Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer (original) (raw)
Shi, Y. & Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell113, 685–700 (2003). ArticleCASPubMed Google Scholar
Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. & Wrana, J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell95, 779–791 (1998). ArticleCASPubMed Google Scholar
Xu, L., Kang, Y., Col, S. & Massagué, J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol. Cell10, 271–282 (2002). ArticleCASPubMed Google Scholar
Xiao, Z., Liu, X., Henis, Y. I. & Lodish, H. F. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl Acad. Sci. USA97, 7853–7858 (2000). ArticleCASPubMedPubMed Central Google Scholar
Wu, J. W., Fairman, R., Penry, J. & Shi, Y. Formation of a stable heterodimer between Smad2 and Smad4. J. Biol. Chem.276, 20688–20694 (2001). ArticleCASPubMed Google Scholar
Wu, J. W. et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell8, 1277–1289 (2001). ArticleCASPubMed Google Scholar
Inman, G. J. & Hill, C. S. Stoichiometry of active smad-transcription factor complexes on DNA. J. Biol. Chem.277, 51008–51016 (2002). ArticleCASPubMed Google Scholar
Chen, X., Rubock, M. J. & Whitman, M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature383, 691–696 (1996). ArticleCASPubMed Google Scholar
Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell100, 229–240 (2000). ArticleCASPubMed Google Scholar
Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc. Natl Acad. Sci. USA98, 6686–6691 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kang, Y., Chen, C. R. & Massagué, J. A self-enabling TGFβ response coupled to stress signaling. Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell11, 915–926 (2003). ArticleCASPubMed Google Scholar
Chen, C. R., Kang, Y., Siegel, P. M. & Massagué, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell110, 19–32 (2002). Identifies a preformed cytoplasmic complex — containing E2F4/5, p107 and SMAD3 — that mediates the rapid downregulation of c-MYC and functions upstream of CDK activity and independently of cell-cycle arrest. ArticleCASPubMed Google Scholar
Ten Dijke, P., Goumans, M. J., Itoh, F. & Itoh, S. Regulation of cell proliferation by Smad proteins. J. Cell Physiol.191, 1–16 (2002). ArticleCASPubMed Google Scholar
Inman, G. J., Nicolas, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell10, 283–294 (2002). This study demonstrates that activated SMAD proteins undergo rapid dephosphorylation and TGF-β-receptor-mediated rephosphorylation, and reveals a mechanism that determines the duration of the TGF-β signal. ArticleCASPubMed Google Scholar
Ebisawa, T. et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem.276, 12477–12480 (2001). ArticleCASPubMed Google Scholar
Tajima, Y. et al. Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-β signaling by Smad7. J. Biol. Chem.278, 10716–10721 (2003). ArticleCASPubMed Google Scholar
Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F. & Wrana, J. L. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biol.5, 410–421 (2003). ArticleCASPubMed Google Scholar
Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature400, 687–693 (1999). ArticleCASPubMed Google Scholar
Lo, R. S. & Massagué, J. Ubiquitin-dependent degradation of TGF-β-activated smad2. Nature Cell Biol.1, 472–478 (1999). ArticleCASPubMed Google Scholar
Engel, M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J. Biol. Chem.274, 37413–37420 (1999). ArticleCASPubMed Google Scholar
Hocevar, B. A., Brown, T. L. & Howe, P. H. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J.18, 1345–1356 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yu, L., Hebert, M. C. & Zhang, Y. E. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J.21, 3749–3759 (2002). ArticleCASPubMedPubMed Central Google Scholar
Itoh, S. et al. Elucidation of Smad requirement in transforming growth factor-β type I receptor-induced responses. J. Biol. Chem.278, 3751–3761 (2003). ArticleCASPubMed Google Scholar
Yamaguchi, K. et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science270, 2008–2011 (1995). ArticleCASPubMed Google Scholar
Bhowmick, N. A. et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell12, 27–36 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takekawa, M. et al. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J.21, 6473–6482 (2002). ArticleCASPubMedPubMed Central Google Scholar
