Transmission electron microscopy (original) (raw)

About DBpedia

Un microscopi electrònic de transmissió (TEM, per les seves sigles en anglès de Transmission Electron Microscope, o MET, en català) és un microscopi que utilitza un feix d'electrons per visualitzar un objecte. La potència amplificadora d'un microscopi òptic està limitada per la longitud d'ona de la llum visible. A causa que els electrons tenen una longitud d'ona molt menor que la de la llum visible, poden mostrar estructures molt més petites. Entre altres coses, s'utilitza en microbiologia, ja que permet observar l'estructura dels virus, i en nanoenginyeria.

thumbnail

Property Value
dbo:abstract المجهر الإلكتروني النافذ (Transmission electron microscopy) والذي يرمز له اختصاراً TEM يعد المجهر الإلكتروني النافذ أداة قوية جدًا لعلوم المواد. تضيء حزمة عالية الطاقة من الإلكترونات عبر عينة رقيقة جدًا، ويمكن استخدام التفاعلات بين الإلكترونات والذرات لمراقبة ميزات مثل البنية البلورية والميزات في بنية مثل الخلع وحدود الحبوب. يمكن أيضا إجراء التحليل الكيميائي. يمكن استخدام TEM لدراسة نمو الطبقات وتكوينها وعيوبها في أشباه الموصلات. يمكن استخدام دقة عالية لتحليل نوعية وشكل وحجم وكثافة الآبار الكمومية والأسلاك والنقاط. يعمل TEM على نفس المبادئ الأساسية مثل المجهر الضوئي، لكنه يستخدم الإلكترونات بدلاً من الضوء. نظرًا لأن طول موجة الإلكترونات أصغر بكثير من طول الضوء، فإن الدقة المثلى التي يمكن الحصول عليها لصور TEM هي عدد كبير من الأحجام على نحو أفضل من مجهر الضوء. وبالتالي، يمكن أن تكشف TEMs عن أدق تفاصيل البنية الداخلية - في بعض الحالات صغيرة مثل الذرات الفردية. (ar) Un microscopi electrònic de transmissió (TEM, per les seves sigles en anglès de Transmission Electron Microscope, o MET, en català) és un microscopi que utilitza un feix d'electrons per visualitzar un objecte. La potència amplificadora d'un microscopi òptic està limitada per la longitud d'ona de la llum visible. A causa que els electrons tenen una longitud d'ona molt menor que la de la llum visible, poden mostrar estructures molt més petites. Entre altres coses, s'utilitza en microbiologia, ja que permet observar l'estructura dels virus, i en nanoenginyeria. (ca) Transmisní elektronový mikroskop (TEM) je elektronový mikroskop umožňující zobrazení a měření strukturních, chemických a mechanických vlastností látek až na atomární úrovni. Na rozdíl od světelného mikroskopu nevyužívá k pozorování viditelného světla ale urychlených elektronů. Na rozdíl od skenovacího elektronového mikroskopu (SEM), který primárně mapuje povrchu vzorku, TEM vzorek prosvěcí a přináší tak informaci z jeho objemu. Oproti maximálnímu efektivnímu zvětšení světelného mikroskopu (řádově 1000×) poskytuje TEM zvětšení výrazně vyšší (řádově 1 000 000×). Taková úroveň detailu umožňuje např. u krystalických materiálů zobrazení krystalové struktury a jejích poruch. Spolu s a případnými doplňkovými analytickými metodami umožňuje TEM ve vzorku změřit např. rozložení výskytu chemických prvků, parametrů krystalové mřížky, mechanického napětí nebo orientace krystalických zrn. Tím přispívá k pochopení vlastností a jevů určujících makroskopické chování materiálů. Své využití nachází TEM i při studiu biologických materiálů. Česká republika patří ke světové špičce jak ve výrobě elektronových mikroskopů, tak v oblasti související vědy a výzkumu. (cs) Die Transmissionselektronenmikroskopie (TEM, steht auch für Transmissionselektronenmikroskop) ist eine Betriebsart für Elektronenmikroskope, die eine direkte Abbildung von Objekten mithilfe von Elektronenstrahlen ermöglicht. In den 1930er-Jahren wurde erstmals das Auflösungsvermögen von optischen Mikroskopen durch die bahnbrechenden Arbeiten von Max Knoll und seinem damaligen Doktoranden Ernst Ruska überschritten. Letzterer wurde 1986 mit dem Nobelpreis für Physik ausgezeichnet. Die derzeitige Auflösungsgrenze liegt bei 0,045 nm. (de) Un microscopio electrónico de transmisión (TEM por su sigla en inglés, o MET en español) es un microscopio que utiliza un haz de electrones para visualizar un objeto, debido a que la potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. Lo característico de este microscopio es el uso de una muestra ultrafina y que la imagen se obtenga de los electrones que atraviesan la muestra. Los microscopios electrónicos de transmisión pueden disminuir un objeto hasta un millón de veces. (es) La microscopie électronique en transmission (MET, ou TEM pour Transmission Electron Microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire 0,04 nm). Les images obtenues ne sont généralement pas explicites, et doivent être interprétées à l'aide d'un support théorique. L'intérêt principal de ce microscope est de pouvoir combiner cette grande résolution avec les informations de l'espace de Fourier, c'est-à-dire la diffraction. Il est aussi possible d'identifier la composition chimique de