dbo:abstract |
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential The 'scope' here means the kind of function of an operator which is allowed. The Borel functional calculus is more general than the continuous functional calculus, and its focus is different than the holomorphic functional calculus one. More precisely, the Borel functional calculus allows for applying an arbitrary Borel function to a self-adjoint operator, in a way that generalizes applying a polynomial function. (en) Der beschränkte Borel-Funktionalkalkül ist ein Hilfsmittel zur Untersuchung von Von-Neumann-Algebren. Dieser Funktionalkalkül ist eine Erweiterung des aus der Theorie der C*-Algebren bekannten stetigen Funktionalkalküls auf beschränkte Borel-Funktionen. Diese Erweiterung des Funktionalkalküls ist in allgemeinen C*-Algebren nicht möglich, man muss sich dafür auf die kleinere Klasse der Von-Neumann-Algebren einschränken. (de) |
dbo:wikiPageID |
876294 (xsd:integer) |
dbo:wikiPageLength |
9867 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1119695496 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Quantum_mechanics dbr:Schrödinger_equation dbr:Borel_function dbr:Dynamics_(mechanics) dbr:Von_Neumann_algebra dbr:Lie_group dbr:Mathematics dbr:Normal_operator dbr:Operator_(mathematics) dbr:Eigenvector dbr:Energy dbr:Continuous_functional_calculus dbr:Stone–Weierstrass_theorem dbr:Commutative_algebra dbr:Functional_analysis dbr:Functional_calculus dbr:Hamiltonian_(quantum_mechanics) dbr:Orthonormal_basis dbr:Projection-valued_measure dbr:Spectrum_of_a_ring dbr:Stone's_theorem_on_one-parameter_unitary_groups dbr:Measure_space dbr:Theory_of_relativity dbr:Hilbert_space dbr:Involution_(mathematics) dbr:Holomorphic_functional_calculus dbc:Functional_calculus dbr:Indicator_function dbr:Initial_value_problem dbr:Inner_product_space dbr:Self-adjoint_operator dbr:Weak_operator_topology dbr:Observable dbr:Spectral_measure dbr:Polynomial_function dbr:Riesz-Markov_theorem dbr:Laplacian_operator dbr:Countably_additive_measure dbr:Gelfand_transform |
dbp:wikiPageUsesTemplate |
dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Spectral_theory dbt:Analysis_in_topological_vector_spaces dbt:Functional_analysis dbt:Math_theorem |
dct:subject |
dbc:Functional_calculus |
rdfs:comment |
Der beschränkte Borel-Funktionalkalkül ist ein Hilfsmittel zur Untersuchung von Von-Neumann-Algebren. Dieser Funktionalkalkül ist eine Erweiterung des aus der Theorie der C*-Algebren bekannten stetigen Funktionalkalküls auf beschränkte Borel-Funktionen. Diese Erweiterung des Funktionalkalküls ist in allgemeinen C*-Algebren nicht möglich, man muss sich dafür auf die kleinere Klasse der Von-Neumann-Algebren einschränken. (de) In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus (that is, an assignment of operators from commutative algebras to functions defined on their spectra), which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential (en) |
rdfs:label |
Beschränkter Borel-Funktionalkalkül (de) Borel functional calculus (en) |
owl:sameAs |
freebase:Borel functional calculus wikidata:Borel functional calculus dbpedia-de:Borel functional calculus https://global.dbpedia.org/id/4zBjq |
prov:wasDerivedFrom |
wikipedia-en:Borel_functional_calculus?oldid=1119695496&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Borel_functional_calculus |
is dbo:wikiPageRedirects of |
dbr:Measurable_functional_calculus dbr:Resolution_of_the_identity dbr:Continuous_basis dbr:Completeness_condition dbr:Completeness_relation |
is dbo:wikiPageWikiLink of |
dbr:Quantum_entanglement dbr:Enveloping_von_Neumann_algebra dbr:List_of_functional_analysis_topics dbr:Decomposition_of_spectrum_(functional_analysis) dbr:Quantum_statistical_mechanics dbr:Continuous_functional_calculus dbr:Singular_value_decomposition dbr:Composition_operator dbr:Projection-valued_measure dbr:Transfer_operator dbr:Joint_quantum_entropy dbr:Hermite_polynomials dbr:Holomorphic_functional_calculus dbr:Dirac_delta_function dbr:Spectral_theorem dbr:Measurable_functional_calculus dbr:Self-adjoint_operator dbr:Resolution_of_the_identity dbr:Continuous_basis dbr:Completeness_condition dbr:Completeness_relation |
is rdfs:seeAlso of |
dbr:Spectral_theory |
is foaf:primaryTopic of |
wikipedia-en:Borel_functional_calculus |