TGFβ signalling: a complex web in cancer progression (original) (raw)
Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med.342, 1350–1358 (2000). ArticleCASPubMed Google Scholar
Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev.17, 41–58 (2006). ArticleCASPubMed Google Scholar
Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science268, 1336–1338 (1995). ArticleCASPubMed Google Scholar
Bornstein, S. et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J. Clin. Invest.119, 3408–3419 (2009). CASPubMedPubMed Central Google Scholar
Tsushima, H. et al. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology110, 375–382 (1996). ArticleCASPubMed Google Scholar
Wikström, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E. & Bergh, A. Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate37, 19–29 (1998). ArticlePubMed Google Scholar
Walker, R. A. & Dearing, S. J. Transforming growth factor β1 in ductal carcinoma in situ and invasive carcinomas of the breast. Eur. J. Cancer28, 641–644 (1992). ArticleCASPubMed Google Scholar
Friedman, E. et al. High levels of transforming growth factor β1 correlate with disease progression in human colon cancer. Cancer Epidemiol. Biomarkers Prev.4, 549–554 (1995). CASPubMed Google Scholar
Dalal, B. I., Keown, P. A. & Greenberg, A. H. Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am. J. Pathol.143, 381–389 (1993). CASPubMedPubMed Central Google Scholar
Picon, A., Gold, L. I., Wang, J., Cohen, A. & Friedman, E. A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor β1. Cancer Epidemiol. Biomarkers Prev.7, 497–504 (1998). CASPubMed Google Scholar
Bierie, B. & Moses, H. L. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Rev. Cancer6, 506–520 (2006). This Review covers the roles of TGFβ signalling in the tumour microenvironment and discusses the paradoxical effects of this cytokine in tumour progression: tumour promotion compared with tumour suppression. ArticleCASPubMed Google Scholar
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006). ArticleCASPubMed Google Scholar
Heldin, C. H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390, 465–471 (1997). ArticleCASPubMed Google Scholar
Shi, Y. & Massague, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell113, 685–700 (2003). ArticleCASPubMed Google Scholar
Feng, X. H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol.21, 659–693 (2005). ArticleCASPubMed Google Scholar
Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci.116, 217–224 (2003). ArticleCASPubMed Google Scholar
Rifkin, D. B. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J. Biol. Chem.280, 7409–7412 (2005). ArticleCASPubMed Google Scholar
Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell12, 817–828 (2003). ArticleCASPubMed Google Scholar
Daly, A. C., Randall, R. A. & Hill, C. S. Transforming growth factor β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol. Cell. Biol.28, 6889–6902 (2008). ArticleCASPubMedPubMed Central Google Scholar
Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature425, 577–584 (2003). ArticleCASPubMed Google Scholar
Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T. & Miyazono, K. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells7, 1191–1204 (2002). ArticleCASPubMed Google Scholar
Koinuma, D. et al. Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor β signaling. Mol. Cell. Biol.29, 172–186 (2009). ArticleCASPubMed Google Scholar
Koinuma, D. et al. Promoter-wide analysis of Smad4 binding sites in human epithelial cells. Cancer Sci.100, 2133–2142 (2009). ArticleCASPubMed Google Scholar
Lin, X. Chen, Y. G. & Feng, X. H. in The TGF-β Family (eds Derynck, R. & Miyazono, K.) 287–332 (Cold Spring Harbor Laboratory Press, New York, 2008). Google Scholar
Ikushima, H. et al. An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling. EMBO J.27, 2955–2965 (2008). This paper suggests a new mechanism for regulating some of the TGFβ-induced cellular responses. HHM targets some of the Smad-binding transcriptional cofactors and regulates TGFβ signalling in a synexpression group-selective manner. ArticleCASPubMedPubMed Central Google Scholar
Ikushima, H. & Miyazono, K. Cellular context-dependent “colors” of transforming growth factor-β signaling. Cancer Sci.101, 306–312 (2010). ArticleCASPubMed Google Scholar
Janknecht, R., Wells, N. J. & Hunter, T. TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev.12, 2114–2119 (1998). ArticleCASPubMedPubMed Central Google Scholar
Feng, X. H., Zhang, Y., Wu, R. Y. & Derynck, R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev.12, 2153–2163 (1998). ArticleCASPubMedPubMed Central Google Scholar
Chen, C. R., Kang, Y., Siegel, P. M. & Massague, J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell110, 19–32 (2002). ArticleCASPubMed Google Scholar
Datto, M. B. et al. Transforming growth factor β induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl Acad. Sci. USA92, 5545–5549 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature371, 257–261 (1994). ArticleCASPubMed Google Scholar