l'échantillon en étudiant le rayonnement X provoqué par le faisceau électronique. Contrairement aux microscopes optiques, la résolution n'est pas limitée par la longueur d'onde des électrons, mais par les aberrations dues aux lentilles magnétiques. Le principe du microscope électronique en transmission a été mis au point en 1931 par Max Knoll et Ernst Ruska. Ce dernier a d'ailleurs reçu le prix Nobel de physique en 1986 pour cette invention. Elle consiste à placer un échantillon suffisamment mince sous un faisceau d'électrons, et à utiliser un système de lentilles magnétiques pour projeter l'image électronique de l'échantillon sur un écran phosphorescent qui la transforme en image optique. Pour les échantillons cristallins, un autre mode d'utilisation consiste à visualiser le cliché de diffraction de l'échantillon. Les applications de la microscopie électronique couvrent un très vaste domaine, de l'observation d'échantillons biologiques, comme le noyau des cellules à l'analyse d'échantillons industriels dans la métallurgie ou l'industrie des semi-conducteurs. (fr) Mikroskop transmisi elektron (bahasa Inggris: Transmission electron microscopy, disingkat TEM) adalah teknik mikroskop di mana berkas elektron ditransmisikan melalui spesimen untuk membentuk gambar. Spesimen paling sering merupakan bagian yang sangat tipis dengan tebal kurang dari 100 nm atau suspensi pada bingkai. Sebuah gambar terbentuk dari interaksi elektron dengan sampel saat berkas ditransmisikan melalui benda uji. Gambar kemudian diperbesar dan difokuskan ke perangkat pencitraan, seperti layar fluoresen, lapisan film gulung, atau sensor seperti kilau yang dipasang ke peranti tergandeng-muatan. TEM pertama didemonstrasikan oleh dan Ernst Ruska pada tahun 1931, dengan kelompok ini mengembangkan TEM pertama dengan resolusi lebih besar dari resolusi cahaya pada tahun 1933 dan TEM komersial pertama pada tahun 1939. Pada tahun 1986, Ruska dianugerahi Penghargaan Nobel bidang Fisika untuk pengembangan mikroskop transmisi elektron. (in) Il microscopio elettronico a trasmissione, di solito indicato con l'acronimo TEM, dall'inglese transmission electron microscope, è un tipo di microscopio elettronico. (it) Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology. TEM instruments have multiple operating modes including conventional imaging, scanning TEM imaging (STEM), diffraction, spectroscopy, and combinations of these. Even within conventional imaging, there are many fundamentally different ways that contrast is produced, called "image contrast mechanisms". Contrast can arise from position-to-position differences in the thickness or density ("mass-thickness contrast"), atomic number ("Z contrast", referring to the common abbreviation Z for atomic number), crystal structure or orientation ("crystallographic contrast" or "diffraction contrast"), the slight quantum-mechanical phase shifts that individual atoms produce in electrons that pass through them ("phase contrast"), the energy lost by electrons on passing through the sample ("spectrum imaging") and more. Each mechanism tells the user a different kind of information, depending not only on the contrast mechanism but on how the microscope is used—the settings of lenses, apertures, and detectors. What this means is that a TEM is capable of returning an extraordinary variety of nanometer- and atomic-resolution information, in ideal cases revealing not only where all the atoms are but what kinds of atoms they are and how they are bonded to each other. For this reason TEM is regarded as an essential tool for nanoscience in both biological and materials fields. The first TEM was demonstrated by Max Knoll and Ernst Ruska in 1931, with this group developing the first TEM with resolution greater than that of light in 1933 and the first commercial TEM in 1939. In 1986, Ruska was awarded the Nobel Prize in physics for the development of transmission electron microscopy. (en) 透過型電子顕微鏡(とうかがたでんしけんびきょう、Transmission Electron Microscope; TEM)とは、電子顕微鏡の一種である。観察対象に電子線をあて、透過してきた電子線の強弱から観察対象内の電子透過率の空間分布を観察するタイプの電子顕微鏡のこと。また、電子の波動性を利用し、試料内での電子の回折 (電子回折) の結果生じる干渉像から観察対象物の構造を観察する場合もある。物理学、化学、工学、生物学、医学などで幅広く用いられている。 (ja) Transmisyjny mikroskop elektronowy (TEM, z ang. transmission electron microscope) – rejestrowane są elektrony przechodzące przez próbkę. Próbką w takim mikroskopie musi być cienka płytka o grubości rzędu setek nanometrów. Przygotowanie takiej próbki jest trudne i znacznie ogranicza zastosowania mikroskopu. (pl) Um microscópio eletrônico de transmissão (português brasileiro) ou microscópio eletrónico de transmissão (português europeu) (MET) é um microscópio no qual um feixe de elétrons é emitido em direção a uma amostra ultra fina, interagindo com a amostra enquanto a atravessa. A interação dos elétrons transmitidos através da amostra forma uma imagem que é ampliada e focada em um dispositivo de imagem, como uma tela fluorescente em uma camada de filme fotográfico, ou detectada por um sensor como uma câmera CCD. Um MET é capaz de exibir imagens a uma resolução significativamente maior em comparação com os microscópios óticos devido ao pequeno comprimento de onda dos elétrons. Tal característica permite ao usuário examinar detalhes ínfimos, até mesmo uma simples coluna de átomos, a qual é dezenas de milhares vezes menor do que o menor objeto reconhecível em um microscópio ótico. O MET é um dos principais métodos de análise em uma vasta gama de campos científicos, tanto em ciências físicas quanto biológicas. O MET é aplicado na pesquisa do câncer, virologia e na ciência dos materiais, além das pesquisas de poluição, nanotecnologia e semicondutores. A pequenas ampliações, o (contraste) na imagem deve-se à absorção de elétrons pelo material, como consequência da sua espessura e composição. A ampliações maiores, a intensidade da imagem é resultante de um conjunto complexo de interações de ondas, o que requer a análise das imagens obtidas por parte de peritos. A alternância entre estas formas de uso permite observar através do MET modulações na composição química, orientação de cristais, estrutura eletrônica e a indução da mudança da fase eletrônica bem como as comuns imagens baseadas na absorção do material. O primeiro MET foi construído por Max Knoll e Ernst Ruska em 1931, parte do grupo que desenvolveria o primeiro MET com poder de resolução superior ao da luz em 1933 e o primeiro TEM comercial em 1939. (pt) Просве́чивающий (трансмиссио́нный) электро́нный микроско́п (ПЭМ, англ, TEM — Transmission electron microscopy) — устройство для получения изображения с помощью проходящего через образец пучка электронов. Отличается от других типов электронных микроскопов тем, что электронный пучок просвечивает образец, неоднородное поглощение электронов разными участками образца дает двумерную картину распределения плотности прошедшего электронного потока. Прошедший через образец поток затем фокусируется на регистрирующей поверхности магнитными электронными линзами (электронной оптикой) в увеличенном размере. В качестве регистрирующей поверхности применяют флуоресцентные экраны, покрытые слоем люминофора, фотоплёнку или фотопластинку, или приборы с зарядовой связью (на ПЗС-матрице). Например, на слое люминофора образуется светящееся видимое изображение. Так как поток электронов сильно поглощается веществом, изучаемые образцы должны иметь очень маленькую толщину, так называемые ультратонкие образцы. Ультратонким считается образец толщиной менее 0,1 мкм. (ru) 透射电子显微镜(英語:Transmission electron microscope,縮寫:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如、胶片、以及)上显示出来。 由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2 nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数千倍。TEM在物理学和生物学等相关的许多科学领域中都是重要的分析方法,如、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 第一台TEM由和恩斯特·鲁斯卡在1931年研制,这个研究團隊于1933年研制了第一台分辨率超过可见光的TEM,而第一台商用TEM于1939年研制成功。 (zh) Трансмісійний електронний мікроскоп (Просвічуючий електронний мікроскоп, ТЕМ — TEM — англ. Transmission Electron Microscope) — вид електронного мікроскопа який дозволяє отримувати пряме зображення об'єкта за допомогою електронного променя. Техніка просвічення електронами (трансмісії) тонких об'єктів дозволяє отримувати розділення до 0,08 нм, а при використанні техніки електронного коректування аберації — ТЕАМ (Transmission Electron Aberration-corrected Microscope) отримувати розділення і 0,05 нм. (uk)
dbo:thumbnail wiki-commons:Special:FilePath/Polio_EM_PHIL_1875_lores.png?width=300
dbo:wikiPageExternalLink http://toutestquantique.fr/en/microscopy/ http://nramm.scripps.edu/ http://www.directelectron.com/ http://www.rodenburg.org/ http://ncem.lbl.gov http://ncmi.bcm.tmc.edu http://arquivo.pt/wayback/20160517011934/http:/www.msm.cam.ac.uk/doitpoms/tlplib/tem/index.php https://web.archive.org/web/20110919143639/http:/tem-simulator.goldzoneweb.info/ http://nanohub.org/resources/4092
dbo:wikiPageID 214513 (xsd:integer)
dbo:wikiPageLength 113641 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1124301294 (xsd:integer)
