dbo:abstract |
Formální teorie je jeden z nejdůležitějších pojmů matematickologické syntaxe. Mnoho matematických teorií může být formalizováno volbou vhodných axiomů. Některé teorie existují pouze jako teorie formální. Příkladem může být teorie množin, jejíž neformalizovaná podoba – tzv. naivní teorie množin je sporná. (cs) Στη μαθηματική λογική, μια θεωρία είναι σύνολο από σε μια τυπική γλώσσα. Για παράδειγμα, μια θεωρία πρώτης τάξης είναι σύνολο από προτάσεις πρώτης τάξης. Πολλοί συγγραφείς απαιτούν η θεωρία να είναι κλειστή ως προς τη λογική συνέπεια. (el) In der mathematischen Logik ist eine Theorie (der Prädikatenlogik erster Stufe) eine Menge von Aussagen über einer Signatur. (de) En lógica, una teoría es un conjunto de proposiciones dentro de un lenguaje formal que es semánticamente completo en el sentido de que todo modelo que satisface todas las proposiciones de la teoría también satisface cualquier otra proposición que sea consecuencia de la misma. Lo que diferencia a una teoría de un conjunto de proposiciones cualquiera es que incluye todas sus consecuencias, es decir, es un conjunto cerrado de proposiciones bajo el "operador consecuencia". (es) In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. (en) Em lógica matemática, uma teoria (também chamada de teoria formal) é um conjunto de sentenças em uma linguagem formal. Normalmente um sistema dedutivo é entendido do contexto. Um elemento de uma teoria é chamado de axioma da teoria, e cada sentença que segue do axioma é chamado de teorema da teoria. Todo axioma também é um teorema. Uma teoria de primeira ordem é um conjunto de sentenças de primeira ordem. (pt) Teoria – niesprzeczny zbiór zdań. (pl) |
dbo:wikiPageID |
3512103 (xsd:integer) |
dbo:wikiPageInterLanguageLink |
dbpedia-fr:Théorie_axiomatique |
dbo:wikiPageLength |
12698 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1107683160 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Cambridge_University_Press dbr:List_of_first-order_theories dbr:Peano_arithmetic dbr:Resolution_(logic) dbr:Decidability_(logic) dbr:Decidability_of_first-order_theories_of_the_real_numbers dbr:Deduction_theorem dbr:Interpretability dbr:Lindenbaum's_lemma dbr:Consistent dbr:Mathematical_logic dbr:Enumerable dbr:Theorem dbc:Formal_theories dbr:Real_closed_fields dbr:Löwenheim–Skolem_theorem dbr:Compactness_theorem dbr:Complete_theory dbr:Deductive_system dbr:Structure_(mathematical_logic) dbr:Gödel's_completeness_theorem dbr:True_arithmetic dbr:First-order_logic dbr:Formal_language dbr:Formal_proof dbr:Formal_system dbr:Logical_consequence dbr:Natural_deduction dbr:Expansion_(model_theory) dbr:Well-formed_formula dbr:Recursion dbc:Logical_expressions dbr:ZFC dbr:Axiom dbr:Axiomatic_system dbr:Consequence_relation dbr:Method_of_analytic_tableaux dbr:Axioms dbr:Second-order_logic dbr:Sequent_calculus dbr:Mathematical_theory dbr:Rule_of_inference dbr:Satisfiability dbr:Sentence_(mathematical_logic) dbr:Signature_(logic) dbr:Principle_of_explosion dbr:Many-to-one dbr:Ω-consistent_theory dbr:Enumeration_theorem dbr:Inductive_family dbr:Consistent_set dbr:Model_(model_theory) dbr:Hilbert-style_deductive_system dbr:Ω-inconsistent_theories dbr:Σ-sentence |
dbp:date |
June 2021 (en) |
dbp:reason |
What if σ already contains all elements of A? (en) |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Explain dbt:Further dbt:Main dbt:Reflist dbt:Short_description dbt:Mathematical_logic |
dct:subject |
dbc:Formal_theories dbc:Logical_expressions |
rdf:type |
yago:WikicatConcepts yago:WikicatLogicalExpressions yago:Abstraction100002137 yago:Appearance104673965 yago:Attribute100024264 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Countenance104679549 yago:Explanation105793000 yago:Expression104679738 yago:HigherCognitiveProcess105770664 yago:Idea105833840 yago:Process105701363 yago:PsychologicalFeature100023100 yago:Quality104723816 yago:Theory105989479 yago:Thinking105770926 yago:WikicatFormalTheories |
rdfs:comment |