Petritsch, C., Beug, H., Balmain, A. & Oft, M. TGF-β inhibits p70 S6 kinase via protein phosphatase 2A to induce G1 arrest. Genes Dev.14, 3093–3101 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kretzschmar, M., Doody, J. & Massagué, J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature389, 618–622 (1997). ArticleCASPubMed Google Scholar
Kretzschmar, M., Doody, J., Timokhina, I. & Massagué, J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev.13, 804–816 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lehmann, K. et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev.14, 2610–2622 (2000). ArticleCASPubMedPubMed Central Google Scholar
Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol.156, 299–313 (2002). ArticleCASPubMedPubMed Central Google Scholar
Saha, D., Datta, P. K. & Beauchamp, R. D. Oncogenic ras represses transforming growth factor-β/Smad signaling by degrading tumor suppressor Smad4. J. Biol. Chem.276, 29531–29537 (2001). ArticleCASPubMed Google Scholar
Foletta, V. C. et al. Direct signaling by the BMP Type II Receptor via the cytoskeletal regulator LIMK1. J. Cell Biol.16, 1089–1098 (2003). ArticleCAS Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA90, 770–774 (1993). ArticleCASPubMedPubMed Central Google Scholar
Cui, W. et al. Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev.9, 945–955 (1995). ArticleCASPubMed Google Scholar
Wang, X. J., Liefer, K. M., Tsai, S., O'Malley, B. W. & Roop, D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor β1 in the epidermis. Proc. Natl Acad. Sci. USA96, 8483–8488 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liu, X. et al. Conditional epidermal expression of TGFβ 1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia. Proc. Natl Acad. Sci. USA98, 9139–9144 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. J. Role of TGFβ signaling in skin carcinogenesis. Microsc. Res. Tech.52, 420–429 (2001). ArticlePubMed Google Scholar
Dickson, M. C. et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-β 1 knock out mice. Development121, 1845–1854 (1995). CASPubMed Google Scholar
Oshima, M., Oshima, H. & Taketo, M. M. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol.179, 297–302 (1996). ArticleCASPubMed Google Scholar
Larsson, J. et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J.20, 1663–1673 (2001). ArticleCASPubMedPubMed Central Google Scholar
Roberts, A. B. et al. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl Acad. Sci. USA83, 4167–4171 (1986). ArticleCASPubMedPubMed Central Google Scholar
Yang, E. Y. & Moses, H. L. Transforming growth factor β 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol.111, 731–741 (1990). ArticleCASPubMed Google Scholar
Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA97, 2626–2631 (2000). ArticleCASPubMedPubMed Central Google Scholar
Goumans, M. J. et al. Balancing the activation state of the endothelium via two distinct TGF-β type I receptors. EMBO J.21, 1743–1753 (2002). Demonstrates that activation of ALK1 in endothelial cells can promote their proliferation and invasiveness, whereas ALK5 activation in the same cells reduces proliferation and invasiveness. These results might provide a basis for explaining the contradictory effects of TGF-β on endothelial cells that have been reported in the literature. ArticleCASPubMedPubMed Central Google Scholar
Diebold, R. J. et al. Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc. Natl Acad. Sci. USA92, 12215–12219 (1995). ArticleCASPubMedPubMed Central Google Scholar
Letterio, J. J. et al. Autoimmunity associated with TGF-β1-deficiency in mice is dependent on MHC class II antigen expression. J. Clin. Invest.98, 2109–2119 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, S. et al. β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse. J. Immunol.163, 4013–4019 (1999). CASPubMed Google Scholar
Brabletz, T. et al. Transforming growth factor β and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol. Cell Biol.13, 1155–1162 (1993). ArticleCASPubMedPubMed Central Google Scholar