dbo:wikiPageWikiLink dbr:Caltech dbr:Amorphous_carbon dbr:Pump-probe_microscopy dbr:Scanning_transmission_electron_microscopy dbr:Scintillator dbr:Elastic_scattering dbr:Electric_potential dbr:Electromagnet dbr:Electromagnetism dbr:Electron_diffraction dbr:Electron_energy_loss_spectroscopy dbr:Electron_microscope dbr:Electrostatic_lens dbr:Energy_filtered_transmission_electron_microscopy dbr:FIB dbr:Nanowire dbr:Optical_microscope dbr:Boundary_conditions dbr:Bragg_diffraction dbr:Delft dbr:Annular_dark-field_imaging dbr:Joystick dbr:Julius_Plücker dbr:Charge-coupled_device dbr:University_of_Chicago dbr:University_of_Toronto dbr:Uranyl_acetate dbr:Volts dbr:Detective_quantum_efficiency dbr:Detectors_for_transmission_electron_microscopy dbr:Microtome dbr:Nanotechnology dbr:Osmium dbr:Spherical_aberration dbr:Precession_electron_diffraction dbr:Macromolecular_assemblies dbc:Articles_containing_video_clips dbr:Convergent_beam_electron_diffraction dbr:Matter_wave dbr:Low-voltage_electron_microscope dbr:Optical_transfer_function dbr:Quantum_Detectors dbr:Electron dbr:Electrons dbr:Electronvolt dbr:Getter dbr:Gold dbr:Multislice dbr:Contrast_transfer_function dbr:Crystallite dbr:Eric_Stach dbr:Single_crystal dbr:Photons dbr:Transmission_Electron_Aberration-corrected_Microscope dbr:Light_bulb dbr:Liquid_helium dbr:Bodo_von_Borries dbr:Siemens dbr:Stepper_motor dbr:Strategic_bombing dbr:Stroboscopic_effect_(lighting) dbr:Sublimation_(chemistry) dbr:Zinc_sulfide dbr:Helmholtz_reciprocity dbr:File:Staphylococcus_aureus,_50,000x,_USDA,_ARS,_EMU.jpg dbr:Back_focal_plane dbr:Permalloy dbr:Phase_(waves) dbr:Point_spread_function dbr:Magnetic_hysteresis dbr:Electrostatic_field dbr:Visible_spectrum dbr:Materials_science dbr:Max_Knoll dbr:Micromanipulator dbr:August_Köhler dbr:Autocorrelation dbr:Active-pixel_sensor dbr:Washington_State_University dbr:Cryo-electron_microscopy dbr:Lamella_(materials) dbr:Liquid-Phase_Electron_Microscopy dbr:Liquid_nitrogen dbr:Albert_Crewe dbr:Ametek dbr:Amorphous dbr:Amplitude dbc:Electron_beam dbc:Electron_microscopy_techniques dbr:Airlock dbr:Ernst_Abbe dbr:Ernst_Ruska dbr:FEI_Company dbr:Faraday_cup dbr:Field_electron_emission dbr:Filtered_back_projection dbr:Finite_element_analysis dbr:Fluorescent dbr:Numerical_aperture dbr:Osmium_tetroxide dbr:Owen_Willans_Richardson dbr:Paleontology dbr:Pascal_(unit) dbr:Cellulose_acetate_film dbr:Chromatic_aberration dbr:Diaphragm_pump dbr:Diffraction dbr:Diffusion_pump dbr:Focus_(optics) dbr:Focused_ion_beam dbr:Isosurface dbr:Tungsten dbr:Diffraction_pattern dbr:Thermionic_emission dbr:Optical_resolution dbr:Pulse_(physics) dbr:Heavy_metals dbr:Astigmatism_(optical_systems) dbr:Atomic_number dbr:JEOL dbr:James_Hillier dbr:Technical_University_of_Berlin dbr:Hans_Busch_(physicist) dbc:Scientific_techniques dbr:Adsorption dbr:Kikuchi_line_(solid_state_physics) dbr:Lawrence_Livermore_National_Laboratory dbr:Lead dbr:Cold_trap dbr:Heterogeneous_catalysis dbr:High-resolution_transmission_electron_microscopy dbr:Reinhold_Rudenberg dbr:Trackball dbr:CMOS dbr:Photographic_film dbr:Picometers dbr:Plasma_(physics) dbr:Pollution dbr:Polycrystalline dbr:Space_group dbr:Field_emission_gun dbr:Frequency_domain dbr:Convex_lens dbr:Nanowires dbr:Scanning_transmission_electron_microscope dbr:IG_Farben dbr:Index_of_refraction dbr:Microscopy dbr:Nanometer dbr:Nanometre dbr:Neutron dbr:Optical_aberration dbr:Cancer_research dbr:Work_function dbr:World_War_II dbr:X-ray dbr:Cubic_boron_nitride dbr:Walter_Hoppe dbr:Magnetic_tunnel_junction dbr:Mean_free_path dbr:Projection-slice_theorem dbr:Semiconductor dbr:Semiconductor_device dbr:De_Broglie_wavelength dbr:Moritz_von_Rohr dbr:Rotary_vane_pump dbr:Ultraviolet dbr:Uranium dbr:Wavelength dbr:Negative_stain dbr:Image_registration dbr:Immunogold_labelling dbr:In_situ_electron_microscopy dbr:Yttrium_aluminium_garnet dbr:Planck's_constant dbr:Scanning_confocal_electron_microscopy dbr:Monochromator dbr:Palynology dbr:Photon-Induced_Near-field_Electron_Microscopy dbr:Phase_retrieval dbr:Spatial_frequency dbr:Single_particle_analysis dbr:Scattering_cross-section dbr:Wehnelt_cylinder dbr:Virology dbr:Lanthanum_Hexaboride dbr:Stigmator dbr:Thin_films dbr:Electron_beam_induced_deposition dbr:Ferdinand_Braun dbr:Ion_pump dbr:Richardson's_law dbr:Magnetic_permeability dbr:Magnetic_saturation dbr:Magnetic_sector dbr:Turbo-molecular_pump dbr:Micro_switch dbr:Lens_makers_equation dbr:Phase_contrast dbr:File:Resin-Embedded_Transmission_Electron_Microscope_Sample.jpg dbr:Optic_axis dbr:Cathode-ray_oscilloscope dbr:Low-voltage_electron_microscopy dbr:Rest_mass dbr:Cotton_fiber dbr:Left_hand_rule dbr:Technical_University_Berlin dbr:Vitreous_ice dbr:Lattice_defect dbr:Louis-Victor_de_Broglie dbr:Modulation_transfer_function dbr:Bragg_scattering dbr:Diffraction_limit dbr:File:Austenite_ZADP.jpg dbr:File:Ernst_Ruska_Electron_Microscope_-_Deutsches_Museum_-_Munich-edit.jpg dbr:File:Electron-gun.svg dbr:File:Fib_tem_sample.jpg dbr:File:Fotothek_df_n-08_0000820.jpg dbr:File:Lab6.svg dbr:File:Retino_ME_con_sezioni.jpg dbr:File:Schematic_view_of_imaging_and_diffraction_modes_in_TEM.tif dbr:File:Schematic_wiki2.jpg dbr:File:Scheme_TEM_en.svg dbr:File:Simens_numeri.jpg dbr:File:TEM-Single-tilt.svg dbr:File:TEM-lens.svg dbr:File:TEM_image_of_Pt_polycrystalline_f...correspondent_diffraction_pattern.tif dbr:File:Transmission_Electron_Microscope_operating_principle.ogv dbr:File:Tungsten-filament.svg dbr:Phosphor_screen dbr:File:Diamond_Knife_Blade_Edge.jpg dbr:File:TEM_micrograph_dislocations_precipitate_stainless_steel_1.jpg dbr:File:Bacillus_subtilis.jpg dbr:File:Polio_EM_PHIL_1875_lores.PNG dbr:File:KikuchiLines2.png dbr:File:MicroscopyResolution.png dbr:File:TEM-parapoxvirus-tomograph.ogv