Formální teorie je jeden z nejdůležitějších pojmů matematickologické syntaxe. Mnoho matematických teorií může být formalizováno volbou vhodných axiomů. Některé teorie existují pouze jako teorie formální. Příkladem může být teorie množin, jejíž neformalizovaná podoba – tzv. naivní teorie množin je sporná. (cs) Στη μαθηματική λογική, μια θεωρία είναι σύνολο από σε μια τυπική γλώσσα. Για παράδειγμα, μια θεωρία πρώτης τάξης είναι σύνολο από προτάσεις πρώτης τάξης. Πολλοί συγγραφείς απαιτούν η θεωρία να είναι κλειστή ως προς τη λογική συνέπεια. (el) In der mathematischen Logik ist eine Theorie (der Prädikatenlogik erster Stufe) eine Menge von Aussagen über einer Signatur. (de) En lógica, una teoría es un conjunto de proposiciones dentro de un lenguaje formal que es semánticamente completo en el sentido de que todo modelo que satisface todas las proposiciones de la teoría también satisface cualquier otra proposición que sea consecuencia de la misma. Lo que diferencia a una teoría de un conjunto de proposiciones cualquiera es que incluye todas sus consecuencias, es decir, es un conjunto cerrado de proposiciones bajo el "operador consecuencia". (es) In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. (en) Em lógica matemática, uma teoria (também chamada de teoria formal) é um conjunto de sentenças em uma linguagem formal. Normalmente um sistema dedutivo é entendido do contexto. Um elemento de uma teoria é chamado de axioma da teoria, e cada sentença que segue do axioma é chamado de teorema da teoria. Todo axioma também é um teorema. Uma teoria de primeira ordem é um conjunto de sentenças de primeira ordem. (pt) Teoria – niesprzeczny zbiór zdań. (pl) |
rdfs:label |
Formální teorie (cs) Theorie (Logik) (de) Θεωρία (μαθηματική λογική) (el) Teoría (lógica) (es) Teoria (logika) (pl) Teoria (lógica matemática) (pt) Theory (mathematical logic) (en) |
owl:sameAs |
freebase:Theory (mathematical logic) yago-res:Theory (mathematical logic) wikidata:Theory (mathematical logic) wikidata:Theory (mathematical logic) dbpedia-cs:Theory (mathematical logic) dbpedia-de:Theory (mathematical logic) dbpedia-el:Theory (mathematical logic) dbpedia-es:Theory (mathematical logic) dbpedia-fa:Theory (mathematical logic) dbpedia-pl:Theory (mathematical logic) dbpedia-pt:Theory (mathematical logic) https://global.dbpedia.org/id/AP4N |
prov:wasDerivedFrom |
wikipedia-en:Theory_(mathematical_logic)?oldid=1107683160&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Theory_(mathematical_logic) |
is dbo:wikiPageDisambiguates of |
dbr:Theory_(disambiguation) |
is dbo:wikiPageRedirects of |
dbr:Supertheory dbr:Deductive_theory dbr:Logic_theory dbr:Logical_theory dbr:Subtheories dbr:Subtheory dbr:Theory_(logic) dbr:Theory_(model_theory) |
is dbo:wikiPageWikiLink of |
dbr:Categorical_logic dbr:Preorder dbr:Elementary_class dbr:Elementary_equivalence dbr:Elementary_theory dbr:Model_theory dbr:Omega-categorical_theory dbr:Algebraic_theory dbr:Algorithmic_information_theory dbr:Decidability_(logic) dbr:Decidability_of_first-order_theories_of_the_real_numbers dbr:Deduction_theorem dbr:Deductive_closure dbr:Definable_set dbr:Independence_(mathematical_logic) dbr:Infinitary_logic dbr:Inner_model dbr:Interpretability dbr:Interpretation_(logic) dbr:List_of_mathematical_logic_topics dbr:O-minimal_theory dbr:Robinson's_joint_consistency_theorem dbr:Timeline_of_category_theory_and_related_mathematics dbr:Consistency dbr:Craig_interpolation dbr:Anand_Pillay dbr:Mathematical_logic dbr:Mathematical_object dbr:Skolem_normal_form dbr:Łoś–Vaught_test dbr:Conservative_extension dbr:Theorem dbr:Equiconsistency dbr:Löwenheim–Skolem_theorem dbr:Stanley_Jaki dbr:Complete_theory dbr:Structure_(mathematical_logic) dbr:Doxastic_logic dbr:Gödel's_completeness_theorem dbr:True_arithmetic dbr:Alonzo_Church dbr:False_(logic) dbr:Fexpr dbr:Diagonal_lemma dbr:Diagram_(mathematical_logic) dbr:Formal_system dbr:Fragment_(logic) dbr:Natural_deduction dbr:Proof_theory dbr:Regular_tree_grammar dbr:Atomic_model_(mathematical_logic) dbr:Cointerpretability dbr:Theory_(disambiguation) dbr:Provability_logic dbr:Transitive_set dbr:Uninterpreted_function dbr:Axiomatic_system dbr:Categorical_theory dbr:Chain-complete_partial_order dbr:Kleene's_T_predicate dbr:Mathematical_theory dbr:Mathematical_theory_(disambiguation) dbr:Satisfiability dbr:Satisfiability_modulo_theories dbr:Sentence_(mathematical_logic) dbr:Sketch_(mathematics) dbr:Turnstile_(symbol) dbr:Tarski–Seidenberg_theorem dbr:Extension_by_new_constant_and_function_names dbr:Imaginary_element dbr:Formal_theory dbr:List_of_unsolved_problems_in_mathematics dbr:Tarski's_exponential_function_problem dbr:Existential_theory_of_the_reals dbr:Existentially_closed_model dbr:Flag_algebra dbr:Pseudo-finite_field dbr:Weak_interpretability dbr:Ω-consistent_theory dbr:Tolerant_sequence dbr:Yuri_Gurevich dbr:Supertheory dbr:Deductive_theory dbr:Logic_theory dbr:Logical_theory dbr:Subtheories dbr:Subtheory dbr:Theory_(logic) dbr:Theory_(model_theory) |
is foaf:primaryTopic of |
wikipedia-en:Theory_(mathematical_logic) |