Measure-preserving dynamical system (original) (raw)

About DBpedia

Maßerhaltende Abbildungen, manchmal auch maßtreue Abbildungen genannt, sind Selbstabbildungen eines Maßraums, die das Maß erhalten. Man spricht auch von maßerhaltenden dynamischen Systemen, insbesondere wenn man das Verhalten der Abbildung unter Iteration betrachtet. Umgekehrt spricht man von einem invarianten Maß einer Abbildung oder eines dynamischen Systems, wenn die Abbildung (oder das dynamische System) das Maß erhält. Maßerhaltende Abbildungen sind das Thema der Ergodentheorie innerhalb der Theorie der dynamischen Systeme.

thumbnail

Property Value
dbo:abstract Maßerhaltende Abbildungen, manchmal auch maßtreue Abbildungen genannt, sind Selbstabbildungen eines Maßraums, die das Maß erhalten. Man spricht auch von maßerhaltenden dynamischen Systemen, insbesondere wenn man das Verhalten der Abbildung unter Iteration betrachtet. Umgekehrt spricht man von einem invarianten Maß einer Abbildung oder eines dynamischen Systems, wenn die Abbildung (oder das dynamische System) das Maß erhält. Maßerhaltende Abbildungen sind das Thema der Ergodentheorie innerhalb der Theorie der dynamischen Systeme. (de) In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics (in particular, most non-dissipative systems) as well as systems in thermodynamic equilibrium. (en) Un système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. (fr) 数学における測度保存力学系(そくどほぞんりきがくけい、英: measure-preserving dynamical system)は、力学系の抽象的形成や、特にエルゴード理論に現れる一研究対象である。 (ja) Em matemática, um sistema dinâmico preservando medida é um objeto de estudo na abstrata formulação de sistemas dinâmicos e em particular na teoria ergódica. Sistemas dinâmicos que preservam uma medida obedecem o , e são um caso especial dos sistemas conservativos. Eles fornecem a base matemática formal para uma ampla gama de sistemas físicos e, em particular, muitos sistemas da mecânica clássica (em particular, a maioria dos sistemas não dissipativos), bem como sistemas em equilíbrio termodinâmico. (pt) 保测动力系统(英語:Measure-preserving dynamical system)由一个概率空间和其上的一个保测变换組成。也就是说,它是一个系统 带有下面结构: * X是一个集合, * 是X上的一个σ-代数, * 是一个概率测度, * 为一个可测变换, 并且保持测度,即对任意 满足. 此时,称T为概率空间上的一个保测变换。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Exampleergodicmap.svg?width=300
dbo:wikiPageExternalLink http://www.math.nyu.edu/~lsy/papers/entropy.pdf http://www.math.nyu.edu/~lsy/papers/entropy.ps https://arxiv.org/abs/nlin/0208048
dbo:wikiPageID 398931 (xsd:integer)
dbo:wikiPageLength 20308 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1105062501 (xsd:integer)
dbo:wikiPageWikiLink dbr:Power_set dbr:Probability_space dbr:Mixing_(mathematics) dbr:Product_measure dbr:Almost_everywhere dbr:Homomorphism dbr:Unit_circle dbr:Van_der_Waals_force dbr:Volume_form dbr:Interval_exchange_transformation dbr:Invariant_measure dbr:Join_(sigma_algebra) dbr:Conservative_system dbr:Mathematics dbr:Maxwell–Boltzmann_distribution dbr:Orbit_(dynamics) dbr:Pullback dbr:Classical_mechanics dbr:Monoid dbr:Equidistribution_theorem dbr:Lai-Sang_Young dbr:Pushforward_measure dbr:Bernoulli_process dbr:Bernoulli_scheme dbr:Liouville's_theorem_(Hamiltonian) dbr:Sigma-algebra dbr:Krylov–Bogolyubov_theorem dbr:Measurable_function dbr:Transfer_operator dbc:Entropy dbr:Turbulence dbr:Weak_topology dbr:Well-defined dbr:Dissipative_system dbr:Ergodic_theorem dbc:Information_theory dbc:Entropy_and_information dbr:Equivalence_relation dbr:Ergodic_theory dbr:Base_flow_(random_dynamical_systems) dbr:Partition_of_a_set dbr:Isomorphism dbr:Kakutani's_theorem_(measure_theory) dbr:Symbolic_dynamics dbr:Topological_entropy dbr:Perron–Frobenius_theorem dbr:Poincaré_recurrence_theorem dbr:Group_(mathematics) dbr:Group_action dbr:Dynamical_systems dbr:Thermodynamic_equilibrium dbr:Surjective dbc:Dynamical_systems dbc:Measure_theory dbr:Supremum dbr:Borel_set dbr:Ideal_gas dbr:Identity_function dbr:Microcanonical_ensemble dbr:Category_(mathematics) dbr:Real_number dbr:Yakov_Sinai dbr:Markov_chain dbr:Unit_interval dbr:Random_dynamical_system dbr:Probability_measure dbr:Subshift_of_finite_type dbr:Ornstein_theory dbr:Almost_every dbr:Information_entropy dbr:Bernoulli_map dbr:Bernoulli_shift dbr:Binary_expansion dbr:Thermalization dbr:File:Exampleergodicmap.svg
dbp:wikiPageUsesTemplate dbt:Redirect dbt:Reflist dbt:See_also dbt:Short_description dbt:Isbn
