Fano variety (original) (raw)

About DBpedia

In der algebraischen Geometrie, einem Teilgebiet der Mathematik, ist eine Fano-Varietät eine vollständige Varietät über einem Körper , deren ist. Eine Fano-Mannigfaltigkeit ist eine singularitäten-freie komplexe Fano-Varietät.

Property Value
dbo:abstract In der algebraischen Geometrie, einem Teilgebiet der Mathematik, ist eine Fano-Varietät eine vollständige Varietät über einem Körper , deren ist. Eine Fano-Mannigfaltigkeit ist eine singularitäten-freie komplexe Fano-Varietät. (de) In algebraic geometry, a Fano variety, introduced by Gino Fano in (Fano , ), is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties. (en) 대수기하학에서 파노 다양체(영어: Fano variety)는 사영 공간과 유사하게, 반표준 인자가 풍부한 인자를 이루는 대수다양체이다. (ko) 代数幾何学では、ファノ多様体(Fano variety)は、( Fano , ) により導入され、多様体上の反標準バンドルが豊富な(complete variety) X のことを言う。この定義は、X がある定義体上で(smooth)なことを前提としているが、極小モデルプログラムでは、端末特異点(canonical singularity)やklt特異点(klt singularity)(川又対数端末特異点)といった、様々なタイプの特異点を持ったファノ多様体の研究も進められていた。 (ja) In algebraïsche meetkunde is een Fano-variëteit, geïntroduceerd door Gino Fano, een niet-singuliere complete variëteit waarvan de anti-kanonieke bundel een is. In het bijzonder hebben alle Fano-variëteiten een Kodaira-dimensie −∞. Fano-variëteiten in dimensies 1 zijn isomorf met de projectieve lijn. In dimensie 2 zijn Fano-variëteiten del Pezzo-oppervlakken en zijn zij isomorf ofwel aan of aan het projectieve vlak opgeblazen op hoogstens 8 algemene punten, en in het bijzonder zijn zij allen rationaal. In dimensie 3 zijn er niet-rationale voorbeelden. Iskovskih classificeerde de Fano 3-folds waar het tweede Betti-getal gelijk is aan 1 in 18 klassen, en Mori deed in 1981 hetzelfde voor Fano 3-folds met het tweede Betti-getal gelijk aan 2, waarbij hij 88 vervormingsklassen vond. (nl)
dbo:wikiPageExternalLink https://fanography.pythonanywhere.com/ http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/%3FIDDOC=209966
dbo:wikiPageID 3095929 (xsd:integer)
dbo:wikiPageLength 9073 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1101817985 (xsd:integer)
dbo:wikiPageWikiLink dbr:Yoichi_Miyaoka dbr:Rational_variety dbr:Algebraic_geometry_of_projective_spaces dbr:Betti_number dbr:Del_Pezzo_surface dbr:Kähler–Einstein_metric dbr:Weighted_projective_space dbr:Gino_Fano dbr:Calabi_conjecture dbr:Complete_intersection dbr:Yuri_Manin dbr:Adjunction_formula dbr:K-stability_of_Fano_varieties dbr:Algebraic_curve dbr:Algebraic_geometry dbr:Ample_line_bundle dbc:3-folds dbr:Curvature dbr:Isomorphism dbr:Kodaira_vanishing_theorem dbr:Simply_connected_space dbr:Projective_line dbr:Projective_variety dbr:Herbert_Clemens dbr:Hypersurface dbc:Algebraic_geometry dbr:János_Kollár dbr:Moduli_space dbr:Phillip_Griffiths dbr:Kodaira_dimension dbr:Canonical_bundle dbr:Canonical_singularity dbr:Shigefumi_Mori dbr:Minimal_model_program dbr:Sheaf_cohomology dbr:Smooth_scheme dbr:Periodic_table_of_shapes dbr:Universal_cover dbr:Fubini–Study dbr:Variety_of_general_type dbr:Springer-Verlag dbr:First_Chern_class dbr:Myers'_theorem dbr:Very_ample dbr:Complete_algebraic_variety dbr:Anticanonical_bundle dbr:Structure_sheaf dbr:Vasily_Iskovskikh
dbp:authorlink Gino Fano (en)
dbp:bot InternetArchiveBot (en)
dbp:date August 2019 (en)
dbp:first Vik.S. (en)
dbp:fixAttempted yes (en)
dbp:last Fano (en) Kulikov (en) Iskovskih (en)
dbp:title Fano_variety (en)
