G domain dimerization controls dynamin's assembly-stimulated GTPase activity (original) (raw)
References
Mettlen, M., Pucadyil, T. J., Ramachandran, R. & Schmid, S. L. Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochem. Soc. Trans.37, 1022–1026 (2009) ArticleCASPubMedPubMed Central Google Scholar
Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004) ArticleCAS Google Scholar
Muhlberg, A. B., Warnock, D. E. & Schmid, S. L. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J.16, 6676–6683 (1997) ArticleCASPubMedPubMed Central Google Scholar
Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999) ArticleCASPubMed Google Scholar
Damke, H., Baba, T., Warnock, D. E. & Schmid, S. L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol.127, 915–934 (1994) ArticleCASPubMed Google Scholar
Damke, H., Binns, D. D., Ueda, H., Schmid, S. L. & Baba, T. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell12, 2578–2589 (2001) ArticleCASPubMedPubMed Central Google Scholar
Song, B. D., Leonard, M. & Schmid, S. L. Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. J. Biol. Chem.279, 40431–40436 (2004) ArticleCASPubMed Google Scholar
Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell135, 1263–1275 (2008) ArticleCASPubMedPubMed Central Google Scholar
Danino, D., Moon, K. H. & Hinshaw, J. E. Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin. J. Struct. Biol.147, 259–267 (2004) ArticleCASPubMed Google Scholar
Ramachandran, R. & Schmid, S. L. Real-time detection reveals that effectors couple dynamin's GTP-dependent conformational changes to the membrane. EMBO J.27, 27–37 (2008) ArticleCASPubMed Google Scholar
Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell135, 1276–1286 (2008) ArticleCASPubMedPubMed Central Google Scholar
Zhang, P. & Hinshaw, J. E. Three-dimensional reconstruction of dynamin in the constricted state. Nature Cell Biol.3, 922–926 (2001) ArticleCASPubMed Google Scholar
Chen, Y. J., Zhang, P., Egelman, E. H. & Hinshaw, J. E. The stalk region of dynamin drives the constriction of dynamin tubes. Nature Struct. Mol. Biol.11, 574–575 (2004) ArticleCAS Google Scholar
Song, B. D., Yarar, D. & Schmid, S. L. An assembly-incompetent mutant establishes a requirement for dynamin self-assembly in clathrin-mediated endocytosis in vivo . Mol. Biol. Cell15, 2243–2252 (2004) ArticleCASPubMedPubMed Central Google Scholar
Ramachandran, R. et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J.26, 559–566 (2007) ArticleCASPubMed Google Scholar
Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature398, 481–486 (1999) ArticleADSCASPubMed Google Scholar
Narayanan, R., Leonard, M., Song, B. D., Schmid, S. L. & Ramaswami, M. An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J. Cell Biol.169, 117–126 (2005) ArticleCASPubMedPubMed Central Google Scholar
Chappie, J. S. et al. An intramolecular signaling element that modulates dynamin function in vitro and in vivo . Mol. Biol. Cell20, 3561–3571 (2009) ArticleCASPubMedPubMed Central Google Scholar
Smirnova, E., Shurland, D. L., Newman-Smith, E. D., Pishvaee, B. & van der Bliek, A. M. A model for dynamin self-assembly based on binding between three different protein domains. J. Biol. Chem.274, 14942–14947 (1999) ArticleCASPubMed Google Scholar
Niemann, H. H., Knetsch, M. L. W., Scherer, A., Manstein, D. J. & Kull, F. J. Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J.20, 5813–5821 (2001) ArticleCASPubMedPubMed Central Google Scholar
Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature349, 117–127 (1991) ArticleADSCASPubMed Google Scholar
Li, G. & Zhang, X. C. GTP hydrolysis mechanism of Ras-like GTPases. J. Mol. Biol.340, 921–932 (2004) ArticleCASPubMed Google Scholar
Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci.23, 257–262 (1998) ArticleCASPubMed Google Scholar
Tesmer, J. J. G., Berman, D. M., Gilman, A. G. & Sprang, S. R. Structure of RGS4 bound to AlF4 --activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell89, 251–261 (1997) ArticleCASPubMed Google Scholar
Gasper, R., Meyer, S., Gotthardt, K., Sirajuddin, M. & Wittinghofer, A. It takes two to tango: regulation of G proteins by dimerization. Nature Rev. Mol. Cell Biol.10, 423–429 (2009) ArticleCAS Google Scholar
Scrima, A. & Wittinghofer, A. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. EMBO J.25, 2940–2951 (2006) ArticleCASPubMedPubMed Central Google Scholar
Ghosh, A., Praefcke, G. J., Renault, L., Wittinghofer, A. & Herrmann, C. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP. Nature440, 101–104 (2006) ArticleADSCASPubMed Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001) ArticleADSCASPubMed Google Scholar
Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol.7, e57 (2009) ArticlePubMedCAS Google Scholar
Ferguson, S. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell17, 811–822 (2009) ArticleCASPubMedPubMed Central Google Scholar
Low, H. H., Sachse, C., Amos, L. A. & Lowe, J. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell139, 1342–1352 (2009) ArticlePubMedPubMed Central Google Scholar
Solomaha, E. & Palfrey, H. C. Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem. J.391, 601–611 (2005) ArticleCASPubMedPubMed Central Google Scholar
Carr, J. F. & Hinshaw, J. E. Dynamin assembles into spirals under physiological salt conditions upon the addition of GDP and gamma-phosphate analogues. J. Biol. Chem.272, 28030–28035 (1997) ArticleCASPubMed Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995) ArticleADSCASPubMed Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998) ArticleCASPubMed Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006) ArticleADSCASPubMed Google Scholar
Leonard, M., Song, B. D., Ramachandran, R. & Schimd, S. L. Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol.404, 490–503 (2005) ArticleCASPubMed Google Scholar
Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol.229, 105–124 (1993) ArticleCASPubMed Google Scholar
Diederichs, K., McSweeney, S. & Ravelli, R. B. G. Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr. D59, 903–909 (2003) ArticlePubMedCAS Google Scholar
Kabsch, W. in International Tables for Crystallography Vol. F, Crystallography of Biological Macromolecules (eds Rossmann, M. G. & Arnold, E.) Ch. 11.3 (Kluwer Academic, 2001) Google Scholar
Terwillinger, T. C. MAD phasing: treatment of dispersive differences as isomorphous replacement information. Acta Crystallogr. D50, 17–23 (1994) Article Google Scholar
Bruker-AXS data preparation and reciprocal space exploration, 6.12, Unix version. (Bruker, 2001)
Sheldrick, G. M. in Direct Methods for Solving Macromolecular Structures (ed. Fortier, S.) 401–411 (Kluwer Academic, 1998) Book Google Scholar
de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol.276, 472–494 (1997) ArticleCASPubMed Google Scholar
CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994)
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991) ArticlePubMed Google Scholar
Brünger, A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998) ArticlePubMed Google Scholar
Navaza, J. Implementation of molecular replacement in AMoRe. Acta Crystallogr. D57, 1367–1372 (2001) ArticleCASPubMed Google Scholar
DeLano, W. L. The PyMol Molecular Graphics System. (Pymol, 2002); 〈http://www.pymol.org〉.
Leonard, M., Song, B. D., Ramachandran, R. & Schmid, S. L. Robust colorimetric assays for dynamin's basal and stimulated GTPase activities. Methods Enzymol.404, 490–503 (2005) ArticleCASPubMed Google Scholar