Sillett, H. K., Cruickshank, S. M., Southgate, J. & Trejdosiewicz, L. K. Transforming growth factor-β promotes 'death by neglect' in post-activated human T cells. Immunology102, 310–316 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gorelik, L. & Flavell, R. A. Transforming growth factor-β in T-cell biology. Nature Rev. Immunol.2, 46–53 (2002). ArticleCAS Google Scholar
Tzachanis, D. et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nature Immunol.2, 1174–1182 (2001). ArticleCAS Google Scholar
Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell62, 175–185 (1990). ArticleCASPubMed Google Scholar
Blain, S. W., Montalvo, E. & Massague, J. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J. Biol. Chem.272, 25863–25872 (1997). ArticleCASPubMed Google Scholar
Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA92, 5545–5549 (1995). ArticleCASPubMedPubMed Central Google Scholar
Reynisdottir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev.9, 1831–1845 (1995). ArticleCASPubMed Google Scholar
Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature371, 257–261 (1994). ArticleCASPubMed Google Scholar
Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol.3, 392–399 (2001). ArticleCASPubMed Google Scholar
Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol.3, 400–408 (2001). References 60 and 61 identify a role for MIZ1 and c–MYC in the repression of INK4B expression. ArticleCASPubMed Google Scholar
Seoane, J., Le, H. V. & Massagué, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature419, 729–734 (2002). ArticleCASPubMed Google Scholar
Feng, X. H., Lin, X. & Derynck, R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15Ink4B transcription in response to TGF-β. EMBO J.19, 5178–5193 (2000). ArticleCASPubMedPubMed Central Google Scholar
Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell78, 59–66 (1994). ArticleCASPubMed Google Scholar
Reynisdottir, I. & Massagué, J. The subcellular locations of p15Ink4b and p27Kip1 coordinate their inhibitory interactions with cdk4 and cdk2. Genes Dev.11, 492–503 (1997). ArticleCASPubMed Google Scholar
Alexandrow, M. G. & Moses, H. L. Transforming growth factor β and cell cycle regulation. Cancer Res.55, 1452–1457 (1995). CASPubMed Google Scholar
Norton, J. D. ID helix–loop–helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci.113, 3897–3905 (2000). CASPubMed Google Scholar
Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature407, 592–598 (2000). ArticleCASPubMed Google Scholar
Siegel, P. M., Shu, W. & Massague, J. Mad upregulation and Id2 repression accompany TGF-β mediated epithelial cell growth suppression. J. Biol. Chem.278, 35444–35450.
Tachibana, I. et al. Overexpression of the TGFβ-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J. Clin. Invest.99, 2365–2374 (1997). ArticleCASPubMedPubMed Central Google Scholar
Jang, C. W. et al. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nature Cell Biol.4, 51–58 (2002). ArticleCASPubMed Google Scholar
Valderrama-Carvajal, H. et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nature Cell Biol.4, 963–969 (2002). References 70–72 are among the first to identify TGF-β-responsive genes that contribute to TGF-β-induced apoptosis. ArticleCASPubMed Google Scholar
Huang, Y. et al. Transforming growth factor-β1 suppresses serum deprivation-induced death of A549 cells through differential effects on c-Jun and JNK activities. J. Biol. Chem.275, 18234–18242 (2000). ArticleCASPubMed Google Scholar
Shin, I., Bakin, A. V., Rodeck, U., Brunet, A. & Arteaga, C. L. Transforming growth factor β enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol. Biol. Cell12, 3328–3339 (2001). ArticleCASPubMedPubMed Central Google Scholar
Larisch, S. et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biol.2, 915–921 (2000). ArticleCASPubMed Google Scholar
Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F. & Weinberg, R. A. TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nature Cell Biol.3, 708–714 (2001). ArticleCASPubMed Google Scholar
Schuster, N. & Krieglstein, K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res.307, 1–14 (2002). ArticleCASPubMed Google Scholar
Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet.29, 117–129 (2001). ArticleCASPubMed Google Scholar
Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell103, 295–309 (2000). ArticlePubMed Google Scholar