dbp:by no (en)
dbp:date December 2019 (en)
dbp:lcheading Transmission electron microscopy (en)
dbp:onlinebooks no (en)
dbp:reason How? (en)
dbp:wikiPageUsesTemplate dbt:Citation_needed dbt:Clarify dbt:Commons_category dbt:Div_col dbt:Div_col_end dbt:Main dbt:Reflist dbt:See_also dbt:Short_description dbt:Wikibooks dbt:Library_resources_box
dct:subject dbc:Articles_containing_video_clips dbc:Electron_beam dbc:Electron_microscopy_techniques dbc:Scientific_techniques
gold:hypernym dbr:Technique
rdf:type owl:Thing dbo:TopicalConcept yago:WikicatMicroscopes yago:Artifact100021939 yago:Device103183080 yago:Instrument103574816 yago:Instrumentality103575240 yago:Magnifier103709206 yago:Microscope103760671 yago:Object100002684 yago:PhysicalEntity100001930 yago:ScientificInstrument104147495 yago:Whole100003553
rdfs:comment Un microscopi electrònic de transmissió (TEM, per les seves sigles en anglès de Transmission Electron Microscope, o MET, en català) és un microscopi que utilitza un feix d'electrons per visualitzar un objecte. La potència amplificadora d'un microscopi òptic està limitada per la longitud d'ona de la llum visible. A causa que els electrons tenen una longitud d'ona molt menor que la de la llum visible, poden mostrar estructures molt més petites. Entre altres coses, s'utilitza en microbiologia, ja que permet observar l'estructura dels virus, i en nanoenginyeria. (ca) Die Transmissionselektronenmikroskopie (TEM, steht auch für Transmissionselektronenmikroskop) ist eine Betriebsart für Elektronenmikroskope, die eine direkte Abbildung von Objekten mithilfe von Elektronenstrahlen ermöglicht. In den 1930er-Jahren wurde erstmals das Auflösungsvermögen von optischen Mikroskopen durch die bahnbrechenden Arbeiten von Max Knoll und seinem damaligen Doktoranden Ernst Ruska überschritten. Letzterer wurde 1986 mit dem Nobelpreis für Physik ausgezeichnet. Die derzeitige Auflösungsgrenze liegt bei 0,045 nm. (de) Un microscopio electrónico de transmisión (TEM por su sigla en inglés, o MET en español) es un microscopio que utiliza un haz de electrones para visualizar un objeto, debido a que la potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. Lo característico de este microscopio es el uso de una muestra ultrafina y que la imagen se obtenga de los electrones que atraviesan la muestra. Los microscopios electrónicos de transmisión pueden disminuir un objeto hasta un millón de veces. (es) Il microscopio elettronico a trasmissione, di solito indicato con l'acronimo TEM, dall'inglese transmission electron microscope, è un tipo di microscopio elettronico. (it) 透過型電子顕微鏡(とうかがたでんしけんびきょう、Transmission Electron Microscope; TEM)とは、電子顕微鏡の一種である。観察対象に電子線をあて、透過してきた電子線の強弱から観察対象内の電子透過率の空間分布を観察するタイプの電子顕微鏡のこと。また、電子の波動性を利用し、試料内での電子の回折 (電子回折) の結果生じる干渉像から観察対象物の構造を観察する場合もある。物理学、化学、工学、生物学、医学などで幅広く用いられている。 (ja) Transmisyjny mikroskop elektronowy (TEM, z ang. transmission electron microscope) – rejestrowane są elektrony przechodzące przez próbkę. Próbką w takim mikroskopie musi być cienka płytka o grubości rzędu setek nanometrów. Przygotowanie takiej próbki jest trudne i znacznie ogranicza zastosowania mikroskopu. (pl) Трансмісійний електронний мікроскоп (Просвічуючий електронний мікроскоп, ТЕМ — TEM — англ. Transmission Electron Microscope) — вид електронного мікроскопа який дозволяє отримувати пряме зображення об'єкта за допомогою електронного променя. Техніка просвічення електронами (трансмісії) тонких об'єктів дозволяє отримувати розділення до 0,08 нм, а при використанні техніки електронного коректування аберації — ТЕАМ (Transmission Electron Aberration-corrected Microscope) отримувати розділення і 0,05 нм. (uk) المجهر الإلكتروني النافذ (Transmission electron microscopy) والذي يرمز له اختصاراً TEM يعد المجهر الإلكتروني النافذ أداة قوية جدًا لعلوم المواد. تضيء حزمة عالية الطاقة من الإلكترونات عبر عينة رقيقة جدًا، ويمكن استخدام التفاعلات بين الإلكترونات والذرات لمراقبة ميزات مثل البنية البلورية والميزات في بنية مثل الخلع وحدود الحبوب. يمكن أيضا إجراء التحليل الكيميائي. يمكن استخدام TEM لدراسة نمو الطبقات وتكوينها وعيوبها في أشباه الموصلات. يمكن استخدام دقة عالية لتحليل نوعية وشكل وحجم وكثافة الآبار الكمومية والأسلاك والنقاط. (ar) Transmisní elektronový mikroskop (TEM) je elektronový mikroskop umožňující zobrazení a měření strukturních, chemických a mechanických vlastností látek až na atomární úrovni. Na rozdíl od světelného mikroskopu nevyužívá k pozorování viditelného světla ale urychlených elektronů. Na rozdíl od skenovacího elektronového