dct:subject dbc:Entropy dbc:Information_theory dbc:Entropy_and_information dbc:Dynamical_systems dbc:Measure_theory
rdf:type owl:Thing yago:Abstraction100002137 yago:Attribute100024264 yago:DynamicalSystem106246361 yago:PhaseSpace100029114 yago:Space100028651 yago:WikicatDynamicalSystems
rdfs:comment Maßerhaltende Abbildungen, manchmal auch maßtreue Abbildungen genannt, sind Selbstabbildungen eines Maßraums, die das Maß erhalten. Man spricht auch von maßerhaltenden dynamischen Systemen, insbesondere wenn man das Verhalten der Abbildung unter Iteration betrachtet. Umgekehrt spricht man von einem invarianten Maß einer Abbildung oder eines dynamischen Systems, wenn die Abbildung (oder das dynamische System) das Maß erhält. Maßerhaltende Abbildungen sind das Thema der Ergodentheorie innerhalb der Theorie der dynamischen Systeme. (de) In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics (in particular, most non-dissipative systems) as well as systems in thermodynamic equilibrium. (en) Un système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. (fr) 数学における測度保存力学系(そくどほぞんりきがくけい、英: measure-preserving dynamical system)は、力学系の抽象的形成や、特にエルゴード理論に現れる一研究対象である。 (ja) Em matemática, um sistema dinâmico preservando medida é um objeto de estudo na abstrata formulação de sistemas dinâmicos e em particular na teoria ergódica. Sistemas dinâmicos que preservam uma medida obedecem o , e são um caso especial dos sistemas conservativos. Eles fornecem a base matemática formal para uma ampla gama de sistemas físicos e, em particular, muitos sistemas da mecânica clássica (em particular, a maioria dos sistemas não dissipativos), bem como sistemas em equilíbrio termodinâmico. (pt) 保测动力系统(英語:Measure-preserving dynamical system)由一个概率空间和其上的一个保测变换組成。也就是说,它是一个系统 带有下面结构: * X是一个集合, * 是X上的一个σ-代数, * 是一个概率测度, * 为一个可测变换, 并且保持测度,即对任意 满足. 此时,称T为概率空间上的一个保测变换。 (zh)
rdfs:label Maßerhaltende Abbildung (de) Système dynamique mesuré (fr) Measure-preserving dynamical system (en) 測度保存力学系 (ja) Sistema dinâmico preservando medida (pt) 保测动力系统 (zh)
rdfs:seeAlso dbr:Approximate_entropy
owl:sameAs freebase:Measure-preserving dynamical system yago-res:Measure-preserving dynamical system wikidata:Measure-preserving dynamical system dbpedia-de:Measure-preserving dynamical system dbpedia-fr:Measure-preserving dynamical system dbpedia-ja:Measure-preserving dynamical system dbpedia-pt:Measure-preserving dynamical system dbpedia-zh:Measure-preserving dynamical system https://global.dbpedia.org/id/6CBB
prov:wasDerivedFrom wikipedia-en:Measure-preserving_dynamical_system?oldid=1105062501&ns=0
foaf:depiction wiki-commons:Special:FilePath/Exampleergodicmap.svg
foaf:isPrimaryTopicOf wikipedia-en:Measure-preserving_dynamical_system
is dbo:knownFor of dbr:Yakov_Sinai
is dbo:wikiPageRedirects of dbr:Isomorphism_of_dynamical_systems dbr:Measure-preserving dbr:Measure-preserving_transformation dbr:Kolmogorov-Sinai_entropy dbr:Kolmogorov_entropy dbr:Kolmogorov–Sinai_entropy dbr:Measure-theoretic_entropy dbr:Measure_preserving_dynamical_system dbr:Measure_preserving_transformation dbr:Measure_theoretic_entropy dbr:Metric_entropy dbr:Area-preserving_map dbr:KS_Entropy dbr:Volume-preserving
is dbo:wikiPageWikiLink of dbr:List_of_dynamical_systems_and_differential_equations_topics dbr:Mixing_(mathematics) dbr:Stationary_ergodic_process dbr:John_von_Neumann dbr:Index_of_physics_articles_(M) dbr:Isomorphism_of_dynamical_systems dbr:Conservative_system dbr:Markov_odometer dbr:Branched_flow dbr:Equal-area_map dbr:Ergodic_Ramsey_theory dbr:Ergodicity dbr:Pushforward_measure dbr:Andrey_Kolmogorov dbr:Arnold's_cat_map dbr:Bernoulli_process dbr:Bernoulli_scheme dbr:Dissipation dbr:Base_flow_(random_dynamical_systems) dbr:Cindy_Greenwood dbr:Entropy_(disambiguation) dbr:Symbolic_dynamics dbr:Hyperfinite_equivalence_relation dbr:Measure-preserving dbr:Measure-preserving_transformation dbr:Yakov_Sinai dbr:Kingman's_subadditive_ergodic_theorem dbr:List_of_unsolved_problems_in_mathematics dbr:Multiplication_theorem dbr:Random_dynamical_system dbr:Kolmogorov-Sinai_entropy dbr:Kolmogorov_entropy dbr:Kolmogorov–Sinai_entropy dbr:Subshift_of_finite_type dbr:Sinai–Ruelle–Bowen_measure dbr:Measure-theoretic_entropy dbr:Measure_preserving_dynamical_system dbr:Measure_preserving_transformation dbr:Measure_theoretic_entropy dbr:Metric_entropy dbr:Area-preserving_map dbr:KS_Entropy dbr:Volume-preserving
is foaf:primaryTopic of wikipedia-en:Measure-preserving_dynamical_system