Wakefield, L. M. & Roberts, A. B. TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev.12, 22–29 (2002). ArticleCASPubMed Google Scholar
Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science268, 1336–1338 (1995). ArticleCASPubMed Google Scholar
Lu, S. L., Zhang, W. C., Akiyama, Y., Nomizu, T. & Yuasa, Y. Genomic structure of the transforming growth factor β type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res.56, 4595–4598 (1996). CASPubMed Google Scholar
Myeroff, L. L. et al. A transforming growth factor β receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res.55, 5545–5547 (1995). CASPubMed Google Scholar
Izumoto, S. et al. Microsatellite instability and mutated type II transforming growth factor-β receptor gene in gliomas. Cancer Lett.112, 251–256 (1997). ArticleCASPubMed Google Scholar
Tomita, S. et al. Analyses of microsatellite instability and the transforming growth factor-β receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res. Treat.53, 33–39 (1999). ArticleCASPubMed Google Scholar
Furuta, K. et al. Gene mutation of transforming growth factor β1 type II receptor in hepatocellular carcinoma. Int. J. Cancer81, 851–853 (1999). ArticleCASPubMed Google Scholar
Grady, W. M. et al. Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Res.59, 320–324 (1999). CASPubMed Google Scholar
Wang, D. et al. Analysis of specific gene mutations in the transforming growth factor-β signal transduction pathway in human ovarian cancer. Cancer Res.60, 4507–4512 (2000). CASPubMed Google Scholar
Chen, T., Carter, D., Garrigue-Antar, L. & Reiss, M. Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res.58, 4805–4810 (1998). CASPubMed Google Scholar
Goggins, M. et al. Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res.58, 5329–5332 (1998). CASPubMed Google Scholar
Schiemann, W. P., Pfeifer, W. M., Levi, E., Kadin, M. E. & Lodish, H. F. A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood94, 2854–2861 (1999). CASPubMed Google Scholar
Pasche, B. et al. TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res.59, 5678–5682 (1999). CASPubMed Google Scholar
Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell86, 531–542 (1996). One of the first demonstrations that TGF-β can exert tumour-suppressive as well as tumour-promoting effects, using a transgenic model of skin carcinogenesis. ArticleCASPubMed Google Scholar
Pierce, D. F., Jr. et al. Mammary tumor suppression by transforming growth factor β 1 transgene expression. Proc. Natl Acad. Sci. USA92, 4254–4258 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gorska, A. E., Joseph, H., Derynck, R., Moses, H. L. & Serra, R. Dominant-negative interference of the transforming growth factor β type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ.9, 229–238 (1998). CASPubMed Google Scholar
Bottinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K. & Wakefield, L. M. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[_a_]-anthracene. Cancer Res.57, 5564–5570 (1997). CASPubMed Google Scholar
Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J. & Massague, J. Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc. Natl Acad. Sci. USA100, 8430–8435 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science271, 350–353 (1996). ArticleCASPubMed Google Scholar
Schutte, M. et al. DPC4 gene in various tumor types. Cancer Res.56, 2527–2530 (1996). CASPubMed Google Scholar
Miyaki, M. et al. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene18, 3098–3103 (1999). ArticleCASPubMed Google Scholar
Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science280, 1086–1088 (1998). ArticleCASPubMed Google Scholar
Woodford-Richens, K. et al. Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res.60, 2477–2482 (2000). CASPubMed Google Scholar
Takaku, K. et al. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res.59, 6113–6117 (1999). CASPubMed Google Scholar
Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene19, 1868–1874 (2000). ArticleCASPubMed Google Scholar
Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell92, 645–656 (1998). ArticleCASPubMed Google Scholar
Hohenstein, P. et al. Serrated adenomas and mixed polyposis caused by a splice acceptor deletion in the mouse Smad4 gene. Genes Chromosom. Cancer36, 273–282 (2003). ArticleCASPubMed Google Scholar
