Transcriptional Regulation by Nrf2 (original) (raw)

1. Abbas K, Breton J, Planson AG, Bouton C, Bignon J, Seguin C, Riquier S, Toledano MB, and Drapier JC.Nitric oxide activates an Nrf2/sulfiredoxin antioxidant pathway in macrophages. Free Radic Biol Med 51: 107–114, 2011 [PubMed] [Google Scholar]

2. Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, and Kensler TW.Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat 132: 175–187, 2012 [PMC free article] [PubMed] [Google Scholar]

3. Ahmad R, Raina D, Meyer C, Kharbanda S, and Kufe D.Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem 281: 35764–35769, 2006 [PubMed] [Google Scholar]

4. Alam J, Killeen E, Gong P, Naquin R, Hu B, Stewart D, Ingelfinger JR, and Nath KA.Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am J Physiol Renal Physiol 284: F743–F752, 2003 [PubMed] [Google Scholar]

5. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, and Cook JL.Nrf2, a Cap ‘n’ Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274: 26071–26078, 1999 [PubMed] [Google Scholar]

6. Allen BL. and Taatjes DJ.The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16: 155–166, 2015 [PMC free article] [PubMed] [Google Scholar]

7. Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, and Orkin SH.Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362: 722–728, 1993 [PubMed] [Google Scholar]

8. Ansell PJ, Lo SC, Newton LG, Espinosa-Nicholas C, Zhang DD, Liu JH, Hannink M, and Lubahn DB.Repression of cancer protective genes by 17beta-estradiol: ligand-dependent interaction between human Nrf2 and estrogen receptor alpha. Mol Cell Endocrinol 243: 27–34, 2005 [PubMed] [Google Scholar]

9. Ashouri A, Sayin VI, Van den Eynden J, Singh SX, Papagiannakopoulos T, and Larsson E.Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat Commun 7, 2016 [PMC free article] [PubMed] [Google Scholar]

10. Baird L, Swift S, Lleres D, and Dinkova-Kostova AT.Monitoring Keap1-Nrf2 interactions in single live cells. Biotechnol Adv 32: 1133–1144, 2014 [PMC free article] [PubMed] [Google Scholar]

11. Bannai S. and Kitamura E.Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255: 2372–2376, 1980 [PubMed] [Google Scholar]

12. Bannister AJ. and Kouzarides T.The CBP co-activator is a histone acetyltransferase. Nature 384: 641–643, 1996 [PubMed] [Google Scholar]

13. Barve A, Khor TO, Nair S, Lin W, Yu S, Jain MR, Chan JY, and Kong AN.Pharmacogenomic profile of soy isoflavone concentrate in the prostate of Nrf2 deficient and wild-type mice. J Pharm Sci 97: 4528–4545, 2008 [PubMed] [Google Scholar]

14. Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, and Isik M.SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88: 290–301, 2015 [PMC free article] [PubMed] [Google Scholar]

15. Brown SL, Sekhar KR, Rachakonda G, Sasi S, and Freeman ML.Activating transcription factor 3 is a novel repressor of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-regulated stress pathway. Cancer Res 68: 364–368, 2008 [PubMed] [Google Scholar]

16. Camp ND, James RG, Dawson DW, Yan F, Davison JM, Houck SA, Tang X, Zheng N, Major MB, and Moon RT.Wilms tumor gene on X chromosome (WTX) inhibits degradation of NRF2 protein through competitive binding to KEAP1 protein. J Biol Chem 287: 6539–6550, 2012 [PMC free article] [PubMed] [Google Scholar]

17. Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, and Evans RM.Role of CBP/P300 in nuclear receptor signalling. Nature 383: 99–103, 1996 [PubMed] [Google Scholar]

18. Chan JY, Han XL, and Kan YW.Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. Proc Natl Acad Sci U S A 90: 11371–11375, 1993 [PMC free article] [PubMed] [Google Scholar]

19. Chanas SA, Jiang Q, McMahon M, McWalter GK, McLellan LI, Elcombe CR, Henderson CJ, Wolf CR, Moffat GJ, Itoh K, Yamamoto M, and Hayes JD.Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J 365: 405–416, 2002 [PMC free article] [PubMed] [Google Scholar]

20. Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, and Zhang DD.Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34: 663–673, 2009 [PMC free article] [PubMed] [Google Scholar]

21. Chio II, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W, Wilson J, Sangar V, Hao Y, Ohlund D, Wright K, Filippini D, Lee EJ, Da Silva B, Schoepfer C, Wilkinson JE, Buscaglia JM, DeNicola GM, Tiriac H, Hammell M, Crawford HC, Schmidt EE, Thompson CB, Pappin DJ, Sonenberg N, and Tuveson DA.NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell 166: 963–976, 2016 [PMC free article] [PubMed] [Google Scholar]

22. Cho Y. and Bannai S.Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55: 2091–2097, 1990 [PubMed] [Google Scholar]

23. Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, and Bell DA.Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res 40: 7416–7429, 2012 [PMC free article] [PubMed] [Google Scholar]

24. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, and Hayes JD.Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32: 3765–3781, 2013 [PMC free article] [PubMed] [Google Scholar]

25. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, and Goodman RH.Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365: 855–859, 1993 [PubMed] [Google Scholar]

26. Copple IM, Lister A, Obeng AD, Kitteringham NR, Jenkins RE, Layfield R, Foster BJ, Goldring CE, and Park BK.Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem 285: 16782–16788, 2010 [PMC free article] [PubMed] [Google Scholar]

27. Cordova EJ, Martinez-Hernandez A, Uribe-Figueroa L, Centeno F, Morales-Marin M, Koneru H, Coleman MA, and Orozco L.The NRF2-KEAP1 pathway is an early responsive gene network in arsenic exposed lymphoblastoid cells. PLoS One 9: e88069, 2014 [PMC free article] [PubMed] [Google Scholar]

28. Cullinan SB, Gordan JD, Jin J, Harper JW, and Diehl JA.The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24: 8477–8486, 2004 [PMC free article] [PubMed] [Google Scholar]

29. DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, Wistuba II, Minna JD, DeBerardinis RJ, and Cantley LC.NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet 47: 1475–1481, 2015 [PMC free article] [PubMed] [Google Scholar]

30. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, and Tuveson DA.Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475: 106–109, 2011 [PMC free article] [PubMed] [Google Scholar]

31. Devling TW, Lindsay CD, McLellan LI, McMahon M, and Hayes JD.Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype. Proc Natl Acad Sci U S A 102: 7280–7285A, 2005 [PMC free article] [PubMed] [Google Scholar]

32. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, and Talalay P.Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99: 11908–11913, 2002 [PMC free article] [PubMed] [Google Scholar]

33. Eades G, Yang M, Yao Y, Zhang Y, and Zhou Q.miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J Biol Chem 286: 40725–40733, 2011 [PMC free article] [PubMed] [Google Scholar]

34. Esposito F, Cuccovillo F, Russo L, Casella F, Russo T, and Cimino F.A new p21waf1/cip1 isoform is an early event of cell response to oxidative stress. Cell Death Differ 5: 940–945, 1998 [PubMed] [Google Scholar]

35. Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, and Rabinowitz JD.Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510: 298–302, 2014 [PMC free article] [PubMed] [Google Scholar]

36. Friling RS, Bergelson S, and Daniel V.Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci U S A 89: 668–672, 1992 [PMC free article] [PubMed] [Google Scholar]

37. Furukawa M. and Xiong Y.BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25: 162–171, 2005 [PMC free article] [PubMed] [Google Scholar]

38. Fuse Y. and Kobayashi M.Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules22, 2017 [PMC free article] [PubMed] [Google Scholar]

39. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, and Collins FS.Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101: 8963–8968, 2004 [PMC free article] [PubMed] [Google Scholar]

40. Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A, Reeder J, Daemen A, Bakalarski CE, Holcomb T, Shames DS, Hartmaier RJ, Chmielecki J, Seshagiri S, Gentleman R, and Stokoe D.Recurrent loss of NFE2L2 Exon 2 Is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep 16: 2605–2617, 2016 [PubMed] [Google Scholar]

41. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA, Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ, Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M, Berman HK, Khokha R, Jonkers J, Mak TW, and Gauthier ML.BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med 210: 1529–1544, 2013 [PMC free article] [PubMed] [Google Scholar]

42. Gorrini C, Harris IS, and Mak TW.Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12: 931–947, 2013 [PubMed] [Google Scholar]

43. Gozzelino R, Jeney V, and Soares MP.Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50: 323–354, 2010 [PubMed] [Google Scholar]

44. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, and Lander ES.Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458: 223–227, 2009 [PMC free article] [PubMed] [Google Scholar]

45. Hanada N, Takahata T, Zhou Q, Ye X, Sun R, Itoh J, Ishiguro A, Kijima H, Mimura J, Itoh K, Fukuda S, and Saijo Y.Methylation of the KEAP1 gene promoter region in human colorectal cancer. BMC Cancer 12: 66, 2012 [PMC free article] [PubMed] [Google Scholar]

46. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, and Biswal S.Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46: 443–453, 2009 [PMC free article] [PubMed] [Google Scholar]

47. Hast BE, Goldfarb D, Mulvaney KM, Hast MA, Siesser PF, Yan F, Hayes DN, and Major MB.Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res 73: 2199–2210, 2013 [PMC free article] [PubMed] [Google Scholar]

48. Hawkes HJ, Karlenius TC, and Tonissen KF.Regulation of the human thioredoxin gene promoter and its key substrates: a study of functional and putative regulatory elements. Biochim Biophys Acta 1840: 303–314, 2014 [PubMed] [Google Scholar]

