amyloid polypeptide (amylin) gene expression in rat models of diabetes.Diabetologia 1989;32: 881– 883 [PubMed] [Google Scholar]

89. Haataja L, Gurlo T, Huang CJ, Butler PC.Islet amyloid in type 2 diabetes and the toxic oligomer hypothesis.Endocr Rev 2008;29: 303– 316 [PMC free article] [PubMed] [Google Scholar]

90. Chavez AO, Lopez-Alvarenga JC, Triplitt C, Bastarrachea RA, Musi N, Comuzzie AG, DeFronzo RA, Folli F.Physiological and molecular determinants of insulin action in the baboon.Diabetes 2008;57: 899– 908 [PubMed] [Google Scholar]

91. Mendoza RG, Davalli A, Chavez-Velazquez AO, Comuzzie A, Tejero E, Alvarenga JC, Bastarrachea R, Zuo P, Chang Z, Dick E, Hubbard G, Cruz AM, Perez CT, Malff G, DeFronzo RA, Folli F.Fasting plasma glucose (FPG) and HbA1c predict quantitatively baboon pancreatic islet amyloidosis (PIA): a novel non-human primate model of β-cell failure in type 2 diabetes mellitus (T2DM) (Abstract).Diabetes 2008;57(Suppl. 1): A439 [Google Scholar]

92. Cox LA, Mahaney MC, Vandeberg JL, Rogers J.A second-generation genetic linkage map of the baboon (Papio hamadryas) genome.Genomics 2006;88: 274– 281 [PubMed] [Google Scholar]

93. Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC.High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes.Diabetes 2007;56: 2016– 2027 [PubMed] [Google Scholar]

94. Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC.Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets.Diabetes 2007;56: 65– 71 [PubMed] [Google Scholar]

95. Hartter E, Svoboda T, Ludvik B, Schuller M, Lell B, Kuenburg E, Brunnbauer M, Woloszczuk W, Prager R.Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans.Diabetologia 1991;34: 52– 54 [PubMed] [Google Scholar]

96. Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P.Co-localization of islet amyloid polypeptide and insulin in the beta cell secretory granules of the human pancreatic islets.Diabetologia 1989;32: 240– 244 [PubMed] [Google Scholar]

97. Lin CY, Gurlo T, Haataja L, Hsueh WA, Butler PC.Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3′-kinase-dependent pathway.J Clin Endocrinol Metab 2005;90: 6678– 6686 [PubMed] [Google Scholar]

98. Drucker DJ.The biology of incretin hormones.Cell Metab 2006;3: 153– 165 [PubMed] [Google Scholar]

99. Drucker DJ, Nauck MA.The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes.Lancet 2006;368: 1696– 1705 [PubMed] [Google Scholar]

100. Meier JJ, Nauck MA.Incretins and the development of type 2 diabetes.Curren Diab Reports 2006;6: 194– 201 [PubMed] [Google Scholar]

101. Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK, Holst JJ.Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients.J Clin Endocrinol Metab 2001;86: 3717– 3723 [PubMed] [Google Scholar]

102. Nauck M, Stockmann F, Ebert R, Creutzfeldt W.Reduced incretin effect in type 2 (non-insulin-dependent) diabetes.Diabetologia 1986;29: 46– 52 [PubMed] [Google Scholar]

103. Holst JJ.Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005.Diabetologia 2006;49: 253– 260 [PubMed] [Google Scholar]

104. Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W.Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.J Clin Invest 1993;91: 301– 307 [PMC free article] [PubMed] [Google Scholar]

105. Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA.Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes.Diabetes 2001;50: 2497– 2504 [PubMed] [Google Scholar]

106. Kjems LL, Holst JJ, Volund A, Madsbad S.The influence of GLP-1 on glucose-stimulated insulin secretion: effects on β-cell sensitivity in type 2 and nondiabetic subjects.Diabetes 2003;52: 380– 386 [PubMed] [Google Scholar]

107. Holst JJ, Gromada J.Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans.Am J Physiol Endocrinol Metab 2004;287: E199– E206 [PubMed] [Google Scholar]

108. Jones IR, Owens DR, Luzio S, Williams S, Hayes TM.The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus.Diabetologia 1989;32: 668– 677 [PubMed] [Google Scholar]

109. Hojberg PV, Vilsboll T, Rabol R, Knop FK, Bache M, Krarup T, Holst JJ, Madsbad S.Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes.Diabetologia 2009;52: 199– 207 [PubMed] [Google Scholar]

110. DeFronzo RA, Ferrannini E.Regulation of intermediatory metabolism during fasting and refeeding. Chapter 52. In_Endocrinology_DeGroot LJ, Jameson JL. Eds. Elsevier, Philadelphia, PA, 2006, p. 1015– 1043 [Google Scholar]

111. Shulman GI, Rothman DL, Smith D, Johnson CM, Blair JB, Shulman RG, DeFronzo RA.Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy.J Clin Invest 1985;76: 1229– 1236 [PMC free article] [PubMed] [Google Scholar]

112. Firth R, Bell P, Rizza R.Insulin action in non-insulin-dependent diabetes mellitus: the relationship between hepatic and extrahepatic insulin resistance and obesity.Metabolism 1987;36: 1091– 1095 [PubMed] [Google Scholar]

113. Campbell PJ, Mandarino LJ, Gerich JE.Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus.Metabolism 1988;37: 15– 21 [PubMed] [Google Scholar]

114. Chen YD, Jeng CY, Hollenbeck CB, Wu MS, Reaven GM.Relationship between plasma glucose and insulin concentration, glucose production, and glucose disposal in normal subjects and patients with non-insulin-dependent diabetes.J Clin Invest 1988;82: 21– 25 [PMC free article] [PubMed] [Google Scholar]

115. Jeng CY, Sheu WH, Fuh MM, Chen YD, Reaven GM.Relationship between hepatic glucose production and fasting plasma glucose concentration in patients with NIDDM.Diabetes 1994;43: 1440– 1444 [PubMed] [Google Scholar]

116. Henry RR, Wallace P, Olefsky JM.Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus.Diabetes 1986;35: 990– 998 [PubMed] [Google Scholar]

