The genetic and molecular regulation of sleep: from fruit flies to humans (original) (raw)
Medori, R. et al. Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N. Engl. J. Med.326, 444–449 (1992). First study to show that a sleep disorder is caused by a gene mutation. ArticleCASPubMed CentralPubMed Google Scholar
Tobler, I. et al. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature380, 639–642 (1996). First study in mice to show that a null mutation affects sleep regulation. ArticleCASPubMed Google Scholar
Tobler, I., Deboer, T. & Fischer, M. Sleep and sleep regulation in normal and prion protein-deficient mice. J. Neurosci.17, 1869–1879 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell98, 365–376 (1999). Seminal study that identified the autosomal recessive mutation responsible for canine narcolepsy. ArticleCASPubMed Google Scholar
Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell98, 437–451 (1999). This study showed that mice lacking hypocretin/orexin have a narcolepsy-like phenotype. ArticleCASPubMed Google Scholar
Dauvilliers, Y., Maret, S. & Tafti, M. Genetics of normal and pathological sleep in humans. Sleep Med. Rev.9, 91–100 (2005). ArticleCASPubMed Google Scholar
Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature430, 78–81 (2004). This study showed for the first time in humans that local changes in sleep intensity, as measured by SWA, are driven by learning. ArticleCASPubMed Google Scholar
Ambrosius, U. et al. Heritability of sleep electroencephalogram. Biol. Psychiatry64, 344–348 (2008). ArticlePubMed Google Scholar
De Gennaro, L. et al. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann. Neurol.64, 455–460 (2008). ArticlePubMed Google Scholar
Blake, H. & Gerard, R. Brain potentials during sleep. Am. J. Physiol.119, 692–703 (1937). Article Google Scholar
Achermann, P. & Borbely, A. A. Mathematical models of sleep regulation. Front. Biosci.8, s683–s693 (2003). ArticlePubMed Google Scholar
Harbison, S. T. et al. Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nature Genet.41, 371–375 (2009). ArticleCASPubMed Google Scholar
Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res.903, 263–268 (2001). ArticleCASPubMed Google Scholar
Prober, D. A., Rihel, J., Onah, A. A., Sung, R. J. & Schier, A. F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci.26, 13400–13410 (2006). ArticleCASPubMedPubMed Central Google Scholar
Raizen, D. M. et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature451, 569–572 (2008). ArticleCASPubMed Google Scholar
Zhang, J., Obal, F., Jr, Fang, J., Collins, B. J. & Krueger, J. M. Non-rapid eye movement sleep is suppressed in transgenic mice with a deficiency in the somatotropic system. Neurosci. Lett.220, 97–100 (1996). ArticleCASPubMed Google Scholar
Tafti, M. et al. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Nature Genet.34, 320–325 (2003). First study in mice to use QTL analysis to identify a gene that affects a specific feature of the sleep EEG (theta rhythm during REM sleep). ArticleCASPubMed Google Scholar
Maret, S. et al. Retinoic acid signaling affects cortical synchrony during sleep. Science310, 111–113 (2005). ArticleCASPubMed Google Scholar
Hu, W. P. et al. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep30, 247–256 (2007). PubMed Google Scholar
Kimura, M. et al. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol. Psychiatry 19 May 2009 (doi: 10.1038/mp.2009.46). ArticlePubMed CentralPubMedCAS Google Scholar
Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N. & Jan, L. Y. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature331, 137–142 (1988). ArticleCASPubMed Google Scholar
Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature434, 1087–1092 (2005). First gene with strong effects on sleep duration identified in flies using mutagenesis screening. ArticleCASPubMed Google Scholar
Bushey, D., Huber, R., Tononi, G. & Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci.27, 5384–5393 (2007). ArticleCASPubMedPubMed Central Google Scholar
Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. Science321, 372–376 (2008). Second gene with strong effects on sleep duration to be identified in flies using mutagenesis screening. ArticleCASPubMed CentralPubMed Google Scholar
Guan, D. et al. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J. Physiol.571, 371–389 (2006). ArticleCASPubMed Google Scholar
Misonou, H. & Trimmer, J. S. Determinants of voltage-gated potassium channel surface expression and localization in Mammalian neurons. Crit. Rev. Biochem. Mol. Biol.39, 125–145 (2004). ArticleCASPubMed Google Scholar
Yuan, L. L. & Chen, X. Diversity of potassium channels in neuronal dendrites. Prog. Neurobiol.78, 374–389 (2006). ArticleCASPubMed Google Scholar
Espinosa, F., Marks, G., Heintz, N. & Joho, R. H. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav.3, 90–100 (2004). ArticleCASPubMed Google Scholar
Espinosa, F., Torres-Vega, M. A., Marks, G. A. & Joho, R. H. Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J. Neurosci.28, 5570–5581 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Rudy, B. & McBain, C. J. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci.24, 517–526 (2001). ArticleCASPubMed Google Scholar
Liguori, R. et al. Morvan's syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain124, 2417–2426 (2001). ArticleCASPubMed Google Scholar
Lee, J., Kim, D. & Shin, H. S. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1G-subunit of T-type calcium channels. Proc. Natl Acad. Sci. USA101, 18195–18199 (2004). ArticleCASPubMedPubMed Central Google Scholar
Anderson, M. P. et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc. Natl Acad. Sci. USA102, 1743–1748 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hendricks, J. C. et al. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J. Biol. Rhythms18, 12–25 (2003). ArticleCASPubMed Google Scholar
Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron41, 35–43 (2004). First genome-wide microarray study to show that hundreds of transcripts in the rat cerebral cortex change their expression because of sleep and waking, independent of circadian time. ArticleCASPubMed Google Scholar
Franken, P., Thomason, R., Heller, H. C. & O'Hara, B. F. A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci.8, 87 (2007). ArticlePubMed CentralPubMedCAS Google Scholar
Wisor, J. P. et al. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J. Neurosci.28, 7193–7201 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science293, 510–514 (2001). ArticleCASPubMed Google Scholar
Reick, M., Garcia, J. A., Dudley, C. & McKnight, S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science293, 506–509 (2001). ArticleCASPubMed Google Scholar
Kasischke, K. A., Vishwasrao, H. D., Fisher, P. J., Zipfel, W. R. & Webb, W. W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science305, 99–103 (2004). ArticleCASPubMed Google Scholar
Viola, A. U. et al. PER3 polymorphism predicts sleep structure and waking performance. Curr. Biol.17, 613–618 (2007). First study in humans to identify a gene polymorphism that affects the response to sleep deprivation. ArticleCASPubMed Google Scholar
Goel, N., Banks, S., Mignot, E. & Dinges, D. F. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One4, e5874 (2009). ArticlePubMed CentralPubMedCAS Google Scholar
Groeger, J. A. et al. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep31, 1159–1167 (2008). PubMed CentralPubMed Google Scholar
Van Dongen, H. P., Vitellaro, K. M. & Dinges, D. F. Individual differences in adult human sleep and wakefulness: leitmotif for a research agenda. Sleep28, 479–496 (2005). Review of the data suggesting a genetic basis for the inter-individual variability in the response to sleep loss. ArticlePubMed Google Scholar
Lim, J., Choo, W. C. & Chee, M. W. Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task. Sleep30, 61–70 (2007). ArticlePubMed Google Scholar
Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science291, 1040–1043 (2001). First study to identify a mutation responsible for FASPS. ArticleCASPubMed Google Scholar