49. Hayes JD. and Dinkova-Kostova AT.The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39: 199–218, 2014 [PubMed] [Google Scholar]

50. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, and Alam J.Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276: 20858–20865, 2001 [PubMed] [Google Scholar]

51. Heiss E, Herhaus C, Klimo K, Bartsch H, and Gerhauser C.Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276: 32008–32015, 2001 [PubMed] [Google Scholar]

52. Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, Engel JD, and Yamamoto M.Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 40: 10228–10239, 2012 [PMC free article] [PubMed] [Google Scholar]

53. Hochmuth CE, Biteau B, Bohmann D, and Jasper H.Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8: 188–199, 2011 [PMC free article] [PubMed] [Google Scholar]

54. Holmstrom KM, Baird L, Zhang Y, Hargreaves I, Chalasani A, Land JM, Stanyer L, Yamamoto M, Dinkova-Kostova AT, and Abramov AY.Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open 2: 761–770, 2013 [PMC free article] [PubMed] [Google Scholar]

55. Huang HC, Nguyen T, and Pickett CB.Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277: 42769–42774, 2002 [PubMed] [Google Scholar]

56. Igarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M, and Yamamoto M.Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367: 568–572, 1994 [PubMed] [Google Scholar]

57. Ikeda Y, Sugawara A, Taniyama Y, Uruno A, Igarashi K, Arima S, Ito S, and Takeuchi K.Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2. J Biol Chem 275: 33142–33150, 2000 [PubMed] [Google Scholar]

58. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, and Nabeshima Y.An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313–322, 1997 [PubMed] [Google Scholar]

59. Itoh K, Igarashi K, Hayashi N, Nishizawa M, and Yamamoto M.Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol 15: 4184–4193, 1995 [PMC free article] [PubMed] [Google Scholar]

60. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, and Yamamoto M.Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13: 76–86, 1999 [PMC free article] [PubMed] [Google Scholar]

61. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, and Yamamoto M.Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8: 379–391, 2003 [PubMed] [Google Scholar]

62. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, and Johansen T.p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285: 22576–22591, 2010 [PMC free article] [PubMed] [Google Scholar]

63. Jang J, Wang Y, Lalli MA, Guzman E, Godshalk SE, Zhou H, and Kosik KS.Primary cilium-autophagy-Nrf2 (PAN) axis activation commits human embryonic stem cells to a neuroectoderm fate. Cell 165: 410–420, 2016 [PubMed] [Google Scholar]

64. Johnson SF, Cruz C, Greifenberg AK, Dust S, Stover DG, Chi D, Primack B, Cao S, Bernhardy AJ, Coulson R, Lazaro JB, Kochupurakkal B, Sun H, Unitt C, Moreau LA, Sarosiek KA, Scaltriti M, Juric D, Baselga J, Richardson AL, Rodig SJ, D'Andrea AD, Balmana J, Johnson N, Geyer M, Serra V, Lim E, and Shapiro GI.CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep 17: 2367–2381, 2016 [PMC free article] [PubMed] [Google Scholar]

65. Joo MS, Lee CG, Koo JH, and Kim SG.miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis 4: e899, 2013 [PMC free article] [PubMed] [Google Scholar]

66. Kaidanovich-Beilin O. and Woodgett JR.GSK-3: Functional insights from cell biology and animal models. Front Mol Neurosci 4: 40, 2011 [PMC free article] [PubMed] [Google Scholar]

67. Kang HJ, Hong YB, Kim HJ, Rodriguez OC, Nath RG, Tilli EM, Albanese C, Chung FL, Kwon SH, and Bae I.Detoxification: a novel function of BRCA1 in tumor suppression? Toxicol Sci 122: 26–37, 2011 [PMC free article] [PubMed] [Google Scholar]

68. Kannan MB, Solovieva V, and Blank V.The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta 1823: 1841–1846, 2012 [PubMed] [Google Scholar]

69. Kapeta S, Chondrogianni N, and Gonos ES.Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J Biol Chem 285: 8171–8184, 2010 [PMC free article] [PubMed] [Google Scholar]

70. Karuri AR, Huang Y, Bodreddigari S, Sutter CH, Roebuck BD, Kensler TW, and Sutter TR.3H-1,2-dithiole-3-thione targets nuclear factor kappaB to block expression of inducible nitric-oxide synthase, prevents hypotension, and improves survival in endotoxemic rats. J Pharmacol Exp Ther 317: 61–67, 2006 [PubMed] [Google Scholar]

71. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, and Yamamoto M.Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6: 857–868, 2001 [PubMed] [Google Scholar]

72. Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, and Yamamoto M.Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol 25: 8044–8051, 2005 [PMC free article] [PubMed] [Google Scholar]

73. Katsuoka F, Motohashi H, Tamagawa Y, Kure S, Igarashi K, Engel JD, and Yamamoto M.Small Maf compound mutants display central nervous system neuronal degeneration, aberrant transcription, and Bach protein mislocalization coincident with myoclonus and abnormal startle response. Mol Cell Biol 23: 1163–1174, 2003 [PMC free article] [PubMed] [Google Scholar]