117. DeFronzo RA, Ferrannini E.Regulation of hepatic glucose metabolism in humans.Diabetes Metab Rev 1987;3: 415– 460 [PubMed] [Google Scholar]

118. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI.Increased rate of gluconeogenesis in type II diabetes mellitus: a 13C nuclear magnetic resonance study.J Clin Invest 1992;90: 1323– 1327 [PMC free article] [PubMed] [Google Scholar]

119. Consoli A, Nurjhan N, Reilly JJ, Jr, Bier DM, Gerich JE.Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus: role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism.J Clin Invest 1990;86: 2038– 2045 [PMC free article] [PubMed] [Google Scholar]

120. Matsuda M, DeFronzo RA, Glass L, Consoli A, Giordano M, Bressler P, DelPrato S.Glucagon dose response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals.Metabolism 2002;51: 1111– 1119 [PubMed] [Google Scholar]

121. Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM.Studies of pancreatic α-cell function in normal and diabetic subjects.J Clin Invest 1970;49: 837– 848 [PMC free article] [PubMed] [Google Scholar]

122. Baron AD, Schaeffer L, Shragg P, Kolterman OG.Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics.Diabetes 1987;36: 274– 283 [PubMed] [Google Scholar]

123. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, Landau BR, Ferrannini E.Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study.Diabetes 2000;49: 1367– 1373 [PubMed] [Google Scholar]

124. Clore JN, Stillman J, Sugerman H.Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes.Diabetes 2000;49: 969– 974 [PubMed] [Google Scholar]

125. DeFronzo RA, Tobin JD, Andres R.The glucose clamp technique: a method for quantifying insulin secretion and resistance.Am J Physiol 1979;237: E214– E223 [PubMed] [Google Scholar]

126. Bajaj M, DeFronzo RA.Metabolic and molecular basis of insulin resistance.J Nuclear Cardiol 2003;10: 311– 323 [PubMed] [Google Scholar]

127. Reaven GM.Banting Lecture: Role of insulin resistance in human disease.Diabetes 1988;37: 595– 607 [PubMed] [Google Scholar]

128. Kolterman OG, Gray RS, Griffin J, Burstein P, Insel J, Scarlett JA, Olefsky JM.Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus.J Clin Invest 1981;68: 957– 969 [PMC free article] [PubMed] [Google Scholar]

129. Campbell PJ, Mandarino LJ, Gerich JE.Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus.Metabolism 1988;37: 15– 21 [PubMed] [Google Scholar]

130. Bogardus C, Lillioja S, Howard BV, Reaven G, Mott D.Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects.J Clin Invest 1984;74: 1238– 1246 [PMC free article] [PubMed] [Google Scholar]

131. Butterfield WJ, Whichelow MJ.Peripheral glucose metabolism in control subjects and diabetic patients during glucose, glucose-insulin, and insulin sensitivity tests.Diabetologia 1965;1: 43– 53 [Google Scholar]

132. Zierler KL, Rabinowitz D.Roles of insulin and growth hormone, based on studies of forearm metabolism in man.Medicine 1963;42: 385– 402 [PubMed] [Google Scholar]

133. Bonadonna RC, Del Prato S, Bonora E, Saccomani MP, Gulli G, Natali A, Frascerra S, Pecori N, Ferrannini E, Bier D, Cobelli C, DeFronzo RA.Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM.Diabetes 1996;45: 915– 925 [PubMed] [Google Scholar]

134. Rothman DL, Shulman RG, Shulman GI.31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus.J Clin Invest 1992;89: 1069– 1075 [PMC free article] [PubMed] [Google Scholar]

135. Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI.Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes.N Engl J Med 1999;341: 240– 246 [PubMed] [Google Scholar]

136. Mandarino LJ, Printz RL, Cusi KA, Kinchington P, O'Doherty RM, Osawa H, Sewel C, Consoli A, Granner DK, DeFronzo RA.Regulation of hexokinase II and glycogen synthase mRNA, protein, and activity in human muscle.Am J Physiol 1995;269: E701– E708 [PubMed] [Google Scholar]

137. Vogt C, Yki-Jarvinen H, Iozzo P, Pipek R, Pendergrass M, Koval J, Ardehali H, Printz R, Granner D, DeFronzo RA, Mandarino L.Effects of insulin on subcellular localization of hexokinase II in human skeletal muscle in vivo.J Clin Endocrinol Metab 1998;83: 230– 234 [PubMed] [Google Scholar]

138. Mandarino LJ, Wright KS, Verity LS, Nichols J, Bell JM, Kolterman OG, Beck-Nielsen H.Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase, and glycogen synthase: evidence for their role in oxidative and nonoxidative glucose metabolism.J Clin Invest 1987;80: 655– 663 [PMC free article] [PubMed] [Google Scholar]

139. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG.Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy.N Engl J Med 1990;322: 223– 228 [PubMed] [Google Scholar]

140. Groop L, Saloranta C, Shank M, Bonadonna RC, Ferrannini E, DeFronzo RA.The role of free fatty acid metabolism in the pathogensis of insulin resistance in obesity and non-insulin dependent diabetes mellitus.J Clin Endocrinol Metab 1991;72: 96– 107 [PubMed] [Google Scholar]

141. Felber JP, Ferrannini E, Golay A, Meyer HV, Thiebaud D, Curchod B, Maeder E, Jequier E, DeFronzo RA.Role of lipid oxidation in the pathogenesis of insulin resistance of obesity and type II diabetes.Diabetes 1987;36: 1341– 1350 [PubMed] [Google Scholar]

142. Golay A, Felber JP, Jequier E, DeFronzo RA, Ferrannini E.Metabolic basis of obesity and non-insulin dependent diabetes mellitus.Diabetes/Metab Rev 1988;4: 727– 747 [PubMed] [Google Scholar]

143. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, DeFronzo RA, Kahn CR, Mandarino LJ.Insulin resistance differentially affects the PI 3-kinase and MAP kinase-mediated signaling in human muscle.J Clin Invest 2000;105: 311– 320 [PMC free article] [PubMed] [Google Scholar]

144. Saltiel AR, Kahn CR.Insulin signalling and the regulation of glucose and lipid metabolism.Nature 2001;414: 799– 806 [PubMed] [Google Scholar]