Yagi, K. et al. c-myc is a downstream target of the Smad pathway. J. Biol. Chem.277, 854–861 (2002). ArticleCASPubMed Google Scholar
Azar, R., Alard, A., Susini, C., Bousquet, C. & Pyronnet, S. 4E-BP1 is a target of Smad4 essential for TGFβ-mediated inhibition of cell proliferation. EMBO J.28, 3514–3522 (2009). ArticleCASPubMedPubMed Central Google Scholar
Deheuninck, J. & Luo, K. Ski and SnoN, potent negative regulators of TGF-β signaling. Cell Res.19, 47–57 (2009). This review discusses recent findings on the biological functions of SKI and SKIL and their mechanisms of action. It also addresses how expression levels of these factors are regulated. ArticleCASPubMed Google Scholar
Suzuki, H. et al. c-Ski inhibits the TGF-β signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene23, 5068–5076 (2004). ArticleCASPubMed Google Scholar
Zhu, Q. et al., Dual role of SnoN in mammalian tumorigenesis. Mol. Cell. Biol.27, 324–339 (2007). ArticleCASPubMed Google Scholar
Heider, T. R., Lyman, S., Schoonhoven, R. & Behrns, K. E. Ski promotes tumor growth through abrogation of transforming growth factor-β signaling in pancreatic cancer. Ann. Surg.246, 61–68 (2007). ArticlePubMedPubMed Central Google Scholar
Morishita, K. et al. Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300–400 kilobases on chromosome band 3q26. Proc. Natl Acad. Sci. USA.89, 3937–3941 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kurokawa, M. et al. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature394, 92–96 (1998). ArticleCASPubMed Google Scholar
Mochizuki, N. et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood96, 3209–3214 (2000). ArticleCASPubMed Google Scholar
Takahata, M. et al. SKI and MEL1 cooperate to inhibit transforming growth factor-β signal in gastric cancer cells. J. Biol. Chem.284, 3334–3344 (2009). This paper reports that MEL1, a novel regulator of SKI, stabilizes an inactive SMAD3–SKI complex on the promoter of TGFβ target genes and inhibits TGFβ signalling in gastric cancer cells. ArticleCASPubMed Google Scholar
Ohno, H. Pathogenetic role of BCL6 translocation in B-cell non-Hodgkin's lymphoma. Histol. Histopathol.19, 637–650 (2004). CASPubMed Google Scholar
Pasqualucci, L. et al. Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk. Lymphoma44, S5–S12 (2003). ArticleCASPubMed Google Scholar
Wang, D. et al. BCL6 represses Smad signaling in transforming growth factor-β resistance. Cancer Res.68, 783–789 (2008). This paper indicates that overexpression of BCL6 contributes to the resistance of B cell lymphoma to TGFβ-mediated growth inhibition. ArticleCASPubMed Google Scholar
Mori, N. et al. Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood97, 2137–2144 (2001). ArticleCASPubMed Google Scholar
Lee, D. K., Kim, B. C., Brady, J. N., Jeang, K. T. & Kim, S. J. Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-β signaling by blocking the association of Smad proteins with Smad-binding element. J. Biol. Chem.277, 33766–33775 (2002). ArticleCASPubMed Google Scholar
Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev.13, 43–47 (2003). ArticleCASPubMed Google Scholar
Chi, X. Z. et al. RUNX3 suppresses gastric epithelial cell growth by inducing p21WAF1/Cip1 expression in cooperation with transforming growth factor β-activated SMAD. Mol. Cell. Biol.25, 8097–8107 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yano, T. et al. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor β-induced apoptosis. Mol. Cell. Biol.26, 4474–4488 (2006). ArticleCASPubMedPubMed Central Google Scholar
Battegay, E. J., Raines, E. W., Seifert, R. A., Bowen-Pope, D. F. & Ross, R. TGF-β induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell63, 515–524 (1990). ArticleCASPubMed Google Scholar
Bruna, A. et al. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell11, 147–160 (2007). This study demonstrates the pathological importance of epigenetic regulation of TGFβ signalling through methylation of Smad-binding elements in CpG islands of TGFβ target genes. ArticleCASPubMed Google Scholar
Matsuyama, S. et al. SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res.63, 7791–7798 (2003). CASPubMed Google Scholar
Lu, Q. R. et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc. Natl Acad. Sci. USA98, 10851–10856 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jang, C. W. et al. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nature Cell Biol.4, 51–58 (2002). ArticleCASPubMed Google Scholar
Takekawa, M. et al. Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO J.21, 6473–6482 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ohgushi, M. et al. Transforming growth factor β-dependent sequential activation of Smad, Bim, and caspase-9 mediates physiological apoptosis in gastric epithelial cells. Mol. Cell. Biol.25, 10017–10028 (2005). ArticleCASPubMedPubMed Central Google Scholar