74. Katsuoka F. and Yamamoto M.Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene 586: 197–205, 2016 [PMC free article] [PubMed] [Google Scholar]

75. Kim JH, Yu S, Chen JD, and Kong AN.The nuclear cofactor RAC3/AIB1/SRC-3 enhances Nrf2 signaling by interacting with transactivation domains. Oncogene 32: 514–527, 2013 [PMC free article] [PubMed] [Google Scholar]

76. Kim PK, Hailey DW, Mullen RT, and Lippincott-Schwartz J.Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105: 20567–20574, 2008 [PMC free article] [PubMed] [Google Scholar]

77. Kim YR, Oh JE, Kim MS, Kang MR, Park SW, Han JY, Eom HS, Yoo NJ, and Lee SH.Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220: 446–451, 2010 [PubMed] [Google Scholar]

78. Kimura M, Yamamoto T, Zhang J, Itoh K, Kyo M, Kamiya T, Aburatani H, Katsuoka F, Kurokawa H, Tanaka T, Motohashi H, and Yamamoto M.Molecular basis distinguishing the DNA binding profile of Nrf2-Maf heterodimer from that of Maf homodimer. J Biol Chem 282: 33681–33690, 2007 [PubMed] [Google Scholar]

79. Kobayashi A, Ito E, Toki T, Kogame K, Takahashi S, Igarashi K, Hayashi N, and Yamamoto M.Molecular cloning and functional characterization of a new Cap ‘n’ collar family transcription factor Nrf3. J Biol Chem 274: 6443–6452, 1999 [PubMed] [Google Scholar]

80. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, and Yamamoto M.Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24: 7130–7139, 2004 [PMC free article] [PubMed] [Google Scholar]

81. Kobayashi A, Tsukide T, Miyasaka T, Morita T, Mizoroki T, Saito Y, Ihara Y, Takashima A, Noguchi N, Fukamizu A, Hirotsu Y, Ohtsuji M, Katsuoka F, and Yamamoto M.Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes Cells 16: 692–703, 2011 [PubMed] [Google Scholar]

82. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, and Yamamoto M.Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 7: 11624, 2016 [PMC free article] [PubMed] [Google Scholar]

83. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, and Yamamoto M.The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12: 213–223, 2010 [PubMed] [Google Scholar]

84. Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP, Hecht JL, and Cannistra SA.Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res 71: 5081–5089, 2011 [PubMed] [Google Scholar]

85. Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, and Misteli T.Repression of the antioxidant NRF2 pathway in premature aging. Cell 165: 1361–1374, 2016 [PMC free article] [PubMed] [Google Scholar]

86. Kwak MK, Itoh K, Yamamoto M, and Kensler TW.Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22: 2883–2892, 2002 [PMC free article] [PubMed] [Google Scholar]

87. Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, and Kensler TW.Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23: 8786–8794, 2003 [PMC free article] [PubMed] [Google Scholar]

88. Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, and Kensler TW.Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278: 8135–8145, 2003 [PubMed] [Google Scholar]

89. Lacher SE, Lee JS, Wang X, Campbell MR, Bell DA, and Slattery M.Beyond antioxidant genes in the ancient Nrf2 regulatory network. Free Radic Biol Med 88: 452–465, 2015 [PMC free article] [PubMed] [Google Scholar]

90. Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, and Zhang DD.A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30: 3275–3285, 2010 [PMC free article] [PubMed] [Google Scholar]

91. Lee JM, Calkins MJ, Chan K, Kan YW, and Johnson JA.Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278: 12029–12038, 2003 [PubMed] [Google Scholar]

92. Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, and Darley-Usmar VM.Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378: 373–382, 2004 [PMC free article] [PubMed] [Google Scholar]

93. Li X, Chatterjee N, Spirohn K, Boutros M, and Bohmann D.Cdk12 is a gene-selective RNA polymerase II kinase that regulates a subset of the transcriptome, including Nrf2 target genes. Sci Rep 6: 21455, 2016 [PMC free article] [PubMed] [Google Scholar]

94. Liang K, Gao X, Gilmore JM, Florens L, Washburn MP, Smith E, and Shilatifard A.Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol Cell Biol 35: 928–938, 2015 [PMC free article] [PubMed] [Google Scholar]

95. Lo SC. and Hannink M.PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp Cell Res 314: 1789–1803, 2008 [PMC free article] [PubMed] [Google Scholar]

96. Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, and Dinkova-Kostova AT.Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J 457: 415–424, 2014 [PMC free article] [PubMed] [Google Scholar]

97. Ma J, Cai H, Wu T, Sobhian B, Huo Y, Alcivar A, Mehta M, Cheung KL, Ganesan S, Kong AN, Zhang DD, and Xia B.PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function. Mol Cell Biol 32: 1506–1517, 2012 [PMC free article] [PubMed] [Google Scholar]