Xu, Y. et al. Functional consequences of a _CKI_δ mutation causing familial advanced sleep phase syndrome. Nature434, 640–644 (2005). ArticleCASPubMed Google Scholar
Okawa, M. & Uchiyama, M. Circadian rhythm sleep disorders: characteristics and entrainment pathology in delayed sleep phase and non-24-h sleep-wake syndrome. Sleep Med. Rev.11, 485–496 (2007). ArticlePubMed Google Scholar
Sakurai, T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Rev. Neurosci.8, 171–181 (2007). ArticleCAS Google Scholar
Landolt, H. P. Sleep homeostasis: a role for adenosine in humans? Biochem. Pharmacol.75, 2070–2079 (2008). ArticleCASPubMed Google Scholar
Retey, J. V. et al. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc. Natl Acad. Sci. USA102, 15676–15681 (2005). First study in humans to identify a gene polymorphism that affects the duration of NREM sleep and SLA. ArticleCASPubMedPubMed Central Google Scholar
Lonart, G., Tang, X., Simsek-Duran, F., Machida, M. & Sanford, L. D. The role of active zone protein Rab3 interacting molecule 1 α in the regulation of norepinephrine release, response to novelty, and sleep. Neuroscience154, 821–831 (2008). ArticleCASPubMed Google Scholar
Colas, D., Wagstaff, J., Fort, P., Salvert, D. & Sarda, N. Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis.20, 471–478 (2005). ArticleCASPubMed Google Scholar
Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci.21, 2610–2621 (2001). This study used QTL analysis to show that sleep need, as measured by the increase in SLA after prolonged waking, is strongly influenced by genetic factors. ArticleCASPubMedPubMed Central Google Scholar
Andretic, R., Franken, P. & Tafti, M. Genetics of sleep. Annu. Rev. Genet.42, 361–388 (2008). ArticleCASPubMed Google Scholar
Kato, A., Ozawa, F., Saitoh, Y., Hirai, K. & Inokuchi, K. vesl, a gene encoding VASP/Ena family related protein, is upregulated during seizure, long-term potentiation and synaptogenesis. FEBS Lett.412, 183–189 (1997). ArticleCASPubMed Google Scholar
Brakeman, P. R. et al. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature386, 284–288 (1997). ArticleCASPubMed Google Scholar
Mackiewicz, M., Paigen, B., Naidoo, N. & Pack, A. I. Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate. Physiol. Genomics33, 91–99 (2008). ArticleCASPubMed Google Scholar
Diagana, T. T. et al. Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J. Neurosci.22, 428–436 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schenkein, J. & Montagna, P. Self management of fatal familial insomnia. Part 1: what is FFI? MedGenMed8, 65 (2006). PubMed CentralPubMed Google Scholar
Lugaresi, E. & Provini, F. Fatal familial insomnia and agrypnia excitata. Rev. Neurol. Dis.4, 145–152 (2007). PubMed Google Scholar
Dossena, S. et al. Mutant prion protein expression causes motor and memory deficits and abnormal sleep patterns in a transgenic mouse model. Neuron60, 598–609 (2008). ArticleCASPubMed Google Scholar
Peyron, C. et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nature Med.6, 991–997 (2000). ArticleCASPubMed Google Scholar
Hallmayer, J. et al. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nature Genet.41, 708–711 (2009). ArticleCASPubMed Google Scholar
Winkelmann, J. et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nature Genet.39, 1000–1006 (2007). ArticleCASPubMed Google Scholar
Schormair, B. et al. PTPRD (protein tyrosine phosphatase receptor type delta) is associated with restless legs syndrome. Nature Genet.40, 946–948 (2008). ArticleCASPubMed Google Scholar
Stefansson, H. et al. A genetic risk factor for periodic limb movements in sleep. N. Engl. J. Med.357, 639–647 (2007). ArticleCASPubMed Google Scholar
Kimura, M. & Winkelmann, J. Genetics of sleep and sleep disorders. Cell. Mol. Life Sci.64, 1216–1226 (2007). ArticleCASPubMed Google Scholar
Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res.885, 303–321 (2000). ArticleCASPubMed Google Scholar
Cirelli, C., LaVaute, T. M. & Tononi, G. Sleep and wakefulness modulate gene expression in Drosophila. J. Neurochem.94, 1411–1419 (2005). ArticleCASPubMed Google Scholar
