The microbiome and innate immunity (original) (raw)
Thaiss, C. A., Levy, M., Itav, S. & Elinav, E. Integration of innate immune signaling. Trends Immunol.37, 84–101 (2016). ArticleCASPubMed Google Scholar
Shibolet, O. & Podolsky, D. K. TLRs in the gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis: addition by subtraction. Am. J. Physiol. Gastrointest. Liver Physiol.292, G1469–G1473 (2007). ArticleCASPubMed Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). Refs 4 and 5 highlight the importance of innate-immune-system recognition of the microbiota for host–microbiota homeostasis. ArticleCASPubMed Google Scholar
Pfeiffer, J. K. & Virgin, H. W. Transkingdom control of viral infection and immunity in the mammalian intestine. Science351, aad5872 (2016). ArticlePubMedCAS Google Scholar
Underhill, D. M. & Pearlman, E. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity43, 845–858 (2015). ArticleCASPubMedPubMed Central Google Scholar
Thaiss, C. A., Levy, M., Suez, J. & Elinav, E. The interplay between the innate immune system and the microbiota. Curr. Opin. Immunol.26, 41–48 (2014). ArticleCASPubMed Google Scholar
Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature446, 557–561 (2007). ArticleADSCASPubMed Google Scholar
Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science334, 255–258 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Vlantis, K. et al. TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice. Guthttp://dx.doi.org/10.1136/gutjnl-2014-308323 (2015).
Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature513, 95–99 (2014). ArticleADSCASPubMed Google Scholar
Welz, P.-S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature477, 330–334 (2011). ArticleADSCASPubMed Google Scholar
Couturier-Maillard, A. et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Invest.123, 700–711 (2013). CASPubMedPubMed Central Google Scholar
Nigro, G., Rossi, R., Commere, P. H., Jay, P. & Sansonetti, P. J. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe15, 792–798 (2014). ArticleCASPubMed Google Scholar
Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity41, 311–324 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). ArticleADSCASPubMed Google Scholar
Nordlander, S., Pott, J. & Maloy, K. J. NLRC4 expression in intestinal epithelial cells mediates protection against an enteric pathogen. Mucosal Immunol.7, 775–785 (2014). ArticleCASPubMed Google Scholar
Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe16, 237–248 (2014). ArticleCASPubMed Google Scholar
Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl Acad. Sci. USA107, 21635–21640 (2010). ArticleADSPubMedPubMed Central Google Scholar
Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell163, 1428–1443 (2015). Refs 25–29 demonstrate the role of epithelial NLRP6 in orchestrating antimicrobial peptide production, mucus secretion and viral recognition. ArticleCASPubMedPubMed Central Google Scholar
Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host–microbial interface by regulating goblet cell mucus secretion. Cell156, 1045–1059 (2014). ArticleCASPubMedPubMed Central Google Scholar
Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl Acad. Sci. USA108, 9601–9606 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Commun.6, 6734 (2015). ArticleADSCAS Google Scholar
Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity40, 128–139 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hu, S. et al. The DNA sensor AIM2 maintains intestinal homeostasis via regulation of epithelial antimicrobial host defense. Cell Rep.13, 1922–1936 (2015). ArticleCASPubMedPubMed Central Google Scholar
Song-Zhao, G. X. et al. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal Immunol.7, 763–774 (2014). ArticleCASPubMed Google Scholar
Kelly, C. J. et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe17, 662–671 (2015). ArticleCASPubMedPubMed Central Google Scholar
Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity41, 296–310 (2014). ArticleCASPubMedPubMed Central Google Scholar
Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep.9, 1202–1208, (2014). ArticleCASPubMedPubMed Central Google Scholar
Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell153, 812–827 (2013). ArticleCASPubMed Google Scholar
Thaiss, C. A. & Elinav, E. Exploring new horizons in microbiome research. CellHost Microbe15, 662–667 (2014). ArticleCAS Google Scholar
Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab.20, 1006–1017 (2014). ArticleCASPubMedPubMed Central Google Scholar
Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol.193, 5273–5283 (2014). ArticleCASPubMed Google Scholar
Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Med.20, 159–166 (2014). ArticleCASPubMed Google Scholar
Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nature Med.20, 524–530 (2014). ArticleCASPubMed Google Scholar
Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science351, 1296–1302 (2016). ArticleADSCASPubMed Google Scholar