98. Ma Q, Kinneer K, Bi Y, Chan JY, and Kan YW.Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap ‘n’ collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem J 377: 205–213, 2004 [PMC free article] [PubMed] [Google Scholar]

99. Maher JM, Dieter MZ, Aleksunes LM, Slitt AL, Guo G, Tanaka Y, Scheffer GL, Chan JY, Manautou JE, Chen Y, Dalton TP, Yamamoto M, and Klaassen CD.Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway. Hepatology 46: 1597–1610, 2007 [PubMed] [Google Scholar]

100. Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW, and Biswal S.Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res 38: 5718–5734, 2010 [PMC free article] [PubMed] [Google Scholar]

101. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, Aplenc R, Yamamoto T, Yamamoto M, Cho HY, and Kleeberger SR.Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 21: 2237–2246, 2007 [PubMed] [Google Scholar]

102. McMahon M, Itoh K, Yamamoto M, and Hayes JD.Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278: 21592–21600, 2003 [PubMed] [Google Scholar]

103. McMahon M, Thomas N, Itoh K, Yamamoto M, and Hayes JD.Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem 279: 31556–31567, 2004 [PubMed] [Google Scholar]

104. Meakin PJ, Chowdhry S, Sharma RS, Ashford FB, Walsh SV, McCrimmon RJ, Dinkova-Kostova AT, Dillon JF, Hayes JD, and Ashford ML.Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol 34: 3305–3320, 2014 [PMC free article] [PubMed] [Google Scholar]

105. Melton C, Reuter JA, Spacek DV, and Snyder M.Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat Genet 47: 710–716, 2015 [PMC free article] [PubMed] [Google Scholar]

106. Miao W, Hu L, Scrivens PJ, and Batist G.Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280: 20340–20348, 2005 [PubMed] [Google Scholar]

107. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, and Motohashi H.Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22: 66–79, 2012 [PubMed] [Google Scholar]

108. Moi P, Chan K, Asunis I, Cao A, and Kan YW.Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91: 9926–9930, 1994 [PMC free article] [PubMed] [Google Scholar]

109. Moinova HR. and Mulcahy RT.Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun 261: 661–668, 1999 [PubMed] [Google Scholar]

110. Motohashi H, Katsuoka F, Engel JD, and Yamamoto M.Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101: 6379–6384, 2004 [PMC free article] [PubMed] [Google Scholar]

111. Motohashi H, Katsuoka F, Shavit JA, Engel JD, and Yamamoto M.Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103: 865–875, 2000 [PubMed] [Google Scholar]

112. Motohashi H, O'Connor T, Katsuoka F, Engel JD, and Yamamoto M.Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294: 1–12, 2002 [PubMed] [Google Scholar]

113. Muscarella LA, Barbano R, D'Angelo V, Copetti M, Coco M, Balsamo T, la Torre A, Notarangelo A, Troiano M, Parisi S, Icolaro N, Catapano D, Valori VM, Pellegrini F, Merla G, Carella M, Fazio VM, and Parrella P.Regulation of KEAP1 expression by promoter methylation in malignant gliomas and association with patient's outcome. Epigenetics 6: 317–325, 2011 [PMC free article] [PubMed] [Google Scholar]

114. Muscarella LA, Parrella P, D'Alessandro V, la Torre A, Barbano R, Fontana A, Tancredi A, Guarnieri V, Balsamo T, Coco M, Copetti M, Pellegrini F, De Bonis P, Bisceglia M, Scaramuzzi G, Maiello E, Valori VM, Merla G, Vendemiale G, and Fazio VM.Frequent epigenetics inactivation of KEAP1 gene in non-small cell lung cancer. Epigenetics 6: 710–719, 2011 [PubMed] [Google Scholar]

115. Nagai T, Igarashi K, Akasaka J, Furuyama K, Fujita H, Hayashi N, Yamamoto M, and Sassa S.Regulation of NF-E2 activity in erythroleukemia cell differentiation. J Biol Chem 273: 5358–5365, 1998 [PubMed] [Google Scholar]

116. Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, and Mahimainathan L.Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 7: e51111, 2012 [PMC free article] [PubMed] [Google Scholar]

117. Nguyen T, Nioi P, and Pickett CB.The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284: 13291–13295, 2009 [PMC free article] [PubMed] [Google Scholar]

118. Nguyen T, Sherratt PJ, Huang HC, Yang CS, and Pickett CB.Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278: 4536–4541, 2003 [PubMed] [Google Scholar]

119. Nioi P. and Nguyen T.A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem Biophys Res Commun 362: 816–821, 2007 [PubMed] [Google Scholar]

120. Nioi P, Nguyen T, Sherratt PJ, and Pickett CB.The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol 25: 10895–10906, 2005 [PMC free article] [PubMed] [Google Scholar]