mikroskopu (SEM), který primárně mapuje povrchu vzorku, TEM vzorek prosvěcí a přináší tak informaci z jeho objemu. Česká republika patří ke světové špičce jak ve výrobě elektronových mikroskopů, tak v oblasti související vědy a výzkumu. (cs) La microscopie électronique en transmission (MET, ou TEM pour Transmission Electron Microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire 0,04 nm). Les images obtenues ne sont généralement pas explicites, et doivent être interprétées à l'aide d'un support théorique. L'intérêt principal de ce microscope est de pouvoir combiner cette grande résolution avec les informations de l'espace de Fourier, c'est-à-dire la diffraction. Il est aussi possible d'identifier la composition chimique de l'échantillon en étudiant le rayonnement X provoqué par le faisceau électronique. Contrair (fr) Mikroskop transmisi elektron (bahasa Inggris: Transmission electron microscopy, disingkat TEM) adalah teknik mikroskop di mana berkas elektron ditransmisikan melalui spesimen untuk membentuk gambar. Spesimen paling sering merupakan bagian yang sangat tipis dengan tebal kurang dari 100 nm atau suspensi pada bingkai. Sebuah gambar terbentuk dari interaksi elektron dengan sampel saat berkas ditransmisikan melalui benda uji. Gambar kemudian diperbesar dan difokuskan ke perangkat pencitraan, seperti layar fluoresen, lapisan film gulung, atau sensor seperti kilau yang dipasang ke peranti tergandeng-muatan. (in) Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. (en) Um microscópio eletrônico de transmissão (português brasileiro) ou microscópio eletrónico de transmissão (português europeu) (MET) é um microscópio no qual um feixe de elétrons é emitido em direção a uma amostra ultra fina, interagindo com a amostra enquanto a atravessa. A interação dos elétrons transmitidos através da amostra forma uma imagem que é ampliada e focada em um dispositivo de imagem, como uma tela fluorescente em uma camada de filme fotográfico, ou detectada por um sensor como uma câmera CCD. (pt) Просве́чивающий (трансмиссио́нный) электро́нный микроско́п (ПЭМ, англ, TEM — Transmission electron microscopy) — устройство для получения изображения с помощью проходящего через образец пучка электронов. Так как поток электронов сильно поглощается веществом, изучаемые образцы должны иметь очень маленькую толщину, так называемые ультратонкие образцы. Ультратонким считается образец толщиной менее 0,1 мкм. (ru) 透射电子显微镜(英語:Transmission electron microscope,縮寫:TEM、CTEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件(如、胶片、以及)上显示出来。 由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2 nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数千倍。TEM在物理学和生物学等相关的许多科学领域中都是重要的分析方法,如、病毒学、材料科学、以及纳米技术、半导体研究等等。 在放大倍数较低的时候,TEM成像的对比度主要是由于材料不同的厚度和成分造成对电子的吸收不同而造成的。而当放大率倍数较高的时候,复杂的波动作用会造成成像的亮度的不同,因此需要专业知识来对所得到的像进行分析。通过使用TEM不同的模式,可以通过物质的化学特性、晶体方向、电子结构、样品造成的电子相移以及通常的对电子吸收对样品成像。 (zh)
rdfs:label مجهر إلكتروني نافذ (ar) Microscopi electrònic de transmissió (ca) Transmisní elektronový mikroskop (cs) Transmissionselektronenmikroskop (de) Microscopio electrónico de transmisión (es) Mikroskop transmisi elektron (in) Microscopio elettronico a trasmissione (it) Microscopie électronique en transmission (fr) 透過型電子顕微鏡 (ja) Transmisyjny mikroskop elektronowy (pl) Microscópio eletrônico de transmissão (pt) Просвечивающий электронный микроскоп (ru) Transmission electron microscopy (en) Трансмісійний електронний мікроскоп (uk) 透射电子显微镜 (zh)
rdfs:seeAlso dbr:Electron_optics dbr:Transmission_Electron_Aberration-Corrected_Microscope dbr:Ultrafast_electron_diffraction
owl:sameAs freebase:Transmission electron microscopy yago-res:Transmission electron microscopy wikidata:Transmission electron microscopy dbpedia-ar:Transmission electron microscopy dbpedia-ca:Transmission electron microscopy dbpedia-cs:Transmission electron microscopy dbpedia-de:Transmission electron microscopy dbpedia-es:Transmission electron microscopy dbpedia-et:Transmission electron microscopy dbpedia-fa:Transmission electron microscopy dbpedia-fr:Transmission electron microscopy dbpedia-he:Transmission electron microscopy http://hi.dbpedia.org/resource/प्रेषण_इलेक्ट्रॉन_सूक्ष्मदर्शन dbpedia-hu:Transmission electron microscopy dbpedia-id:Transmission electron microscopy dbpedia-it:Transmission electron microscopy dbpedia-ja:Transmission electron microscopy http://kn.dbpedia.org/resource/ಟ್ರಾನ್ಸ್‌ಮಿಶನ್_ಎಲೆಕ್ಟ್ರಾನ್‌_ಮೈಕ್ರೋಸ್ಕೋಪ್‌ http://ml.dbpedia.org/resource/ട്രാൻസ്മിഷൻ_ഇലക്ട്രോൺ_സൂക്ഷ്മദർശിനി dbpedia-pl:Transmission electron microscopy dbpedia-pt:Transmission electron microscopy dbpedia-ro:Transmission electron microscopy dbpedia-ru:Transmission electron microscopy http://ta.dbpedia.org/resource/ஊடுருவி_எதிர்மின்னி_நுண்ணோக்கி dbpedia-th:Transmission electron microscopy dbpedia-tr:Transmission electron microscopy dbpedia-uk:Transmission electron microscopy dbpedia-vi:Transmission electron microscopy dbpedia-zh:Transmission electron microscopy https://global.dbpedia.org/id/5L5NP