Cirelli, C., Faraguna, U. & Tononi, G. Changes in brain gene expression after long-term sleep deprivation. J. Neurochem.98, 1632–1645 (2006). ArticleCASPubMed Google Scholar
Terao, A., Greco, M. A., Davis, R. W., Heller, H. C. & Kilduff, T. S. Region-specific changes in immediate early gene expression in response to sleep deprivation and recovery sleep in the mouse brain. Neuroscience120, 1115–1124 (2003). ArticleCASPubMed Google Scholar
Terao, A. et al. Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience116, 187–200 (2003). ArticleCASPubMed Google Scholar
Terao, A. et al. Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience137, 593–605 (2006). ArticleCASPubMed Google Scholar
Zimmerman, J. E. et al. Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol. Genomics27, 337–350 (2006). ArticleCASPubMed Google Scholar
Mackiewicz, M. et al. Macromolecule biosynthesis - a key function of sleep. Physiol. Genomics31, 441–457 (2007). ArticleCASPubMed Google Scholar
Jones, S., Pfister-Genskow, M., Benca, R. M. & Cirelli, C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J. Neurochem.105, 46–62 (2008). ArticleCASPubMed Google Scholar
Cirelli, C. & Tononi, G. Differences in gene expression between sleep and waking as revealed by mRNA differential display. Brain Res. Mol. Brain Res.56, 293–305 (1998). ArticleCASPubMed Google Scholar
Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science287, 1834–1837 (2000). ArticleCASPubMed Google Scholar
Petit, J. M., Tobler, I., Allaman, I., Borbely, A. A. & Magistretti, P. J. Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur. J. Neurosci.16, 1163–1167 (2002). ArticlePubMed Google Scholar
Rhyner, T. A., Borbely, A. A. & Mallet, J. Molecular cloning of forebrain mRNAs which are modulated by sleep deprivation. Eur. J. Neurosci.2, 1063–1073 (1990). Pioneer study that used subtractive cDNA cloning to identify rat forebrain transcripts affected by sleep deprivation. ArticlePubMed Google Scholar
Everson, C. A., Smith, C. B. & Sokoloff, L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J. Neurosci.14, 6769–6778 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wu, J. C. et al. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Sleep14, 155–162 (1991). CASPubMed Google Scholar
Cortelli, P. et al. Cerebral metabolism in fatal familial insomnia: relation to duration, neuropathology, and distribution of protease-resistant prion protein. Neurology49, 126–133 (1997). ArticleCASPubMed Google Scholar
Naidoo, N., Giang, W., Galante, R. J. & Pack, A. I. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J. Neurochem.92, 1150–1157 (2005). ArticleCASPubMed Google Scholar
Cirelli, C., Shaw, P. J., Rechtschaffen, A. & Tononi, G. No evidence of brain cell degeneration after long-term sleep deprivation in rats. Brain Res.840, 184–193 (1999). ArticleCASPubMed Google Scholar
Gopalakrishnan, A., Ji, L. L. & Cirelli, C. Sleep deprivation and cellular responses to oxidative stress. Sleep27, 27–35 (2004). ArticlePubMed Google Scholar
Shaw, P. J., Tononi, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature417, 287–291 (2002). ArticleCASPubMed Google Scholar
Hendricks, J. C. et al. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nature Neurosci.4, 1108–1115 (2001). ArticleCASPubMed Google Scholar
Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nature Neurosci.11, 200–208 (2008). This study showed that the overall synaptic strength in the rat cerebral cortex increases during waking and decreases during sleep. ArticleCASPubMed Google Scholar
Gilestro, G., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and waking in Drosophila. Science324, 109–112 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Donlea, J. M., Ramanan, N. & Shaw, P. J. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science324, 105–108 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Reich, P., Driver, J. K. & Karnovsky, M. L. Sleep: effects on incorporation of inorganic phosphate into brain fractions. Science157, 336–338 (1967). ArticleCASPubMed Google Scholar