121. Noda S, Harada N, Hida A, Fujii-Kuriyama Y, Motohashi H, and Yamamoto M.Gene expression of detoxifying enzymes in AhR and Nrf2 compound null mutant mouse. Biochem Biophys Res Commun 303: 105–111, 2003 [PubMed] [Google Scholar]

122. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, and Nakatani Y.The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959, 1996 [PubMed] [Google Scholar]

123. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, and Hirohashi S.Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68: 1303–1309, 2008 [PubMed] [Google Scholar]

124. Onodera K, Shavit JA, Motohashi H, Katsuoka F, Akasaka JE, Engel JD, and Yamamoto M.Characterization of the murine mafF gene. J Biol Chem 274: 21162–21169, 1999 [PubMed] [Google Scholar]

125. Onodera K, Shavit JA, Motohashi H, Yamamoto M, and Engel JD.Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice. EMBO J 19: 1335–1345, 2000 [PMC free article] [PubMed] [Google Scholar]

126. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, and Torti FM.Ferritin and the response to oxidative stress. Biochem J 357: 241–247, 2001 [PMC free article] [PubMed] [Google Scholar]

127. Oyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M, and Igarashi K.Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 16: 6083–6095, 1996 [PMC free article] [PubMed] [Google Scholar]

128. Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Zhang W, Li Y, Yang J, Hao Y, Yuan T, Yuan G, Wang H, Ju Z, Mao Z, Li J, Qu J, Tang F, and Liu GH.SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26: 190–205, 2016 [PMC free article] [PubMed] [Google Scholar]

129. Papp D, Lenti K, Modos D, Fazekas D, Dul Z, Turei D, Foldvari-Nagy L, Nussinov R, Csermely P, and Korcsmaros T.The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops. FEBS Lett 586: 1795–1802, 2012 [PMC free article] [PubMed] [Google Scholar]

130. Paul MK, Bisht B, Darmawan DO, Chiou R, Ha VL, Wallace WD, Chon AT, Hegab AE, Grogan T, Elashoff DA, Alva-Ornelas JA, and Gomperts BN.Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell 15: 199–214, 2014 [PMC free article] [PubMed] [Google Scholar]

131. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, and Cuadrado A.SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31: 1121–1133, 2011 [PMC free article] [PubMed] [Google Scholar]

132. Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, Tobon-Velasco JC, Devijver H, Garcia-Mayoral MF, Van Leuven F, Hayes JD, Bertho G, and Cuadrado A.Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol 32: 3486–3499, 2012 [PMC free article] [PubMed] [Google Scholar]

133. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, and Dhama K.Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014: 761264, 2014 [PMC free article] [PubMed] [Google Scholar]

134. Rey G, Valekunja UK, Feeney KA, Wulund L, Milev NB, Stangherlin A, Ansel-Bollepalli L, Velagapudi V, O'Neill JS, and Reddy AB.The pentose phosphate pathway regulates the circadian clock. Cell Metab 24: 462–473, 2016 [PMC free article] [PubMed] [Google Scholar]

136. Rushmore TH, Morton MR, and Pickett CB.The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266: 11632–11639, 1991 [PubMed] [Google Scholar]

137. Rushworth SA, MacEwan DJ, and O'Connell MA.Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol 181: 6730–6737, 2008 [PMC free article] [PubMed] [Google Scholar]

138. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, and MacEwan DJ.The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood 120: 5188–5198, 2012 [PubMed] [Google Scholar]

139. Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M, Kunimoto M, and Hara S.Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J Cell Physiol 203: 529–537, 2005 [PubMed] [Google Scholar]

140. Sangokoya C, Telen MJ, and Chi JT.microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116: 4338–4348, 2010 [PMC free article] [PubMed] [Google Scholar]

141. Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, Tamba M, Itoh K, Yamamoto M, and Bannai S.Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 277: 44765–44771, 2002 [PubMed] [Google Scholar]

142. Satoh H, Moriguchi T, Takai J, Ebina M, and Yamamoto M.Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis. Cancer Res 73: 4158–4168, 2013 [PubMed] [Google Scholar]

143. Sekine H, Okazaki K, Ota N, Shima H, Katoh Y, Suzuki N, Igarashi K, Ito M, Motohashi H, and Yamamoto M.The mediator subunit MED16 transduces NRF2-activating signals into antioxidant gene expression. Mol Cell Biol 36: 407–420, 2015 [PMC free article] [PubMed] [Google Scholar]

144. Shah NM, Rushworth SA, Murray MY, Bowles KM, and MacEwan DJ.Understanding the role of NRF2-regulated miRNAs in human malignancies. Oncotarget 4: 1130–1142, 2013 [PMC free article] [PubMed] [Google Scholar]

145. Shavit JA, Motohashi H, Onodera K, Akasaka J, Yamamoto M, and Engel JD.Impaired megakaryopoiesis and behavioral defects in mafG-null mutant mice. Genes Dev 12: 2164–2174, 1998 [PMC free article] [PubMed] [Google Scholar]

146. Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, and Hirohashi S.Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135: 1358–1368, 1368 e 1–e4, 2008 [PubMed] [Google Scholar]

147. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, and Hirohashi S.Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A 105: 13568–13573, 2008 [PMC free article] [PubMed] [Google Scholar]

148. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, and Kensler TW.NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27: 7188–7197, 2007 [PMC free article] [PubMed] [Google Scholar]

149. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, and Orkin SH.Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81: 695–704, 1995 [PubMed] [Google Scholar]

150. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, and Biswal S.Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3: e420, 2006 [PMC free article] [PubMed] [Google Scholar]

151. Singh B, Ronghe AM, Chatterjee A, Bhat NK, and Bhat HK.MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 34: 1165–1172, 2013 [PMC free article] [PubMed] [Google Scholar]

152. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, and Velculescu VE.The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274, 2006 [PubMed] [Google Scholar]

153. Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, and Wistuba II.Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res 16: 3743–3753, 2010 [PMC free article] [PubMed] [Google Scholar]

154. Sriram N, Kalayarasan S, and Sudhandiran G.Epigallocatechin-3-gallate augments antioxidant activities and inhibits inflammation during bleomycin-induced experimental pulmonary fibrosis through Nrf2-Keap1 signaling. Pulm Pharmacol Ther 22: 221–236, 2009 [PubMed] [Google Scholar]

155. Steinberg SF.Mechanisms for redox-regulation of protein kinase C. Front Pharmacol 6: 128, 2015 [PMC free article] [PubMed] [Google Scholar]

156. Stewart D, Killeen E, Naquin R, Alam S, and Alam J.Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278: 2396–2402, 2003 [PubMed] [Google Scholar]

157. Sun Z, Chin YE, and Zhang DD.Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29: 2658–2672, 2009 [PMC free article] [PubMed] [Google Scholar]

158. Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, and Tanaka K.Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. J Biol Chem 275: 2877–2884, 2000 [PubMed] [Google Scholar]

159. Suzuki T, Shibata T, Takaya K, Shiraishi K, Kohno T, Kunitoh H, Tsuta K, Furuta K, Goto K, Hosoda F, Sakamoto H, Motohashi H, and Yamamoto M.Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol Cell Biol 33: 2402–2412, 2013 [PMC free article] [PubMed] [Google Scholar]

160. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, and Hayes JD.Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 88: 108–146, 2015 [PMC free article] [PubMed] [Google Scholar]

161. Telakowski-Hopkins CA, King RG, and Pickett CB.Glutathione S-transferase Ya subunit gene: identification of regulatory elements required for basal level and inducible expression. Proc Natl Acad Sci U S A 85: 1000–1004, 1988 [PMC free article] [PubMed] [Google Scholar]

162. Thai P, Statt S, Chen CH, Liang E, Campbell C, and Wu R.Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol 49: 204–211, 2013 [PMC free article] [PubMed] [Google Scholar]

163. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, and Biswal S.Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116: 984–995, 2006 [PMC free article] [PubMed] [Google Scholar]

164. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, and Biswal S.Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62: 5196–5203, 2002 [PubMed] [Google Scholar]

165. Toki T, Itoh J, Kitazawa J, Arai K, Hatakeyama K, Akasaka J, Igarashi K, Nomura N, Yokoyama M, Yamamoto M, and Ito E.Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF-E2 motif. Oncogene 14: 1901–1910, 1997 [PubMed] [Google Scholar]

166. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, and Yamamoto M.Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26: 2887–2900, 2006 [PMC free article] [PubMed] [Google Scholar]

167. Tsai JJ, Dudakov JA, Takahashi K, Shieh JH, Velardi E, Holland AM, Singer NV, West ML, Smith OM, Young LF, Shono Y, Ghosh A, Hanash AM, Tran HT, Moore MA, and van den Brink MR.Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol 15: 309–316, 2013 [PMC free article] [PubMed] [Google Scholar]

168. Turei D, Papp D, Fazekas D, Foldvari-Nagy L, Modos D, Lenti K, Csermely P, and Korcsmaros T.NRF2-ome: an integrated web resource to discover protein interaction and regulatory networks of NRF2. Oxid Med Cell Longev 2013: 737591, 2013 [PMC free article] [PubMed] [Google Scholar]

169. Ullrich NJ. and Gordon LB.Hutchinson-Gilford progeria syndrome. Handb Clin Neurol 132: 249–264, 2015 [PubMed] [Google Scholar]

170. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, Kensler TW, and Talalay P.Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A 101: 2040–2045, 2004 [PMC free article] [PubMed] [Google Scholar]

171. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, and Yamamoto M.Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35: 238–245, 2003 [PubMed] [Google Scholar]

172. Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S, Yamamoto M, and Kensler TW.Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 3: ra52, 2010 [PMC free article] [PubMed] [Google Scholar]

173. Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, Shigemura N, Biswal S, Yamamoto M, and Kensler TW.Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol Cell Biol 34: 653–663, 2014 [PMC free article] [PubMed] [Google Scholar]

174. Walerych D, Lisek K, Sommaggio R, Piazza S, Ciani Y, Dalla E, Rajkowska K, Gaweda-Walerych K, Ingallina E, Tonelli C, Morelli MJ, Amato A, Eterno V, Zambelli A, Rosato A, Amati B, Wisniewski JR, Del and Sal G.Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat Cell Biol 18: 897–909, 2016 [PubMed] [Google Scholar]

175. Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, Li Y, Li Y, Luo L, Hayes JD, Wang XJ, and Tang X.RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res 73: 3097–3108, 2013 [PubMed] [Google Scholar]

176. Wang M. and Kaufman RJ.The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat Rev Cancer 14: 581–597, 2014 [PubMed] [Google Scholar]

177. Wang R, An J, Ji F, Jiao H, Sun H, and Zhou D.Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem Biophys Res Commun 373: 151–154, 2008 [PubMed] [Google Scholar]

178. Wang X, Campbell MR, Lacher SE, Cho HY, Wan M, Crowl CL, Chorley BN, Bond GL, Kleeberger SR, Slattery M, and Bell DA.A polymorphic antioxidant response element links NRF2/sMAF binding to enhanced MAPT expression and reduced risk of Parkinsonian disorders. Cell Rep2016. DOI: 10.1016/j.celrep.2016.03.068 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Weake VM. and Workman JL.Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 11: 426–437, 2010 [PubMed] [Google Scholar]

180. Wild AC, Moinova HR, and Mulcahy RT.Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274: 33627–33636, 1999 [PubMed] [Google Scholar]

181. Winter J, Jung S, Keller S, Gregory RI, and Diederichs S.Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11: 228–234, 2009 [PubMed] [Google Scholar]

182. Woods CG, Fu J, Xue P, Hou Y, Pluta LJ, Yang L, Zhang Q, Thomas RS, Andersen ME, and Pi J.Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicol Appl Pharmacol 238: 27–36, 2009 [PMC free article] [PubMed] [Google Scholar]

183. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, and Pavletich NP.Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11: 1445–1456, 2003 [PubMed] [Google Scholar]

184. Wu KC, Cui JY, and Klaassen CD.Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci 123: 590–600, 2011 [PMC free article] [PubMed] [Google Scholar]

185. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, Wong PK, Chapman E, Fang D, and Zhang DD.Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28: 708–722, 2014 [PMC free article] [PubMed] [Google Scholar]

186. Yamazaki H, Katsuoka F, Motohashi H, Engel JD, and Yamamoto M.Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins. Mol Cell Biol 32: 808–816, 2012 [PMC free article] [PubMed] [Google Scholar]

187. Yang M, Yao Y, Eades G, Zhang Y, and Zhou Q.MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129: 983–991, 2011 [PMC free article] [PubMed] [Google Scholar]

188. Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, Liby KT, Sporn MB, Sutter TR, and Kensler TW.Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 30: 1024–1031, 2009 [PMC free article] [PubMed] [Google Scholar]

189. Yeager RL, Reisman SA, Aleksunes LM, and Klaassen CD.Introducing the “TCDD-inducible AhR-Nrf2 gene battery.” Toxicol Sci 111: 238–246, 2009 [PMC free article] [PubMed] [Google Scholar]

190. Yoo NJ, Kim HR, Kim YR, An CH, and Lee SH.Somatic mutations of the KEAP1 gene in common solid cancers. Histopathology 60: 943–952, 2012 [PubMed] [Google Scholar]

191. Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW, and Kong AN.Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 5: e8579, 2010 [PMC free article] [PubMed] [Google Scholar]

192. Zhang DD, Lo SC, Cross JV, Templeton DJ, and Hannink M.Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24: 10941–10953, 2004 [PMC free article] [PubMed] [Google Scholar]

193. Zhang J, Ohta T, Maruyama A, Hosoya T, Nishikawa K, Maher JM, Shibahara S, Itoh K, and Yamamoto M.BRG1 interacts with Nrf2 to selectively mediate HO-1 induction in response to oxidative stress. Mol Cell Biol 26: 7942–7952, 2006 [PMC free article] [PubMed] [Google Scholar]

194. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu H, Bova SG, and Biswal S.Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 9: 336–346, 2010 [PMC free article] [PubMed] [Google Scholar]

195. Zhang Y, Xia J, Li Q, Yao Y, Eades G, Gernapudi R, Duru N, Kensler TW, and Zhou Q.NRF2/long noncoding RNA ROR signaling regulates mammary stem cell expansion and protects against estrogen genotoxicity. J Biol Chem 289: 31310–31318, 2014 [PMC free article] [PubMed] [Google Scholar]