skos:closeMatch http://www.springernature.com/scigraph/things/subjects/transmission-electron-microscopy
prov:wasDerivedFrom wikipedia-en:Transmission_electron_microscopy?oldid=1124301294&ns=0
foaf:depiction wiki-commons:Special:FilePath/Austenite_ZADP.jpg wiki-commons:Special:FilePath/Electron-gun.svg wiki-commons:Special:FilePath/Fib_tem_sample.jpg wiki-commons:Special:FilePath/Fotothek_df_n-08_0000820.jpg wiki-commons:Special:FilePath/KikuchiLines2.png wiki-commons:Special:FilePath/Lab6.svg wiki-commons:Special:FilePath/Retino_ME_con_sezioni.jpg wiki-commons:Special:FilePath/Schematic_wiki2.jpg wiki-commons:Special:FilePath/Scheme_TEM_en.svg wiki-commons:Special:FilePath/Simens_numeri.jpg wiki-commons:Special:FilePath/TEM-Single-tilt.svg wiki-commons:Special:FilePath/TEM-lens.svg wiki-commons:Special:FilePath/TEM_micrograph_dislocations_precipitate_stainless_steel_1.jpg wiki-commons:Special:FilePath/Tungsten-filament.svg wiki-commons:Special:FilePath/Diamond_Knife_Blade_Edge.jpg wiki-commons:Special:FilePath/Polio_EM_PHIL_1875_lores.png wiki-commons:Special:FilePath/Ernst_Ruska_Electron_..._-_Deutsches_Museum_-_Munich-edit.jpg wiki-commons:Special:FilePath/MicroscopyResolution.png wiki-commons:Special:FilePath/Resin-Embedded_Transmission_Electron_Microscope_Sample.jpg wiki-commons:Special:FilePath/Staphylococcus_aureus,_50,000x,_USDA,_ARS,_EMU.jpg wiki-commons:Special:FilePath/Bacillus_subtilis.jpg
foaf:isPrimaryTopicOf wikipedia-en:Transmission_electron_microscopy
is dbo:academicDiscipline of dbr:Bridget_Carragher
is dbo:knownFor of dbr:Frances_M._Ross dbr:Archibald_Howie
is dbo:wikiPageDisambiguates of dbr:Tem
is dbo:wikiPageRedirects of dbr:Transmission_Electron_Microscopy dbr:Transmission_electron_microscope dbr:Transmission_electron_micrograph dbr:Transmission_electron_micrographs dbr:Conventional_transmission_electron_microscope dbr:Electron_lens dbr:Transmission_Electron_Micrograph dbr:Transmission_Electron_Microscope dbr:Microscopy,_electron,_transmission
is dbo:wikiPageWikiLink of dbr:Carbon_nanotubes_in_interconnects dbr:American_Microscopical_Society dbr:Amorphous_solid dbr:Bayer_School_of_Natural_and_Environmental_Sciences dbr:Praseodymium(III,IV)_oxide dbr:San_Joaquin_Delta_College dbr:Scanning_transmission_electron_microscopy dbr:Elastic_recoil_detection dbr:Elba_Serrano dbr:Electron-beam_lithography dbr:Electron_backscatter_diffraction dbr:Electron_beam-induced_deposition dbr:Electron_channelling_contrast_imaging dbr:Electron_cryotomography dbr:Electron_density dbr:Electron_diffraction dbr:Electron_energy_loss_spectroscopy dbr:Electron_magnetic_circular_dichroism dbr:Electron_tomography dbr:Electropolishing dbr:Enadenotucirev dbr:Endothelium dbr:Energy-dispersive_X-ray_spectroscopy dbr:Energy_filtered_transmission_electron_microscopy dbr:Enterocytozoon_bieneusi dbr:Enterovirus_71 dbr:Enterovirus_C dbr:Epithelioid_cell dbr:Epixenosomes dbr:List_of_chemical_analysis_methods dbr:Nanoparticle dbr:Nanowire dbr:Optical_microscope dbr:Scanning_electron_microscope dbr:Timeline_of_microscope_technology dbr:M._Grace_Burke dbr:MIAMI_Facilities dbr:Mesenchyme dbr:Metallography dbr:Metal–organic_biohybrid dbr:Snakehead_rhabdovirus dbr:Oncolytic_herpes_virus dbr:Bergen_County_Academies dbr:Betty_Hay dbr:Bridget_Carragher dbr:David_Cockayne dbr:David_Dye_(metallurgist) dbr:Department_of_Materials,_Imperial_College_London dbr:Department_of_Materials,_University_of_Oxford dbr:Alishewanella_fetalis dbr:Annular_dark-field_imaging dbr:Apoptosome dbr:Applied_physics dbr:Beta_carbon_nitride dbr:Betaflexiviridae dbr:Patrick_Cordier_(mineralogist) dbr:Paul_Midgley dbr:Peter_Duncumb dbr:Peter_Hirsch dbr:Phase_inversion_(chemistry) dbr:Research_in_lithium-ion_batteries dbr:Respiratory_syncytial_virus dbr:Characterization_(materials_science) dbr:Characterization_of_nanoparticles dbr:Cuticle_analysis dbr:Cyathus_stercoreus dbr:DNA_nanotechnology dbr:DNA_origami dbr:Uranyl_formate dbr:Verrucomicrobiota dbr:Deinococcus_frigens dbr:Detectors_for_transmission_electron_microscopy dbr:Dynamical_theory_of_diffraction dbr:Index_of_physics_articles_(T) dbr:Indiana_vesiculovirus dbr:Infrared_spectroscopy dbr:Interface_force_field dbr:L-form_bacteria dbr:Nanotechnology dbr:Osmium dbr:Lichinodium dbr:List_of_materials_analysis_methods dbr:List_of_medical_abbreviations:_T dbr:O-GlcNAc dbr:Nucleic_acid_structure_determination dbr:Nucleoid dbr:Precession_electron_diffraction dbr:Proximal_tubule dbr:Pseudomonas_virus_gh1 dbr:Coronavirus dbr:Coronavirus_spike_protein dbr:Amyloid dbr:Membrane_technology dbr:Elizabeth_Villa dbr:George_B._Chapman dbr:Low-voltage_electron_microscope