Uchida, K. et al. Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res.56, 5583–5585 (1996). CASPubMed Google Scholar
Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell86, 543–552 (1996). ArticleCASPubMed Google Scholar
Hamamoto, T. et al. Compound disruption of smad2 accelerates malignant progression of intestinal tumors in apc knockout mice. Cancer Res.62, 5955–5961 (2002). CASPubMed Google Scholar
Zhu, Y., Richardson, J. A., Parada, L. F. & Graff, J. M. Smad3 mutant mice develop metastatic colorectal cancer. Cell94, 703–714 (1998). ArticleCASPubMed Google Scholar
Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J.18, 1280–1291 (1999). ArticleCASPubMedPubMed Central Google Scholar
Datto, M. B. et al. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol. Cell Biol.19, 2495–2504 (1999). ArticleCASPubMedPubMed Central Google Scholar
Factor, V. M. et al. Constitutive expression of mature transforming growth factor β1 in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res.57, 2089–2095 (1997). CASPubMed Google Scholar
Bandyopadhyay, A. et al. A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res.59, 5041–5046 (1999). CASPubMed Google Scholar
Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest.109, 1551–1559 (2002). Describes the use of a soluble inhibitor that binds and neutralizes TGF-β to impair mammary tumour metastasis without accelerating mammary tumorigenesis in transgenic mice. ArticleCASPubMedPubMed Central Google Scholar
Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest.109, 1607–1615 (2002). An inhibitor similar to that used in reference 115 was expressed as a transgene in the mammary glands of transgenic mice. Mammary tumorigenesis was not affected by expression of the inhibitor in an ErbB2 transgenic tumour model, but the ability of tumour cells to metastasize to the lungs was reduced. Interestingly, no evidence of inflammatory side effects was observed from the systemic distribution of the Tgf-β inhibitor. ArticleCASPubMedPubMed Central Google Scholar
Oft, M., Heider, K. H. & Beug, H. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol.8, 1243–1252 (1998). ArticleCASPubMed Google Scholar
Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest.103, 197–206 (1999). ArticleCASPubMedPubMed Central Google Scholar
Torre-Amione, G. et al. A highly immunogenic tumor transfected with a murine transforming growth factor type β 1 cDNA escapes immune surveillance. Proc. Natl Acad. Sci. USA87, 1486–1490 (1990). ArticleCASPubMedPubMed Central Google Scholar
Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med.7, 1118–1122 (2001). Demonstrates that activation of the TGF-β pathway in T cells by tumour-derived TGF-β compromises T-cell-mediated antitumour immunity. A dominant-negative TGF-β type II receptor, when expressed in T cells, allowed for the rapid and complete clearance of injected tumour cells. ArticleCASPubMed Google Scholar
Geissmann, F. et al. TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol.162, 4567–4575 (1999). CASPubMed Google Scholar
Geiser, A. G. et al. Transforming growth factor β 1 (TGF-β 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-β 1 null mouse phenotype. Proc. Natl Acad. Sci. USA90, 9944–9948 (1993). ArticleCASPubMedPubMed Central Google Scholar
Dong, Y., Tang, L., Letterio, J. J. & Benveniste, E. N. The Smad3 protein is involved in TGF-β inhibition of class II transactivator and class II MHC expression. J. Immunol.167, 311–319 (2001). ArticleCASPubMed Google Scholar
Wallick, S. C., Figari, I. S., Morris, R. E., Levinson, A. D. & Palladino, M. A. Immunoregulatory role of transforming growth factor β (TGF-β) in development of killer cells: comparison of active and latent TGF-β 1. J. Exp. Med.172, 1777–1784 (1990). ArticleCASPubMed Google Scholar
Arteaga, C. L. et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J. Clin. Invest.92, 2569–2576 (1993). ArticleCASPubMedPubMed Central Google Scholar
Chen, J. J., Sun, Y. & Nabel, G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science282, 1714–1717 (1998). ArticleCASPubMed Google Scholar
de Jong, J. S., van Diest, P. J., van der Valk, P. & Baak, J. P. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer II: correlations with proliferation and angiogenesis. J. Pathol.184, 53–57 (1998). ArticleCASPubMed Google Scholar