dbp:wikiPageUsesTemplate dbt:Authority_control dbt:Citation dbt:Dead_link dbt:Harvtxt dbt:Reflist dbt:Technical dbt:Harvs dbt:Eom
dbp:year 1934 (xsd:integer) 1942 (xsd:integer) 1977 (xsd:integer) 1978 (xsd:integer) 1979 (xsd:integer)
dct:subject dbc:3-folds dbc:Algebraic_geometry
gold:hypernym dbr:X
rdf:type owl:Thing dbo:Work
rdfs:comment In der algebraischen Geometrie, einem Teilgebiet der Mathematik, ist eine Fano-Varietät eine vollständige Varietät über einem Körper , deren ist. Eine Fano-Mannigfaltigkeit ist eine singularitäten-freie komplexe Fano-Varietät. (de) In algebraic geometry, a Fano variety, introduced by Gino Fano in (Fano , ), is a complete variety X whose anticanonical bundle KX* is ample. In this definition, one could assume that X is smooth over a field, but the minimal model program has also led to the study of Fano varieties with various types of singularities, such as terminal or klt singularities. Recently techniques in differential geometry have been applied to the study of Fano varieties over the complex numbers, and success has been found in constructing moduli spaces of Fano varieties and proving the existence of Kähler–Einstein metrics on them through the study of K-stability of Fano varieties. (en) 대수기하학에서 파노 다양체(영어: Fano variety)는 사영 공간과 유사하게, 반표준 인자가 풍부한 인자를 이루는 대수다양체이다. (ko) 代数幾何学では、ファノ多様体(Fano variety)は、( Fano , ) により導入され、多様体上の反標準バンドルが豊富な(complete variety) X のことを言う。この定義は、X がある定義体上で(smooth)なことを前提としているが、極小モデルプログラムでは、端末特異点(canonical singularity)やklt特異点(klt singularity)(川又対数端末特異点)といった、様々なタイプの特異点を持ったファノ多様体の研究も進められていた。 (ja) In algebraïsche meetkunde is een Fano-variëteit, geïntroduceerd door Gino Fano, een niet-singuliere complete variëteit waarvan de anti-kanonieke bundel een is. In het bijzonder hebben alle Fano-variëteiten een Kodaira-dimensie −∞. (nl)
rdfs:label Fano-Varietät (de) Fano variety (en) ファノ多様体 (ja) 파노 다양체 (ko) Fano-variëteit (nl)
owl:sameAs freebase:Fano variety http://d-nb.info/gnd/4322735-1 wikidata:Fano variety dbpedia-de:Fano variety dbpedia-fi:Fano variety dbpedia-ja:Fano variety dbpedia-ko:Fano variety dbpedia-nl:Fano variety https://global.dbpedia.org/id/51Aoa
prov:wasDerivedFrom wikipedia-en:Fano_variety?oldid=1101817985&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Fano_variety
is dbo:wikiPageDisambiguates of dbr:Fano_(disambiguation)
is dbo:wikiPageRedirects of dbr:Fano_varieties dbr:Fano_3-fold dbr:Fano_manifold dbr:Fano_manifolds dbr:Fano_scheme dbr:Fano_threefold
is dbo:wikiPageWikiLink of dbr:Carolina_Araujo_(mathematician) dbr:Quaternion-Kähler_manifold dbr:Algebraic_geometry_of_projective_spaces dbr:Cubic_surface dbr:Deformation_(mathematics) dbr:Del_Pezzo_surface dbr:Stable_map dbr:Weighted_projective_space dbr:Combinatorial_mirror_symmetry dbr:Glossary_of_algebraic_geometry dbr:Complete_variety dbr:Complex_geometry dbr:Vyacheslav_Shokurov dbr:Fano_(disambiguation) dbr:Fano_varieties dbr:K-stability dbr:Ample_line_bundle dbr:Fano_fibration dbr:Fano_surface dbr:Rational_point dbr:Birational_geometry dbr:Coherent_sheaf dbr:Kodaira_dimension dbr:Kähler_manifold dbr:Canonical_bundle dbr:List_of_unsolved_problems_in_mathematics dbr:Olivier_Debarre dbr:Ruled_variety dbr:Manin_conjecture dbr:Semiorthogonal_decomposition dbr:Vasilii_Iskovskikh dbr:Periodic_table_of_shapes dbr:Fano_3-fold dbr:Fano_manifold dbr:Fano_manifolds dbr:Fano_scheme dbr:Fano_threefold
is foaf:primaryTopic of wikipedia-en:Fano_variety