Reich, P., Geyer, S. J., Steinbaum, L., Anchors, M. & Karnovsky, M. L. Incorporation of phosphate into rat brain during sleep and wakefulness. J. Neurochem.20, 1195–1205 (1973). ArticleCASPubMed Google Scholar
Voronka, G., Demin, N. N. & Pevzner, L. Z. [Total protein content and quantity of basic proteins in neurons and neuroglia of rat brain supraoptic and red nuclei during natural sleep and deprivation of paradoxical sleep]. Dokl. Akad. Nauk SSSR198, 974–977 (1971). CASPubMed Google Scholar
Drucker-Colin, R. R., Spanis, C. W., Cotman, C. W. & McGaugh, J. L. Changes in protein levels in perfusates of freely moving cats: relation to behavioral state. Science187, 963–965 (1975). ArticleCASPubMed Google Scholar
Ramm, P. & Smith, C. T. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol. Behav.48, 749–753 (1990). ArticleCASPubMed Google Scholar
Nakanishi, H. et al. Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur. J. Neurosci.9, 271–279 (1997). ArticleCASPubMed Google Scholar
Ibata, K., Sun, Q. & Turrigiano, G. G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron57, 819–826 (2008). ArticleCASPubMed Google Scholar
Born, J., Rasch, B. & Gais, S. Sleep to remember. Neuroscientist12, 410–424 (2006). ArticlePubMed Google Scholar
Walker, M. P. & Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol.57, 139–166 (2006). ArticlePubMed Google Scholar
Steriade, M. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci.22, 337–345 (1999). ArticleCASPubMed Google Scholar
Tononi, G. & Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev.10, 49–62 (2006). This review suggested that a major function of sleep is to reduce synaptic strength in large brain areas and discusses how sleep could allow synaptic downscaling. ArticlePubMed Google Scholar
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001). ArticleCASPubMed Google Scholar
Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell120, 421–433 (2005). ArticleCASPubMed Google Scholar
Hering, H., Lin, C. C. & Sheng, M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J. Neurosci.23, 3262–3271 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ganguly-Fitzgerald, I., Donlea, J. & Shaw, P. J. Waking experience affects sleep need in Drosophila. Science313, 1775–1781 (2006). ArticleCASPubMed Google Scholar
Huber, R., Tononi, G. & Cirelli, C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep30, 129–139 (2007). ArticlePubMed Google Scholar
Silber, M. H. et al. The visual scoring of sleep in adults. J. Clin. Sleep Med.3, 121–131 (2007). ArticlePubMed Google Scholar
Pack, A. I. et al. Novel method for high-throughput phenotyping of sleep in mice. Physiol. Genomics28, 232–238 (2007). ArticleCASPubMed Google Scholar
Werth, E., Achermann, P., Dijk, D. J. & Borbely, A. A. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution. Electroencephalogr. Clin. Neurophysiol.103, 535–542 (1997). ArticleCASPubMed Google Scholar
Tan, X., Campbell, I. G., Palagini, L. & Feinberg, I. High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biol. Psychiatry48, 1010–1019 (2000). ArticleCASPubMed Google Scholar
Finelli, L. A., Achermann, P. & Borbély, A. A. Individual 'fingerprints' in human sleep EEG topography. Neuropsychopharmacology25, S57–S62 (2001). ArticleCASPubMed Google Scholar
De Gennaro, L., Ferrara, M., Vecchio, F., Curcio, G. & Bertini, M. An electroencephalographic fingerprint of human sleep. Neuroimage26, 114–122 (2005). ArticlePubMed Google Scholar
Buckelmuller, J., Landolt, H. P., Stassen, H. H. & Achermann, P. Trait-like individual differences in the human sleep electroencephalogram. Neuroscience138, 351–356 (2006). ArticleCASPubMed Google Scholar
Tucker, A. M., Dinges, D. F. & Van Dongen, H. P. Trait interindividual differences in the sleep physiology of healthy young adults. J. Sleep Res.16, 170–180 (2007). ArticlePubMed Google Scholar