Hasegawa, Y. et al. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer91, 964–971 (2001). ArticleCASPubMed Google Scholar
Stearns, M. E., Garcia, F. U., Fudge, K., Rhim, J. & Wang, M. Role of interleukin 10 and transforming growth factor β1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin. Cancer Res.5, 711–720 (1999). CASPubMed Google Scholar
Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D. & Rowley, D. R. Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res.62, 6021–6025 (2002). CASPubMed Google Scholar
Bandyopadhyay, A. et al. Extracellular domain of TGFβ type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene21, 3541–3551 (2002). ArticleCASPubMed Google Scholar
Pertovaara, L. et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J. Biol. Chem.269, 6271–6274 (1994). CASPubMed Google Scholar
Shimo, T. et al. Involvement of CTGF, a hypertrophic chondrocyte-specific gene product, in tumor angiogenesis. Oncology61, 315–322 (2001). ArticleCASPubMed Google Scholar
Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3, 537–549 (2003). Shows that TGF-β further activates expression of two genes that promote breast cancer metastasis to the bone. ArticleCASPubMed Google Scholar
Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene14, 2475–2483 (1997). ArticleCASPubMed Google Scholar
Boyer, A. S. et al. TGFβ2 and TGFβ3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev. Biol.208, 530–545 (1999). ArticleCASPubMed Google Scholar
Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF-β 3 indicates defects of epithelial-mesenchymal interaction. Nature Genet.11, 415–421 (1995). ArticleCASPubMed Google Scholar
Proetzel, G. et al. Transforming growth factor-β 3 is required for secondary palate fusion. Nature Genet.11, 409–414 (1995). ArticleCASPubMed Google Scholar
Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev.10, 2462–2477 (1996). One of the first demonstrations that TGF-β can cooperate with an activated RAS pathway in mammary tumour cells to induce an epithelial–mesenchymal transition, and enhance tumour-cell invasiveness. ArticleCASPubMed Google Scholar
Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol.127, 2021–2036 (1994). ArticleCASPubMed Google Scholar
Portella, G. et al. Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ.9, 393–404 (1998). CASPubMed Google Scholar
Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nature Cell Biol.4, 487–494 (2002). Using experimental metastasis assays, this study indicates that SMAD signalling, in concert with activated RAS, induces an epithelial–mesenchymal transition in squamous carcinoma cells that facilitates their extravastion into the lungs. ArticleCASPubMed Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Comijn, J. et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell7, 1267–1278 (2001). ArticleCASPubMed Google Scholar
Peinado, H., Quintanilla, M. & Cano, A. Transforming growth factor β 1 induces snail transcription factor in epithelial cell lines. Mechanisms for Epithelial–Mesenchymal transitions. J. Biol. Chem.278, 21113–21123 (2003). ArticleCASPubMed Google Scholar
Savagner, P., Yamada, K. M. & Thiery, J. P. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J. Cell Biol.137, 1403–1419 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hajra, K. M., Chen, D. Y. & Fearon, E. R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res.62, 1613–1618 (2002). CASPubMed Google Scholar
Romano, L. A. & Runyan, R. B. Slug is an essential target of TGFβ2 signaling in the developing chicken heart. Dev. Biol.223, 91–102 (2000). ArticleCASPubMed Google Scholar
Chen, C. R., Kang, Y. & Massagué, J. Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc. Natl Acad. Sci. USA98, 992–999 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dumont, N. & Arteaga, C. L. Targeting the TGFβ signaling network in human neoplasia. Cancer Cell3, 531–536 (2003). ArticleCASPubMed Google Scholar
Laping, N. J. et al. Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Mol. Pharmacol.62, 58–64 (2002). ArticleCASPubMed Google Scholar
Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol.62, 65–74 (2002). ArticleCASPubMed Google Scholar