Hill, D. A. et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Med.18, 538–546 (2012). ArticleCASPubMed Google Scholar
Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neurosci.18, 965–977 (2015). ArticleCASPubMed Google Scholar
Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity39, 925–938 (2013). ArticleCASPubMed Google Scholar
Kim, Y. G. et al. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe15, 95–102 (2014). ArticleCASPubMedPubMed Central Google Scholar
Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA111, 2247–2252 (2014). ArticleADSCASPubMedPubMed Central Google Scholar
Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunol.15, 929–937 (2014). ArticleCAS Google Scholar
Muller, P. A. et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell158, 300–313 (2014); erratum 158, 1210 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ganal, S. C. et al. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity37, 171–186 (2012). ArticleCASPubMed Google Scholar
Schwab, L. et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nature Med.20, 648–654 (2014). ArticleCASPubMed Google Scholar
Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity41, 478–492 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science330, 665–669 (2010). ArticleADSCASPubMed Google Scholar
Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol.10, 83–91 (2009). ArticleADSCAS Google Scholar
Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity29, 958–970 (2008). ArticleCASPubMed Google Scholar
Sawa, S. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunol.12, 320–326 (2011). ArticleADSCAS Google Scholar
Sonnenberg, G. F. et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science336, 1321–1325 (2012). Refs 63–65 demonstrate a role for innate lymphoid cells in the local containment of the microbiota and in regulating T-cell responses to the microbiota. ArticleADSCASPubMedPubMed Central Google Scholar
Hepworth, M. R. et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science348, 1031–1035 (2015). ArticleADSCASPubMedPubMed Central Google Scholar
Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science343, 1249288 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Kinnebrew, M. A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity36, 276–287 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science342, 1243–1246 (2013). ArticleADSCASPubMed Google Scholar
Sonnenberg, G. F. & Artis, D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity37, 601–610 (2012). ArticleCASPubMedPubMed Central Google Scholar
von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature529, 221–225 (2016). ArticleADSCASPubMed Google Scholar
Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity37, 674–684 (2012). ArticleCASPubMedPubMed Central Google Scholar
Levy, M., Thaiss, C. A. & Elinav, E. Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Med.7, 120 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl Acad. Sci. USA106, 15813–15818 (2009). ArticleADSCASPubMedPubMed Central Google Scholar
Kamdar, K. et al. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe19, 21–31 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med.209, 1445–1456 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science291, 881–884 (2001). This study provided initial insight into the effects of commensal bacteria on genome-wide transcriptional reprogramming. ArticleADSCASPubMed Google Scholar
Rakoff-Nahoum, S. et al. Analysis of gene-environment interactions in postnatal development of the mammalian intestine. Proc. Natl Acad. Sci. USA112, 1929–1936 (2015). ArticleADSCASPubMedPubMed Central Google Scholar
Sommer, F., Nookaew, I., Sommer, N., Fogelstrand, P. & Backhed, F. Site-specific programming of the host epithelial transcriptome by the gut microbiota. Genome Biol.16, 62 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe17, 681–689 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell127, 423–433 (2006). ArticleCASPubMedPubMed Central Google Scholar
Patrick, S. et al. A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract. Microbiology157, 3071–3078 (2011). ArticleCASPubMedPubMed Central Google Scholar
Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science289, 1560–1563 (2000). ArticleADSCASPubMed Google Scholar
Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J.26, 4457–4466 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol.5, 104–112 (2004). ArticleCAS Google Scholar
Zhang, Q. et al. Commensal bacteria direct selective cargo sorting to promote symbiosis. Nature Immunol.16, 918–926 (2015). ArticleCAS Google Scholar
Camp, J. G. et al. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Res.24, 1504–1516 (2014). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J. Biol. Chem.286, 35755–35762 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, G. Y., Liu, M., Wang, F., Bertin, J. & Nunez, G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol.186, 7187–7194 (2011). ArticleCASPubMed Google Scholar