145. Tanijuchi CM, Emanuelli B, Kahn CR.Critical nodes in signaling pathways: insight into insulin action.Nat Rev Mol Cell Biol 2006;7: 85– 96 [PubMed] [Google Scholar]

146. Musi N, Goodyear LJ.Insulin resistance and improvements in signal transduction.Endocrine 2006;29: 73– 80 [PubMed] [Google Scholar]

147. Kashyap SR, DeFronzo RA.The insulin resistance syndrome: physiological considerations.Diabetes Vasc Dis Res 2007;4: 13– 19 [PubMed] [Google Scholar]

148. Kashyap SR, Roman LJ, McLain J, Masters BS, Bajaj M, Suraamornkul S, Belfort R, Berria R, Kellogg DL, Jr, Liu Y, DeFronzo R.Insulin resistance is associated with impaired nitric oxide synthase (NOS) activity in skeletal muscle of type 2 diabetic subjects.J Clin Endocrinol Metab 2005;90: 1100– 1105 [PubMed] [Google Scholar]

149. Montagnani M, Chen H, Barr VA, Quon MJ.Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179).J Biol Chem 2001;276: 30392– 30398 [PubMed] [Google Scholar]

150. Miyazaki Y, He H, Mandarino LJ, DeFronzo RA.Rosiglitazone improves downstream insulin-receptor signaling in type 2 diabetic patients.Diabetes 2003;52: 1943– 1950 [PubMed] [Google Scholar]

151. Kashyap S, Belfort R, Berria R, Surammornkul S, Pratipanawatr T, Finalyson J, Barrentine A, Mandarino L, DeFronzo RA, Cusi K.Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes.Am J Physiol Endocrinol Metab 2004;287: E537– E546 [PubMed] [Google Scholar]

152. Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Jenkinson CP, Maezono K, DeFronzo RA, Mandarino L.Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated IRS-1 tyrosine phosphorylation.Diabetes 2001;50: 2572– 2578 [PubMed] [Google Scholar]

153. Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG, Jr, Wallberg-Henriksson H, Zierath JR.Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients.Diabetes 2000;49: 284– 292 [PubMed] [Google Scholar]

154. Kim YB, Ciaraldi TP, Kong A, Kim D, Chu N, Mohideen P, Mudaliar S, Henry RR, Kahn BB.Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects.Diabetes 2002;51: 443– 448 [PubMed] [Google Scholar]

155. Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, Shulman GI.Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes.J Clin Invest 2002;109: 1321– 1326 [PMC free article] [PubMed] [Google Scholar]

156. Bouzakri K, Roques M, Gual P, Espinosa S, Guebre-Egziabher F, Riou JP, Laville M, Le Marchand-Brustel Y, Tanti JF, Vidal H.Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes.Diabetes 2003;52: 1319– 1325 [PubMed] [Google Scholar]

157. Wang CC, Goalstone ML, Draznin B.Molecular mechanisms of insulin resistance that impact cardiovascular biology.Diabetes 2004;53: 2735– 2740 [PubMed] [Google Scholar]

158. Draznin B.Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α: the two sides of a coin.Diabetes 2006;55: 2392– 2397 [PubMed] [Google Scholar]

159. Hsueh WA, Law RE.Insulin signaling in the arterial wall.Am J Cardiol 1999;84: 21J– 24J [PubMed] [Google Scholar]

160. Krook A, Bjornholm M, Galuska D, Jiang XJ, Fahlman R, Myers MG, Jr, Wallberg-Henriksson H, Zierath JR.Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients.Diabetes 2000;49: 284– 292 [PubMed] [Google Scholar]

161. Hanley AJ, Williams K, Stern MP, Haffner SM.Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study.Diabetes Care 2002;25: 1177– 1184 [PubMed] [Google Scholar]

162. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L.Cardiovascular morbidity and mortality associated with the metabolic syndrome.Diabetes Care 2001;24: 683– 689 [PubMed] [Google Scholar]

163. Rutter MK, Meigs JB, Sullivan LM, D'Agostino RB, Sr, Wilson PW.Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring Study.Diabetes 2005;54: 3252– 3257 [PubMed] [Google Scholar]

164. Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Meigs JB, Bonadonna RC, Muggeo M.Insulin resistance as estimated by homeostasis model assessment predicts incident symptomatic cardiovascular disease in Caucasian subjects from the general population: the Bruneck study.Diabetes Care 2007;30: 318– 324 [PubMed] [Google Scholar]

165. Howard G, Bergman R, Wagenknecht LE, Haffner SM, Savage PJ, Saad MF, Laws A, D'Agostino RB., JrAbility of alternative indices of insulin sensitivity to predict cardiovascular risk: comparison with the “minimal model”: Insulin Resistance Atherosclerosis Study (IRAS) Investigators.Ann Epidemiol 1998;8: 358– 369 [PubMed] [Google Scholar]

166. Bonora E, Formentini G, Calcaterra F, Lombardi S, Marini F, Zenari L, Saggiani F, Poli M, Perbellini S, Raffaelli A, Cacciatori V, Santi L, Targher G, Bonadonna R, Muggeo M.HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: prospective data from the Verona Diabetes Complications Study.Diabetes Care 2002;25: 1135– 1141 [PubMed] [Google Scholar]

167. Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D'Agostino RB, Sr, Perez A, Provost JC, Haffner SM.Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial.JAMA 2006;296: 2572– 2581 [PubMed] [Google Scholar]

168. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EMPERISCOPE InvestigatorsComparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial.JAMA 2008;299: 1561– 1573 [PubMed] [Google Scholar]

169. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton JPROactive investigatorsSecondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.Lancet 2005;366: 1279– 1289 [PubMed] [Google Scholar]

170. DeFronzo RA, Ferrannini E, Hendler R, Wahren J, Felig P.Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange.Proc Natl Acad Sci U S A 1978;75: 5173– 5177 [PMC free article] [PubMed] [Google Scholar]

171. DeFronzo RA, Ferrannini E, Wahren J, Felig P.Lack of gastrointestinal mediator of insulin action in maturity onset diabetes.Lancet 1978;2: 1077– 1079 [PubMed] [Google Scholar]