Pierce, D. F., Jr. et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev.7, 2308–2317 (1993). ArticleCASPubMed Google Scholar
Jhappan, C. et al. Targeting expression of a transforming growth factor β 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J.12, 1835–1845 (1993). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, A. V. & Pollard, J. W. Transforming growth factor β3 induces cell death during the first stage of mammary gland involution. Development127, 3107–3118 (2000). CASPubMed Google Scholar
Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell10, 1221–1234 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. J. et al. Expression of a dominant-negative type II transforming growth factor β (TGF-β) receptor in the epidermis of transgenic mice blocks TGF-β-mediated growth inhibition. Proc. Natl Acad. Sci. USA94, 2386–2391 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ashcroft, G. S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol.1, 260–266 (1999). Demonstrates that SMAD3 functions as a central mediator of TGF-β-induced growth-inhibitory signals in keratinocytes, and that loss of SMAD3 results in greater keratinocyte proliferation and faster healing of incisional wounds. ArticleCASPubMed Google Scholar
Ko, T. C. et al. TGF-β1 effects on proliferation of rat intestinal epithelial cells are due to inhibition of cyclin D1 expression. Oncogene16, 3445–3454 (1998). ArticleCASPubMed Google Scholar
Beck, P. L. et al. Transforming growth factor-β mediates intestinal healing and susceptibility to injury in vitro and in vivo through epithelial cells. Am. J. Pathol.162, 597–608 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. S. et al. Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-β 1. Am. J. Pathol.147, 42–52 (1995). CASPubMedPubMed Central Google Scholar
Bottinger, E. P. et al. Expression of a dominant-negative mutant TGF-β type II receptor in transgenic mice reveals essential roles for TGF-β in regulation of growth and differentiation in the exocrine pancreas. EMBO J.16, 2621–2633 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sanderson, N. et al. Hepatic expression of mature transforming growth factor β 1 in transgenic mice results in multiple tissue lesions. Proc. Natl Acad. Sci. USA92, 2572–2576 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bottinger, E. P. et al. The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc. Natl Acad. Sci. USA93, 5877–5882 (1996). ArticleCASPubMedPubMed Central Google Scholar
Martikainen, P., Kyprianou, N. & Isaacs, J. T. Effect of transforming growth factor-β 1 on proliferation and death of rat prostatic cells. Endocrinology127, 2963–2968 (1990). ArticleCASPubMed Google Scholar
Kundu, S. D. et al. Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)-TGF-β type II dominant negative receptor. Prostate43, 118–124 (2000). ArticleCASPubMed Google Scholar
Choi, M. E. & Ballermann, B. J. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-β receptors. J. Biol. Chem.270, 21144–21150 (1995). ArticleCASPubMed Google Scholar
Hyman, K. M. et al. Transforming growth factor-β1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. Surgery132, 173–179 (2002). ArticlePubMed Google Scholar
Leveen, P. et al. Induced disruption of the transforming growth factor β type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood100, 560–568 (2002). ArticleCASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). Indicates that the inflammatory phenotype previously observed inTgf-β1−/−mice can be accounted for, in large measure, by loss of Tgf-β responsiveness in T cells. ArticleCASPubMed Google Scholar
Lucas, P. J., Kim, S. J., Melby, S. J. & Gress, R. E. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor β II receptor. J. Exp. Med.191, 1187–1196 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakao, A. et al. Blockade of transforming growth factor β/Smad signaling in T cells by overexpression of Smad7 enhances antigen-induced airway inflammation and airway reactivity. J. Exp. Med.192, 151–158 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rich, J. N., Zhang, M., Datto, M. B., Bigner, D. D. & Wang, X. F. Transforming growth factor-β-mediated p15INK4B induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J. Biol. Chem.274, 35053–35058 (1999). ArticleCASPubMed Google Scholar