van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J. & Boomsma, D. I. Heritability of human brain functioning as assessed by electroencephalography. Am. J. Hum. Genet.58, 562–573 (1996). CASPubMed CentralPubMed Google Scholar
van Beijsterveldt, C. E. & van Baal, G. C. Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol. Psychol.61, 111–138 (2002). ArticleCASPubMed Google Scholar
van Beijsterveldt, C. E., Molenaar, P. C., de Geus, E. J. & Boomsma, D. I. Genetic and environmental influences on EEG coherence. Behav. Genet.28, 443–453 (1998). ArticleCASPubMed Google Scholar
Porjesz, B. et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc. Natl Acad. Sci. USA99, 3729–3733 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tobler, I., Wigger, E., Durr, R. & Hajnal, A. C. elegans: a model organism to investigate the genetics of sleep and sleep homeostasis. J. Sleep Res.13, 1 (2004). Google Scholar
Nitz, D. A., van Swinderen, B., Tononi, G. & Greenspan, R. J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol.12, 1934–1940 (2002). ArticleCASPubMed Google Scholar
Huber, R. et al. Sleep homeostasis in Drosophila melanogaster. Sleep27, 628–639 (2004). ArticlePubMed Google Scholar
Jeon, M., Gardner, H. F., Miller, E. A., Deshler, J. & Rougvie, A. E. Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science286, 1141–1146 (1999). ArticleCASPubMed Google Scholar
Koh, K., Evans, J. M., Hendricks, J. C. & Sehgal, A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc. Natl Acad. Sci. USA103, 13843–13847 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hendricks, J. C., Kirk, D., Panckeri, K., Miller, M. S. & Pack, A. I. Modafinil maintains waking in the fruit fly Drosophila melanogaster. Sleep26, 139–146 (2003). ArticlePubMed Google Scholar
Andretic, R., van Swinderen, B. & Greenspan, R. J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol.15, 1165–1175 (2005). ArticleCASPubMed Google Scholar
Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci.28, 9377–9385 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Kume, K., Kume, S., Park, S. K., Hirsh, J. & Jackson, F. R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci.25, 7377–7384 (2005). ArticleCASPubMedPubMed Central Google Scholar
Agosto, J. et al. Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nature Neurosci.11, 354–359 (2008). ArticleCASPubMed Google Scholar
Graves, L. A. et al. Genetic evidence for a role of CREB in sustained cortical arousal. J. Neurophysiol.23, 23 (2003). Google Scholar
Renier, C. et al. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet. Genomics17, 237–253 (2007). ArticleCASPubMed Google Scholar
Ruuskanen, J. O., Peitsaro, N., Kaslin, J. V., Panula, P. & Scheinin, M. Expression and function of α2 adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J. Neurochem.94, 1559–1569 (2005). ArticleCASPubMed Google Scholar
Van Buskirk, C. & Sternberg, P. W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neurosci.10, 1300–1307 (2007). ArticleCASPubMed Google Scholar
Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science294, 2511–2515 (2001). ArticleCASPubMed Google Scholar
Snodgrass-Belt, P., Gilbert, J. L. & Davis, F. C. Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain Res.1038, 171–182 (2005). ArticleCASPubMed Google Scholar
Kushikata, T., Fang, J., Chen, Z., Wang, Y. & Krueger, J. M. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol.275, R509–R514 (1998). CASPubMed Google Scholar
Foltenyi, K., Greenspan, R. J. & Newport, J. W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neurosci.10, 1160–1167 (2007). ArticleCASPubMed Google Scholar
Morrow, J. D., Vikraman, S., Imeri, L. & Opp, M. R. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/56J and interleukin-6-deficient mice are dose and time related. Sleep31, 21–33 (2008). ArticlePubMed CentralPubMed Google Scholar
Yuan, Q., Joiner, W. J. & Sehgal, A. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol.16, 1051–1062 (2006). ArticleCASPubMed Google Scholar
You, Y. J., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab.7, 249–257 (2008). ArticleCASPubMed CentralPubMed Google Scholar