172. DeFronzo RA, Ferrannini E, Hendler R, Felig P, Wahren J.Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia.Diabetes 1983;32: 35– 45 [PubMed] [Google Scholar]

173. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J.Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (type II) diabetes mellitus.J Clin Invest 1985;76: 149– 155 [PMC free article] [PubMed] [Google Scholar]

174. Ferrannini E, Simonson DC, Katz LD, Reichard G, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA.The disposal of an oral glucose load in patients with non-insulin dependent diabetes.Metabolism 1988;37: 79– 85 [PubMed] [Google Scholar]

175. Bays H, Mandarino L, DeFronzo RA.Role of the adipocytes, FFA, and ectopic fat in the pathogenesis of type 2 diabetes mellitus: PPAR agonists provide a rational therapeutic approach.J Clin Endocrinol Metab 2004;89: 463– 478 [PubMed] [Google Scholar]

176. Bays HE, Gonzalez-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW, Henry RR.Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity.Expert Rev Cardio Ther 2008;6: 343– 368 [PubMed] [Google Scholar]

177. Bonadonna RC, DeFronzo RA.Glucose metabolism in obesity and type 2 diabetes.Diabete Metab 1991;17: 112– 135 [PubMed] [Google Scholar]

178. DeFronzo RA.Dysfunctional fat cells, lipotoxicity, and type 2 diabetes.Int J Clin Pract Suppl 2004;143: 9– 21 [PubMed] [Google Scholar]

179. Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM.Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance.J Clin Endocrinol Metab 1985;61: 807– 811 [PubMed] [Google Scholar]

180. Williamson JR, Kreisberg RA, Felts PW.Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver.Proc Natl Acad Sci U S A 1966;56: 247– 254 [PMC free article] [PubMed] [Google Scholar]

181. Bevilacqua S, Bonadonna R, Buzzigoli G, Boni C, Ciociaro D, Maccari F, Giorico MA, Ferrannini E.Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects.Metabolism 1987;36: 502– 506 [PubMed] [Google Scholar]

182. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA.Effect of fatty acids on glucose production and utilization in man.J Clin Invest 1983;72: 1737– 1747 [PMC free article] [PubMed] [Google Scholar]

183. Thiebaud D, DeFronzo RA, Jacot E, Golay A, Acheson K, Maeder E, Jequier E, Felber JP.Effect of long chain triglyceride infusion on glucose metabolism in man.Metabolism 1982;31: 1128– 1136 [PubMed] [Google Scholar]

184. Felber JP, Vannotti A.Effects of fat infusion on glucose tolerance and insulin plasma levels.Int J Exp Med 1964;10: 153– 156 [PubMed] [Google Scholar]

185. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI.Mechanism of free fatty acid-induced insulin resistance in humans.J Clin Invest 1996;97: 2859– 2865 [PMC free article] [PubMed] [Google Scholar]

186. Carpentier A, Mittelman SD, Bergman RN, Giacca A, Lewis GF.Prolonged elevation of plasma free fatty acids impairs pancreatic beta-cell function in obese nondiabetic humans but not in individuals with type 2 diabetes.Diabetes 2000;49: 399– 408 [PubMed] [Google Scholar]

187. Salans LB, Bray GA, Cushman SW, Danforth E, Jr, Glennon JA, Horton ES, Sims EA.Glucose metabolism and the response to insulin by human adipose tissue in spontaneous and experimental obesity: effects of dietary composition and adipose cell size.J Clin Invest 1974;53: 848– 856 [PMC free article] [PubMed] [Google Scholar]

188. Bray GA, Glennon JA, Salans LB, Horton ES, Danforth E, Jr, Sims EA.Spontaneous and experimental human obesity: effects of diet and adipose cell size on lipolysis and lipogenesis.Metabolism 1977;26: 739– 747 [PubMed] [Google Scholar]

189. Boden G, Shulman GI.Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction.Eur J Clin Invest 2002;32(Suppl. 3): 14– 23 [PubMed] [Google Scholar]

190. Bajaj M, Pratipanawatr T, Berria R, Pratipanawatr W, Kashyap S, Cusi K, Mandarino L, DeFronzo RA.Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes.Diabetes 2002;51: 3043– 3048 [PubMed] [Google Scholar]

191. Richardson DK, Kashyap S, Bajaj M, Cusi K, DeFronzo RA, Jenkinson CP, Mandarino LJ.Lipid infusion induces an inflammatory/fibrotic response and decreases expression of nuclear encoded mitochondrial genes in human skeletal muscle.J Biol Chem 2005;280: 10290– 10297 [PubMed] [Google Scholar]

192. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI.Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity.J Clin Invest 1999;103: 253– 259 [PMC free article] [PubMed] [Google Scholar]

193. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI.Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade.Diabetes 1999;48: 1270– 1274 [PubMed] [Google Scholar]

194. Itani SI, Ruderman NB, Schmieder F, Boden G.Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α.Diabetes 2002;51: 2005– 2011 [PubMed] [Google Scholar]

195. Randle PJ, Garland PB, Hales CN, Newsholme EA.The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.Lancet 1963;1: 785– 789 [PubMed] [Google Scholar]

196. Mandarino LJ, Consoli A, Jain A, Kelley DE.Interaction of carbohydrate and fat fuels in human skeletal muscle: impact of obesity and NIDDM.Am J Physiol 1996;270: E463– E470 [PubMed] [Google Scholar]

197. Kelley D, Mandarino L.Fuel selection in human skeletal muscle in insulin resistance: a reexamination.Diabetes 2000;49: 677– 683 [PubMed] [Google Scholar]

198. Wititsuwannakul D, Kim KH.Mechanism of palmityl coenzyme A inhibition of liver glycogen synthase.J Biol Chem 1977;252: 7812– 7817 [PubMed] [Google Scholar]

199. Johnson AB, Argyraki M, Thow JC, Cooper BG, Fulcher G, Taylor R.Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man.Clin Science 1992;82: 219– 226 [PubMed] [Google Scholar]