Egle, A., Harris, A. W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl Acad. Sci. USA101, 6164–6169 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ehata, S. et al., Transforming growth factor-β promotes survival of mammary carcinoma cells through induction of antiapoptotic transcription factor DEC1. Cancer Res.67, 9694–9703 (2007). ArticleCASPubMed Google Scholar
Currie, M. J. et al. Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1α) and the HIF-1α target gene DEC1, but not lymph node metastasis in primary human breast carcinomas. J. Clin. Pathol.57, 829–834 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarti, J. et al. The transcription factor DEC1 (stra13, SHARP2) is associated with the hypoxic response and high tumour grade in human breast cancers. Br. J. Cancer91, 954–958 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kiyono, K. et al. Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res.69, 8844–8852 (2009). ArticleCASPubMed Google Scholar
Eisenberg-Lerner, A. & Kimchi, A. The paradox of autophagy and its implication in cancer etiology and therapy. Apoptosis14, 376–391 (2009). ArticlePubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Yamazaki, S. et al. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood113, 1250–1256 (2009). ArticleCASPubMed Google Scholar
Tang, B. et al. Transforming growth factor-β can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res.67, 8643–8652 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell133, 704–715 (2008). This paper is the first to report a link between EMT and stem cell characteristics. ArticleCASPubMedPubMed Central Google Scholar
Watabe, T. & Miyazono, K. Roles of TGF-β family signaling in stem cell renewal and differentiation. Cell Res.19, 103–115 (2009). ArticleCASPubMed Google Scholar
Golestaneh, N. & Mishra, B. TGF-β, neuronal stem cells and glioblastoma. Oncogene24, 5722–5730 (2005). ArticleCASPubMed Google Scholar
Peñuelas, S. et al. TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell15, 315–327 (2009). ArticlePubMedCAS Google Scholar
Ikushima, H. et al. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell5, 504–514 (2009). References 74 and 75 provide evidence that TGFβ signalling has crucial roles in the maintenance of self-renewal and tumorigenicity of glioma-initiating cells. ArticleCASPubMed Google Scholar
Kamachi, Y., Uchikawa, M. & Kondoh, H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet.16, 182–187 (2000). ArticleCASPubMed Google Scholar
Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron39, 749–765 (2003). ArticleCASPubMed Google Scholar
Ferri, A. L. et al. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development131, 3805–3819 (2004). ArticleCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
Hau, P. et al. Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides17, 201–212 (2007). ArticleCASPubMed Google Scholar
Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron28, 713–726 (2000). ArticleCASPubMed Google Scholar
Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature444, 761–765 (2006). ArticleCASPubMed Google Scholar
Lee, J. et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell13, 69–80 (2008). ArticleCASPubMedPubMed Central Google Scholar
Naka, K. et al. TGF-β-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature463, 676–680 (2010). This study shows that TGFβ signalling has a crucial role in the maintenance of leukaemia-initiating cells. It suggests that inhibition of the TGFβ pathway might represent a new therapeutic approach for patients with CML. ArticleCASPubMed Google Scholar
Hasegawa, Y. et al. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer91, 964–971 (2001). ArticleCASPubMed Google Scholar
Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D. & Rowley, D. R. Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res.62, 6021–6025 (2002). CASPubMed Google Scholar
Stearns, M. E., Garcia, F. U., Fudge, K., Rhim, J. & Wang, M. Role of interleukin 10 and transforming growth factor β1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin. Cancer Res.5, 711–720 (1999). CASPubMed Google Scholar
Ueki, N. et al. Excessive production of transforming growth-factor β 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim. Biophys. Acta.1137, 189–196 (1992). ArticleCASPubMed Google Scholar
Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3, 537–549 (2003). ArticleCASPubMed Google Scholar
Sánchez-Elsner, T. et al. Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J. Biol. Chem.276, 38527–38535 (2001). ArticlePubMed Google Scholar
Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet.29, 117–129 (2001). ArticleCASPubMed Google Scholar
Schwarte-Waldhoff, I. et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc. Natl Acad. Sci. USA97, 9624–9629 (2000). ArticleCASPubMedPubMed Central Google Scholar
Komuro, A. et al. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor β signaling. J. Natl. Cancer Inst.101, 592–604 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kiyono, K. et al. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-β signaling in diffuse-type gastric carcinoma. Cancer Sci.100, 1809–1816 (2009). ArticleCASPubMed Google Scholar
Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Moustakas, A. & Heldin, C. H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98, 1512–1520 (2007). References 96, 97 and 98 cover in detail mechanisms of EMT and discuss the physiological and pathological roles of EMT. ArticleCASPubMed Google Scholar
Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol.5, 137–142 (2003). ArticleCASPubMed Google Scholar
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science307, 1603–1609 (2005). ArticleCASPubMed Google Scholar
Xu, J., Lamouille, S. & Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res.19, 156–172 (2009). ArticleCASPubMed Google Scholar
Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev.10, 2462–2477 (1996). ArticleCASPubMed Google Scholar
Janda, E. et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol.156, 299–313 (2002). ArticleCASPubMedPubMed Central Google Scholar
Vogelmann, R. et al. TGFβ-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J. Cell Sci.118, 4901–4912 (2005). ArticleCASPubMed Google Scholar
Horiguchi, K. et al. Role of Ras signaling in the induction of snail by transforming growth factor-β. J. Biol. Chem.284, 245–253 (2009). ArticleCASPubMed Google Scholar
Araki, S. et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J. Clin. Invest.120, 290–302 (2010). ArticleCASPubMed Google Scholar
Adorno, M. et al. A Mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell137, 87–98 (2009). ArticleCASPubMed Google Scholar
Papageorgis, P. et al. Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res.70, 968–978 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature Med.9, 964–968 (2003). ArticleCASPubMed Google Scholar
Buijs, J. T. et al. Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res.67, 8742–8751 (2007). ArticleCASPubMed Google Scholar
Buijs, J. T. et al. BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am. J. Pathol.171, 1047–1057 (2007). ArticleCASPubMedPubMed Central Google Scholar
Saito, R. A. et al. Thyroid transcription factor-1 inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition in lung adenocarcinoma cells. Cancer Res.69, 2783–2791 (2009). ArticleCASPubMed Google Scholar
Li, C. et al. Transforming growth factor-β inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. J. Biol. Chem.277, 38399–38408 (2002). ArticleCASPubMed Google Scholar
Minoo, P. et al. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res.36, 179–188 (2008). ArticleCASPubMed Google Scholar
Tan, D. et al. Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: a high-throughput tissue microarray and immunohistochemistry study. Hum. Pathol.34, 597–604 (2003). ArticleCASPubMed Google Scholar
Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell133, 66–77 (2008). This paper demonstrates the role of TGFβ signalling in enabling the pulmonary metastasis of breast cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Guise, T. A. et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J. Clin. Invest.98, 1544–1549 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest.103, 197–206 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kondo, H., Guo, J. & Bringhurst, F. R. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J. Bone Miner. Res.17, 1667–1679 (2002). ArticleCASPubMed Google Scholar
Kang, Y., Chen, C. R. & Massague, J. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell11, 915–926 (2003). ArticleCASPubMed Google Scholar
Kingsley, L. A., Fournier, P. G., Chirgwin, J. M. & Guise, T. A. Molecular biology of bone metastasis. Mol. Cancer Ther.6, 2609–2617 (2007). ArticleCASPubMed Google Scholar
Ehata, S. et al. Ki26894, a novel transforming growth factor-b type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci.98, 127–133 (2007). ArticleCASPubMed Google Scholar
Bandyopadhyay, A. et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res.66, 6714–6721 (2006). ArticleCASPubMed Google Scholar
Ge, R. et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin. Cancer Res.12, 4315–4330 (2006). ArticleCASPubMed Google Scholar
Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA100, 8621–8623 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yingling, J. M., Blanchard, K. L. & Sawyer, J. S. Development of TGF-β signalling inhibitors for cancer therapy. Nature Rev. Drug Discov.3, 1011–1022 (2004). This review covers various TGFβ inhibitors and discusses the rationale for evaluating them as cancer therapeutics. ArticleCAS Google Scholar
Schlingensiepen, K. H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev.17, 129–139 (2006). ArticleCASPubMed Google Scholar
Santamaria-Martínez, A. et al. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp. Cell Res.315, 3004–3013 (2009). ArticlePubMedCAS Google Scholar
Kabashima, A. et al. Side population of pancreatic cancer cells predominates in TGF-b-mediated epithelial to mesenchymal transition and invasion. Int. J. Cancer.124, 2771–2779 (2009). ArticleCASPubMed Google Scholar