Jiang, W. et al. Recognition of gut microbiota by NOD2 is essential for the homeostasis of intestinal intraepithelial lymphocytes. J. Exp. Med.210, 2465–2476 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleADSCASPubMed Google Scholar
Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nature Immunol.13, 449–456 (2012). ArticleCAS Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303, 1662–1665 (2004). This seminal study defined the lymph-node-restricted 'firewall' circuits that control the local containment of the microbiota. ArticleADSCASPubMed Google Scholar
Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell163, 381–393 (2015). ArticleCASPubMedPubMed Central Google Scholar
Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med.6, 237ra66 (2014). ArticlePubMedCAS Google Scholar
Zeissig, S. & Blumberg, R. S. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nature Immunol.15, 307–310 (2014). ArticleCAS Google Scholar
Luo, Y. et al. Microbiota from obese mice regulate hematopoietic stem cell differentiation by altering the bone niche. Cell Metab.22, 886–894 (2015). ArticleCASPubMed Google Scholar
Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA108, 5354–5359 (2011). ArticleADSCASPubMedPubMed Central Google Scholar
Nice, T. J. et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science347, 269–273 (2015). ArticleADSCASPubMed Google Scholar
Hernández, P. P. et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nature Immunol.16, 698–707 (2015). ArticleCAS Google Scholar
Baldridge, M. T. et al. Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science347, 266–269 (2015). ArticleADSCASPubMed Google Scholar
Guo, X. et al. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity42, 731–743 (2015). ArticleCASPubMedPubMed Central Google Scholar
Behnsen, J. et al. The cytokine IL-22 promotes pathogen colonization by suppressing related commensal bacteria. Immunity40, 262–273 (2014). ArticleCASPubMedPubMed Central Google Scholar
Maekawa, T. et al. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe15, 768–778 (2014). ArticleCASPubMedPubMed Central Google Scholar
Carvalho, F. A. et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe12, 139–152 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). ArticleADSCASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). ArticleADSCASPubMed Google Scholar
Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet.39, 207–211 (2007). ArticleCASPubMed Google Scholar
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet.39, 596–604 (2007). ArticleCASPubMed Google Scholar
Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science336, 1314–1317 (2012). ArticleADSCASPubMedPubMed Central Google Scholar
Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe17, 260–273 (2015). ArticleCASPubMedPubMed Central Google Scholar
Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife2, e01202 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Ji, Y. et al. Diet-induced alterations in gut microflora contribute to lethal pulmonary damage in TLR2/TLR4-deficient mice. Cell Rep.8, 137–149 (2014). ArticleCASPubMedPubMed Central Google Scholar
Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nature Rev. Immunol.11, 98–107 (2011). ArticleCAS Google Scholar
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature444, 1027–1031 (2006). One of the first studies to link dysbiosis to disease. ArticleADSPubMed Google Scholar
Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature514, 237–241 (2014). ArticleADSCASPubMed Google Scholar
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature500, 541–546 (2013). ArticleCASPubMed Google Scholar
Rune, I. et al. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice. PLoS ONE11, e0146439 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA108 (suppl.), 4592–4598 (2011). ArticleADSCASPubMed Google Scholar
Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med.19, 576–585 (2013). Refs 139–141 explore the causative involvement of specific bacterial metabolites in metabolic disease. ArticleADSCASPubMed Google Scholar
Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell163, 1585–1595 (2015). ArticleCASPubMedPubMed Central Google Scholar
Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab.17, 873–882 (2013). ArticleCASPubMed Google Scholar
Irrazábal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell54, 309–320 (2014). ArticlePubMedCAS Google Scholar
Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature491, 254–258 (2012). ArticleADSCASPubMedPubMed Central Google Scholar
Ahern, P. P., Faith, J. J. & Gordon, J. I. Mining the human gut microbiota for effector strains that shape the immune system. Immunity40, 815–823 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zmora, N., Zeevi, D., Korem, T., Segal, E. & Elinav, E. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe19, 12–20 (2016). ArticleCASPubMed Google Scholar