200. Pendergrass M, Nucci G, DeFronzo R.In vivo glucose transport (GT) and phosphorylation (GP) in skeletal muscle are impaired by elevation of plasma FFA (Abstract).Diabetes 1998;47:(Suppl. 1): A65 [Google Scholar]

201. Belfort R, Mandarino L, Kashyap S, Wirfel K, Pratipanawatr T, Berria R, Cusi K, DeFronzo RA.Dose response effect of elevated plasma FFA on insulin signaling.Diabetes 2005;54: 1640– 1648 [PubMed] [Google Scholar]

202. Petersen KF, Dufour S, Shulman GI.Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents.Plos Med 2005;2: 879– 884 [PMC free article] [PubMed] [Google Scholar]

203. Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen EW, Shulman GI.Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle.J Biol Chem 2002;277: 50230– 50236 [PubMed] [Google Scholar]

204. Ellis BA, Poynten A, Lowy AJ, Furler SM, Chisholm DJ, Kraegen EW, Cooney GJ.Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle.Am J Physiol Endocrinol Metab 2000;279: E554– E560 [PubMed] [Google Scholar]

205. Coletta DK, Sriwijitkamol A, Wajcberg E, Tantiwong P, Li M, Prentki M, Madiraju M, Jenkinson CP, Cersosimo E, Musi N, DeFronzo RA.Pioglitazone stimulates AMPK signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo.DiabetologiaIn press [PMC free article] [PubMed] [Google Scholar]

206. Bajaj M, Suraamornkul S, Romanelli A, Cline GW, Mandarino LJ, Shulman GI, DeFronzo RA.Effect of sustained reduction in plasma free fatty acid concentration on intramuscular long chain-fatty acyl-CoAs and insulin action in patients with type 2 diabetes.Diabetes 2005;54: 3148– 3153 [PubMed] [Google Scholar]

207. Attie AD, Kendziorski CM.PGC-1alpha at the crossroads of type 2 diabetes.Nat Genet 2003;34: 244– 245 [PubMed] [Google Scholar]

208. Puigserver P, Spiegelman BM.Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator.Endocrine Rev 2003;24: 78– 90 [PubMed] [Google Scholar]

209. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM.Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle.Proc Natl Acad Sci U S A 2004;101: 6570– 6575 [PMC free article] [PubMed] [Google Scholar]

210. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM.Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1.Cell 1999;98: 115– 124 [PubMed] [Google Scholar]

211. Montell E, Turini M, Marotta M, Roberts M, Noe V, Ciudad CJ, Mace K, Gomez-Foix AM.DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells.Am J Physiol Endocrinol Metab 2001;280: E229– E237 [PubMed] [Google Scholar]

212. Adams JM, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ.Ceramide content is increased in skeletal muscle from obese insulin resistant humans.Diabetes 2004;53: 25– 31 [PubMed] [Google Scholar]

213. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, DeFronzo RA, Kirwan JP.Plasma ceramides are elevated in obese subjects with type 2 diabetes and are associated with the level of insulin resistance.Diabetes 2009;58: 337– 343 [PMC free article] [PubMed] [Google Scholar]

214. Richardson DK, Kashyap S, Bajaj M, Cusi K, DeFronzo RA, Jenkinson CP, Mandarino LJ.Lipid infusion induces an inflammatory/fibrotic response and decreases expression of nuclear encoded mitochondrial genes in human skeletal muscle.J Biol Chem 2005;280: 10290– 10297 [PubMed] [Google Scholar]

215. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ.Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1.Proc Natl Acad Sci U S A 2003;100: 8466– 8471 [PMC free article] [PubMed] [Google Scholar]

216. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC.PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.Nat Genet 2003;34: 267– 273 [PubMed] [Google Scholar]

217. Abdul-Ghani MA, Mueller FL, Liu Y, Chavez A, Balas B, Tripathy D, Jani R, Monroy A, Folli F, van Remmen H, DeFronzo RA.Deleterious action of fatty acids on mitochondrial ATP synthsis: the link between lipotoxicity, mitochondrial dysfunction, and insulin resistance.Am J Physiol 2008;295: E678– E685 [PubMed] [Google Scholar]

218. Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C, Musi N, DeFronzo RA, Cersosimo E.Mechanisms of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes.Am J Physiol Endocrinol Metab 2008;294: E846– E852 [PubMed] [Google Scholar]

219. Cervera A, Wajcberg E, Triplitt C, Fernandez M, Zuo P, DeFronzo RA, Cersosimo E.Improved splanchnic glucose metabolism is responsible for glycemic control in T2DM subjects treated with exenatide (Abstract).Diabetes 2007;56(Suppl. 1): A404 [Google Scholar]

220. Edgerton DS, Johnson KMS, Neal DW, Scott M, Hobbs CH, Zhang X, Duttaroy A, Cherrington AD.Inhibition of dipeptidyl peptidase-4 by vildagliptin during glucagon-like peptide-1 infusion increases liver glucose uptake in the conscious dog.Diabetes 2009;58: 243– 249 [PMC free article] [PubMed] [Google Scholar]

221. Ionut V, Zheng D, Stefanovski D, Bergman RN.Exenatide can reduce glucose independent of islet hormones or gastric emptying.Am J Physiol Endocrinol Metab 2008;295: E269– E277 [PMC free article] [PubMed] [Google Scholar]

222. Reaven GM, Chen YD, Golay A, Swislocki AL, Jaspan JB.Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus.J Clin Endocrinol Metab 1987;64: 106– 110 [PubMed] [Google Scholar]

223. Unger RH, Aguilar-Parada E, Muller WA, Eisentraut AM.Studies of pancreatic α-cell function in normal and diabetic subjects.J Clin Invest 1970;49: 837– 848 [PMC free article] [PubMed] [Google Scholar]

224. Boden G, Soriano M, Hoeldtke RD, Owen OE.Counterregulatory hormone release and glucose recovery after hypoglycemia in non-insulin-dependent diabetic patients.Diabetes 1983;32: 1055– 1059 [PubMed] [Google Scholar]

225. Triplitt C, DeFronzo RA.Exenatide: first in class incretin mimetic for the treatment of type 2 diabetes mellitus.Expert Rev Endocrinol Metab 2006;1: 329– 341 [PubMed] [Google Scholar]