dbr:Nanomaterial-based_catalyst dbr:Tomography dbr:Shewanella_oneidensis dbr:Titanium_dioxide_nanoparticle dbr:Cold_welding dbr:Alfons_Siewert dbr:Electron dbr:Elena_Besley dbr:Elisabeth_Peveling dbr:Fungus dbr:GcvB_RNA dbr:Graphane dbr:Mitochondrion dbr:Moiré_pattern dbr:Mourning_dove dbr:Muhammad_Imran_Qadir dbr:Multislice dbr:Contrast_transfer_function dbr:Convergent-beam_electron_diffraction dbr:Copolymer dbr:Core–shell_semiconductor_nanocrystal dbr:Critical_green_inclusion dbr:Cross_slip dbr:Cryogenic_electron_microscopy dbr:Cryomicroscopy dbr:Crystal_structure_of_boron-rich_metal_borides dbr:Crystal_twinning dbr:Crystallization_of_polymers dbr:Crystallographic_database dbr:Crystallographic_defect dbr:Erbium dbr:Eric_Stach dbr:Pilbara_Craton dbr:Miller_index dbr:Otolithic_membrane dbr:Orthohepadnavirus dbr:Orthohepevirus_A dbr:Orthopneumovirus dbr:Orthornavirae dbr:Virus_quantification dbr:Transmission_Electron_Microscopy dbr:Transmission_electron_microscope dbr:Annick_Loiseau dbr:Aphelion_(software) dbr:Apoptosis dbr:Aravalli_Range dbr:Archaeomarasmius dbr:Chimaericola_leptogaster dbr:Chordin dbr:Chorioactis dbr:Stem_cell dbr:Substrate_(chemistry) dbr:Compressed_sensing dbr:Dengue_virus dbr:Dense_granule dbr:Frozen_section_procedure dbr:Helmholtz_reciprocity dbr:Henry_Carl_Aldrich dbr:Icosahedral_twins dbr:Kraton_(polymer) dbr:Poliovirus dbr:Macromolecular_assembly dbr:Magnetofossil dbr:Staining dbr:Maurer's_cleft dbr:Max_Knoll dbr:Mechanical_properties_of_carbon_nanotubes dbr:Microcrystal_electron_diffraction dbr:Microheater dbr:Transmission_electron_microscopy_DNA_sequencing dbr:Austrian_Centre_for_Electron_Microscopy_and_Nanoanalysis dbr:Buckminsterfullerene dbr:Budaraju_Srinivasa_Murty dbr:Actin dbr:Actin_remodeling dbr:Activated_carbon dbr:Adenoviridae dbr:Catherine_Rae dbr:Titanium_disulfide dbr:Tosham_Hill_range dbr:Transmission_electron_micrograph dbr:Transmission_electron_micrographs dbr:Dislocation dbr:Dislocation_avalanches dbr:Gallid_alphaherpesvirus_1 dbr:Gallium_nitride_nanotube dbr:Gap_junction dbr:Garnierite dbr:Glass dbr:Glass_knife dbr:Health_impact_of_asbestos dbr:Ion_track dbr:Iron–platinum_nanoparticle dbr:Katalin_Balázsi dbr:Lamellar_bodies dbr:Lassa_mammarenavirus dbr:Laura_Heyderman dbr:Liquid-Phase_Electron_Microscopy dbr:Minicell dbr:Tenascin_X dbr:Pericyte dbr:Rigaku dbr:Reflection_high-energy_electron_diffraction dbr:Wynnea_americana dbr:Amanda_Petford-Long dbr:475_°C_embrittlement dbr:4D_scanning_transmission_electron_microscopy dbr:Crystallographic_image_processing dbr:Drosera dbr:Dynamic_light_scattering dbr:Eastern_equine_encephalitis dbr:Eyring_Science_Center dbr:Fabrizio_Carbone dbr:Formvar dbr:Balangeroite dbr:Basal_lamina dbr:Nitrospira dbr:Osmium_tetroxide dbr:Carbon_nanofiber dbr:Carbon_nanothread dbr:Carbon_nanotube dbr:Carbon_nanotube_supported_catalyst dbr:Carbonate-associated_sulfate dbr:Carboxysome dbr:Cell_biology dbr:Center_for_Functional_Nanomaterials dbr:Christopher_Grigson dbr:Dante_Lauretta dbr:Diabetic_foot_ulcer dbr:Diagnostic_electron_microscopy dbr:Diamond_inclusions dbr:Diamond_knife dbr:Diffraction-limited_system dbr:Dinocyst dbr:Direct_methods_(electron_microscopy) dbr:Discovery_of_graphene dbr:Focused_ion_beam dbr:Forschungszentrum_Jülich dbr:Frances_M._Ross dbr:Glycocalyx dbr:Gnathostomulid dbr:Graphene dbr:Graphene_helix dbr:Graphene_nanoribbon dbr:Graphene_production_techniques dbr:Graphite_oxide dbr:Hans-Joachim_Queisser dbr:Hans-Rudolf_Wenk dbr:Haplozoon dbr:History_of_coronavirus dbr:Josef_Hafellner dbr:Ka_Yee_Christina_Lee dbr:Legionella_pneumophila dbr:Magnetic_domain dbr:Reticular_fiber dbr:Rift_Valley_fever dbr:Sheeppox dbr:Smallpox dbr:Mario_Peláez-Fernández dbr:Halspiviridae dbr:Hanns-Peter_Boehm dbr:Heavy_metals dbr:Hepatitis_B dbr:Astroviridae dbr:Astrovirology dbr:Astrovirus dbr:Atom_probe dbr:Jejunum dbr:Bacillus_subtilis dbr:Bacterial_outer_membrane_vesicles dbr:Bactrocera_dorsalis dbr:Covalent_organic_framework dbr:Cowpea_mild_mottle_virus dbr:Hydrodynamic_theory_(dentistry) dbr:Samuel_L._Manzello dbr:Archibald_Howie dbr:Athene_Donald dbr:Atomic_force_microscopy dbr:Aciduliprofundum_boonei dbr:Adult_stem_cell dbr:Aerographene dbr:Choanoflagellate dbr:Kevin_Hemker dbr:Khatyrkite dbr:Lancelet dbr:Coherent_diffraction_imaging dbr:Eiichi_Nakamura_(chemist) dbr:Hepadnaviridae dbr:Hepatitis_B_virus dbr:Hepeviridae dbr:Herpes_simplex_virus dbr:Heterogeneous_gold_catalysis dbr:High-power_impulse_magnetron_sputtering dbr:High_resolution_electron_energy_loss_spectroscopy dbr:Ostreococcus_tauri dbr:Tem dbr:Potyviridae dbr:Salpingoeca dbr:Aspergillus_clavatus dbr:Auriculariaceae dbr:Auriculariales dbr:Aurivirus dbr:Marine_microorganisms dbr:Marine_viruses
is dbp:knownFor of dbr:Frances_M._Ross
is foaf:primaryTopic of wikipedia-en:Transmission_electron_microscopy