226. Petersen KF, Sullivan JT.Effects of a novel glucagon receptor antagonist (Bay 27–9955) on glucagon-stimulated glucose production in humans.Diabetologia 2001;44: 2018– 2024 [PubMed] [Google Scholar]

227. DeFronzo RA, Abdul-Ghani M.Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type 2 diabetes mellitus.Endocrine PracticeIn press [PubMed] [Google Scholar]

228. Noonan WT, Shaprio VM, Banks RO.Renal glucose reabsorption during hypertonic glucose infusion in female streptozotocin-induced diabetic rats.Life Sci 2001;68: 2967– 2977 [PubMed] [Google Scholar]

229. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT.Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats.Am J Physiol 1994;266: F283– F290 [PubMed] [Google Scholar]

230. Kamran M, Peterson RG, Dominguez JH.Overexpression of GLUT2 gene in renal proximal tubules of diabetic Zucker rats.J Am Soc Nephol 1997;8: 943– 948 [PubMed] [Google Scholar]

231. Mogensen CE.Maximum tubular reabsorpiton capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects.Scan J Clin Lab Invest 1971;28: 101– 109 [PubMed] [Google Scholar]

232. Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J.Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non–insulin-dependent diabetes.Diabetes 2005;54: 3427– 3434 [PubMed] [Google Scholar]

233. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM.Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002.JAMA 2004;291: 2847– 2850 [PubMed] [Google Scholar]

234. Porte D.Central regulation of energy homeostasis.Diabetes 2006;55(Suppl. 2): S155– S160 [Google Scholar]

235. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DC.Central nervous system control of food intake.Nature 2000;404: 661– 671 [PubMed] [Google Scholar]

236. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR.Role of brain insulin receptor in control of body weight and reproduction.Science 2000;289: 2122– 2125 [PubMed] [Google Scholar]

237. Plum L, Belgardt BF, Bruning JC.Central insulin action in energy and glucose homeostasis.J Clin Invest 2006;116: 1761– 1766 [PMC free article] [PubMed] [Google Scholar]

238. Matsuda M, Liu Y, Mahankali S, Pu Y, Mahankali A, Wang J, DeFronzo RA, Fox PT, Gao JH.Altered hypothalamic function in response to glucose ingestion in obese humans.Diabetes 1999;48: 1801– 1806 [PubMed] [Google Scholar]

239. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L.Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats.Nat Neurosci 2002;5: 566– 572 [PubMed] [Google Scholar]

240. Obici S, Feng Z, Tan J, Liu L, Karkanias G, Rossetti L.Central melanocortin receptors regulate insulin action.J Clin Invest 2001;108: 1079– 1085 [PMC free article] [PubMed] [Google Scholar]

241. Cusi K, Consoli A, DeFronzo RA.Metabolic effects of metformin on glucose and lactate metabolism in NIDDM.J Clin Endocrinol Metab 1996;81: 4059– 4067 [PubMed] [Google Scholar]

242. DeFronzo RA, Goodman AM.Efficacy of metformin in patients with non-insulin dependent diabetes mellitus.N Engl J Med 1995;333: 541– 549 [PubMed] [Google Scholar]

243. Cusi K, DeFronzo RA.Metformin: a review of its metabolic effects.Diabetes Reviews 1998;6: 89– 131 [Google Scholar]

244. Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferranini E, Cusi K, Mandarino L, DeFronzo RA.Improved glycemic control and enhanced insulin sensitivity in liver and muscle in type 2 diabetic subjects treated with pioglitazone.Diabetes Care 2001;24: 710– 719 [PubMed] [Google Scholar]

245. Miyazaki Y, Glass L, Triplitt C, Matsuda M, Cusi K, Mandarino L, DeFronzo RA.Effect of rosiglitazone on glucose and free fatty acid metabolism in type 2 diabetic patients.Diabetologia 2001;44: 2210– 2219 [PubMed] [Google Scholar]

246. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA.Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients.J Clin Endocrinol Metab 2002;87: 2784– 2791 [PubMed] [Google Scholar]

247. Bajaj M, Suraamornkul S, Hardies LJ, Pratipanawatr T, DeFronzo RA.Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated type 2 diabetic patients.Internatl J Obesity 2004;28: 783– 789 [PubMed] [Google Scholar]

248. Bajaj M, Soraamornkul S, Glass L, Musi N, DeFronzo RA.Effects of PPARα and PPARγ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus.Diabetes 2005;54: 3148– 3153 [PubMed] [Google Scholar]

249. Gastaldelli Am, Miyazaki Y, Mahankali A, Berria R, Pettiti M, Buzzigoli E, Ferrannini E, DeFronzo RA.The effect of pioglitazone on the liver.Diabetes Care 2006;29: 2275– 2281 [PubMed] [Google Scholar]

250. Gastaldelli A, Miyazaki Y, Matsuda M, Pettiti M, Santini E, Ferrannini E, DeFronzo R.The effect of rosiglitazone on the liver: decreased gluconeogenesis in patients with type 2 diabetes.J Clin Endocrinol Metab 2006;91: 806– 812 [PubMed] [Google Scholar]

251. Bajaj M, Suraamornkul S, Hardies LJ, Glass L, Musi N, DeFronzo RA.Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus.Diabetologia 2007;50: 1723– 1731 [PubMed] [Google Scholar]

252. Miyazaki Y, DeFronzo RA.Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients.Diabetes Obes Metab 2008;10: 1204– 1211 [PubMed] [Google Scholar]

253. Natali A, Ferrannini E.Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review.Diabetologia 2006;49: 434– 441 [PubMed] [Google Scholar]

254. Kim YB, Ciaraldi TP, Kong A, Kim D, Chu N, Mohideen P, Mudaliar S, Henry RR, Kahn BB.Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110-β protein levels in skeletal muscle of type 2 diabetic subjects.Diabetes 2002;51: 443– 448 [PubMed] [Google Scholar]

255. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE.Role of AMP-activated protein kinase in mechanism of metformin action.J Clin Invest 2001;108: 1167– 1174 [PMC free article] [PubMed] [Google Scholar]

256. Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O, Zhou G, Williamson JM, Ljunqvist O, Efendic S, Moller DE, Thorell A, Goodyear LJ.Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes.Diabetes 2002;51: 2074– 2081 [PubMed] [Google Scholar]

257. Einhorn D, Rendell M, Rosenzweig J, Egan JW, Mathisen AL, Schneider RL.Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group.Clin Ther 2000;22: 1395– 1409 [PubMed] [Google Scholar]

258. Fonseca V, Rosenstock J, Patwardhan R, Salzman A.Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial.JAMA 2000;283: 1695– 1702 [PubMed] [Google Scholar]

259. Matthews DR, Charbonnel BH, Hanefeld M, Brunetti P, Schernthaner G.Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in patients with type 2 diabetes: a randomized, comparative study.Diab/Metab Res Rev 2005;21: 167– 174 [PubMed] [Google Scholar]

260. Charbonnel B, Schernthaner G, Brunetti P, Matthews DR, Urquhart R, Tan MH, Hanefeld M.Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes.Diabetologia 2005;48: 1093– 1104 [PubMed] [Google Scholar]

261. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI.Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus.N Engl J Med 1998;338: 867– 872 [PubMed] [Google Scholar]

262. Bajaj M, DeFronzo RA.Combination therapy in type 2 diabetes. In_International Textbook of Diabetes Mellitus_3rd ed DeFronzo RA, Ferrannini E, Keen H, Zimmet P. Eds. New York, Wiley, 2004, p. 915– 950 [Google Scholar]

263. Miyazaki Y, Glass L, Triplitt C, Matsuda M, Cusi K, Mandarino L, DeFronzo RA.Effect of rosiglitazone on glucose and free fatty acid metabolism in type 2 diabetic patients.Diabetologia 2001;44: 2210– 2219 [PubMed] [Google Scholar]

264. Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA.Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients.J Clin Endocrinol Metab 2002;87: 2784– 2791 [PubMed] [Google Scholar]

265. Bajaj M, Suraamornkul S, Pratipanawatr T, Hardies LJ, Pratipanawatr W, Glass L, Miyazaki Y, DeFronzo RA.Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes.Diabetes 2003;52: 1364– 1370 [PubMed] [Google Scholar]

266. Belfort R, Harrison SA, Brown K, Darfland C, Finch J, Hardies J, Balas B, Gastaldelli A, Tio F, Puicini J, Berria R, Mia JZ, Dwivedi S, Havranek R, Fincke C, DeFronzo RA, Bannayan GA, Schenker S, Cusi K.A placebo controlled trial of pioglitazone in patients with non-alcoholic steatohepatitis.N Engl J Med 2006;355: 2297– 2307 [PubMed] [Google Scholar]

267. Yki-Jarvinen H.Thiazolidinediones.N Engl J Med 2004;351: 1106– 1118 [PubMed] [Google Scholar]

268. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti GADOPT Study GroupGlycemic durability of rosiglitazone, metformin, or glyburide monotherapy.N Engl J Med 2006;355: 2427– 2443 [PubMed] [Google Scholar]

269. Hanefeld M, Pfutzner A, Forst T, Lubben G.Glycemic control and treatment failure with pioglitazone versus glibenclamide in type 2 diabetes mellitus: a 42-month, open-label, observational, primary care study.Cur Med Res Opinion 2006;22: 1211– 1215 [PubMed] [Google Scholar]

270. Tan MH, Baksi A, Krahulec B, Kubalski P, Stankiewicz A, Urquhart R, Edwards G, Johns DGLAL Study GroupComparison of pioglitazone and gliclazide in sustaining glycemic control over 2 years in patients with type 2 diabetes.Diabetes Care 2005;28: 544– 550 [PubMed] [Google Scholar]

271. Rosenstock J, Goldstein BJ, Vinik AI, O'neill MC, Porter LE, Heise MA, Kravitz B, Dirani RG, Freed MIRESULT Study GroupEffect of early addition of rosiglitazone to sulphonylurea therapy in older type 2 diabetes patients (>60 years): the Rosiglitazone Early vs. SULphonylurea Titration (RESULT) study.Diab Obes Metab 2006;8: 49– 57 [PubMed] [Google Scholar]

272. Home PD, Jones NP, Pocock SJ, Beck-Nielsen H, Gomis R, Hanefeld M, Komajda M, Curtis P; RECORD Study GroupRosiglitazone RECORD study: glucose control outcomes at 18 months.Diabet Med 2007;24: 626– 634 [PMC free article] [PubMed] [Google Scholar]

273. Bunck MC, Diamant M, Cornér A, Eliasson B, Malloy JL, Shaginian RM, Deng W, Kendall DM, Taskinen MR, Smith U, Yki-Järvinen H, Heine RJ.One-year treatment with exenatide improves β-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial.Diabetes CareIn press [PMC free article] [PubMed] [Google Scholar]

274. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD.Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes.Diabetes Care 2005;28: 1092– 1100 [PubMed] [Google Scholar]

275. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, Wintle ME, Maggs DG.Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years.Curr Med Res Opin 2008;24: 275– 286 [PubMed] [Google Scholar]

276. Johnson JA, Majumdar SR, Simpson SH, Toth EL.Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes.Diabetes Care 2002;25: 2244– 2248 [PubMed] [Google Scholar]

277. Evans JM, Ogston SA, Emslie-Smith A, Morris AD.Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin.Diabetologia 2006;49: 930– 936 [PubMed] [Google Scholar]

278. UK Prospective Diabetes Study (UKPDS) GroupEffect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UPKDS 34).Lancet 1998;352: 854– 865 [PubMed] [Google Scholar]

279. Turner RC, Cull CA, Frighi V, Holman RR.Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group.JAMA 1999;281: 2005– 2012 [PubMed] [Google Scholar]

280. U.K. Prospective Diabetes Diabetes Study GroupUKPDS 28: a randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes.Diabetes Care 1998;21: 87– 92 [PubMed] [Google Scholar]

281. Wright A, Burden AC, Paisey RB, Cull CA, Holman RRU.K. Prospective Diabetes Study GroupSulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57).Diabetes Care 2002;25: 330– 336 [PubMed] [Google Scholar]

282. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC.UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group.Diabet Med 1998;15: 297– 303 [PubMed] [Google Scholar]

283. U.K. prospective diabetes study 16Overview of 6 years' therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group.Diabetes 1995;44: 1249– 1258 [PubMed] [Google Scholar]

284. Lupi R, Del Guerra S, Tellini C, Giannarelli R, Coppelli A, Lorenzetti M, Carmellini M, Mosca F, Navalesi R, Marchetti P.The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose.Eur J Pharmacol 1999;364: 205– 209 [PubMed] [Google Scholar]

285. Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P.Lipotoxicity in human pancreatic islets and the protective effect of metformin.Diabetes 2002;51(Suppl. 1): S134– S137 [PubMed] [Google Scholar]

286. Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Kawakubo M, Buchanan TA.Effect of pioglitazone on pancreatic β-cell function and diabetes risk in Hispanic women with prior gestational diabetes.Diabetes 2006;55: 517– 522 [PMC free article] [PubMed] [Google Scholar]

287. The Dream (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomized controlled trial.Lancet 2006;368: 1096– 1105 [PubMed] [Google Scholar]

288. Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, Fowler SE, Nathan DM, Kahn SEthe Diabetes Prevention Program Research GroupPrevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program.Diabetes 2005;54: 1150– 1156 [PMC free article] [PubMed] [Google Scholar]

289. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP.Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women.Diabetes 2002;51: 2796– 2803 [PubMed] [Google Scholar]

290. DeFronzo RA, Banerji MA, Bray G, Buchanan T, Clement S, Henry R, Kitabchi A, Mudaliar S, Musi N, Ratner R, Reaven P, Schwenke D, Stenz F, Tripathy D. ACTos NOW for the prevention of diabetes (ACT NOW) study Late-breaking abstract presented at the 68th Annual Meeting of the American Diabetes Association, 6–10 June 2008, San Francisco, California [Google Scholar]

291. Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, Marchetti P, Del Prato S.Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion.Am J Physiol Endocrinol Metab 2004;286: E560– E567 [PubMed] [Google Scholar]

292. Finegood DT, McArthur MD, Kojwang D, Thomas MJ, Topp BG, Leonard T, Buckingham RE.β-Cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death.Diabetes 2001;50: 1021– 1029 [PubMed] [Google Scholar]

293. Kim HI, Cha JY, Kim SY, Kim JW, Roh KJ, Seong JK, Lee NT, Choi KY, Kim KS, Ahn YH.Peroxisomal proliferator–activated receptor-γ upregulates glucokinase gene expression in β-cells.Diabetes 2002;51: 676– 685 [PubMed] [Google Scholar]

294. Santini E, Fallahi P, Ferrari SM, Masoni A, Antonelli A, Ferrannini E.Effect of PPAR-gamma activation and inhibition on glucose-stimulated insulin release in INS-1e cells.Diabetes 2004;53(Suppl. 3): S79– S83 [PubMed] [Google Scholar]

295. Masuda K, Okamoto Y, Tsuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y.Effects of Troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide.Diabetologia 1995;38: 24– 30 [PubMed] [Google Scholar]

296. Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B.Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age.Diabetes 2001;50: 1562– 1570 [PubMed] [Google Scholar]

297. Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L, Benquet C, Drucker DJ.Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo.Diabetes 2003;52: 751– 759 [PubMed] [Google Scholar]

298. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R.Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets.Endocrinology 2003;144: 5149– 5158 [PubMed] [Google Scholar]

299. Ahren B, Pacini G, Foley JE, Schweizer A.Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year.Diabetes Care 2005;28: 1936– 1940 [PubMed] [Google Scholar]

300. Deacon CF.Dipeptidyl peptidase 4 inhibition with sitagliptin: a new therapy for type 2 diabetes.Expert Opin Invest Drugs 2007;16: 533– 545 [PubMed] [Google Scholar]

301. Balas B, Baig MR, Watson C, Dunning BE, Ligueros-Saylan M, Wang Y, He YL, Darland C, Holst JJ, Deacon CF, Cusi K, Mari A, Foley JE, DeFronzo RA.The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients.J Clin Endocrinol Metab 2007;92: 1249– 1255 [PubMed] [Google Scholar]

302. Riddle MC, Rosenstock J, Gerich JInsulin Glargine 4002 Study InvestigatorsThe treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients.Diabetes Care 2003;26: 3080– 3086 [PubMed] [Google Scholar]

303. Yki-Jarvinen H, Ryysy L, Nikkila K, Tulokas T, Vanamo R, Heikkila M.Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial.Ann Intern Med 1999;130: 389– 396 [PubMed] [Google Scholar]

304. Holman RR, Thorne KI, Farmer AJ, Davies MJ, Keenan JF, Paul S, Levy JCfor the 4-T study groupAddition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes.N Engl J Med 2007;357: 1716– 1730 [PubMed] [Google Scholar]

305. Henry RR, Gumbiner B, Ditzler T, Wallace P, Lyon R, Glauber HS.Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial.Diabetes Care 1993;16: 21– 31 [PubMed] [Google Scholar]

306. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RGGWAA Study GroupExenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial.Ann Intern Med 2005;143: 559– 569 [PubMed] [Google Scholar]

307. Barnett AH, Burger J, Johns D, Brodows R, Kendall DM, Roberts A, Trautmann ME.Tolerability and efficacy of exenatide and titrated insulin glargine in adult patients with type 2 diabetes previously uncontrolled with metformin or a sulfonylurea: a multinational, randomized, open-label, two-period, crossover noninferiority trial.Clin Thera 2007;29: 2333– 2348 [PubMed] [Google Scholar]

308. Nauck MA, Duran S, Kim D, Johns D, Northrup J, Festa A, Brodows R, Trautmann M.A comparison of twice-daily exenatide and biphasic insulin aspart in patients with type 2 diabetes who were suboptimally controlled with sulfonylurea and metformin: a non-inferiority study.Diabetologia 2007;50: 259– 267 [PubMed] [Google Scholar]

309. Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B.Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes.Diabetes Care 2009;32: 193– 203 [PMC free article] [PubMed] [Google Scholar]