Towards a systems understanding of MHC class I and MHC class II antigen presentation (original) (raw)
Vyas, J. M., Van der Veen, A. G. & Ploegh, H. L. The known unknowns of antigen processing and presentation. Nature Rev. Immunol.8, 607–618 (2008). ArticleCAS Google Scholar
Kurts, C., Robinson, B. W. & Knolle, P. A. Cross-priming in health and disease. Nature Rev. Immunol.10, 403–414 (2010). ArticleCAS Google Scholar
Horst, D., Verweij, M. C., Davison, A. J., Ressing, M. E. & Wiertz, E. J. Viral evasion of T cell immunity: ancient mechanisms offering new applications. Curr. Opin. Immunol.23, 96–103 (2011). ArticleCASPubMed Google Scholar
Hughes, E. A., Hammond, C. & Cresswell, P. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl Acad. Sci. USA94, 1896–1901 (1997). ArticleCASPubMedPubMed Central Google Scholar
Koopmann, J. O. et al. Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity13, 117–127 (2000). ArticleCASPubMed Google Scholar
Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature404, 774–778 (2000). ArticleCASPubMed Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774 (2000). ArticleCASPubMed Google Scholar
Yewdell, J. W. & Hickman, H. D. New lane in the information highway: alternative reading frame peptides elicit T cells with potent antiretrovirus activity. J. Exp. Med.204, 2501–2504 (2007). ArticleCASPubMedPubMed Central Google Scholar
Berglund, P., Finzi, D., Bennink, J. R. & Yewdell, J. W. Viral alteration of cellular translational machinery increases defective ribosomal products. J. Virol.81, 7220–7229 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dolan, B. P. et al. Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance. J. Immunol.186, 2065–2072 (2011). ArticleCASPubMed Google Scholar
Khan, S. et al. Cutting edge: neosynthesis is required for the presentation of a T cell epitope from a long-lived viral protein. J. Immunol.167, 4801–4804 (2001). ArticleCASPubMed Google Scholar
Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science304, 587–590 (2004). ArticleCASPubMed Google Scholar
Hanada, K., Yewdell, J. W. & Yang, J. C. Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature427, 252–256 (2004). ArticleCASPubMed Google Scholar
Dalet, A. et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc. Natl Acad. Sci. USA108, e323–e331 (2011). References 9, 11 and 15–17 describe various examples of the generation of non-genetically encoded antigens that can be presented by MHC class I molecules. ArticleCASPubMedPubMed Central Google Scholar
Neefjes, J. J. & Ploegh, H. L. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with β2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur. J. Immunol.18, 801–810 (1988). ArticleCASPubMed Google Scholar
Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med.203, 1259–1271 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kulkarni, S. et al. Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature472, 495–498 (2011). ArticleCASPubMedPubMed Central Google Scholar
Apcher, S. et al. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc. Natl Acad. Sci. USA108, 11572–11577 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gu, W. et al. Both treated and untreated tumors are eliminated by short hairpin RNA-based induction of target-specific immune responses. Proc. Natl Acad. Sci. USA106, 8314–8319 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ferrara, T. A., Hodge, J. W. & Gulley, J. L. Combining radiation and immunotherapy for synergistic antitumor therapy. Curr. Opin. Mol. Ther.11, 37–42 (2009). CASPubMedPubMed Central Google Scholar
Mester, G., Hoffmann, V. & Stevanovic, S. Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Cell. Mol. Life Sci.68, 1521–1532 (2011). ArticleCASPubMed Google Scholar
Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem.80, 587–612 (2011). ArticleCASPubMed Google Scholar
Cascio, P., Hilton, C., Kisselev, A. F., Rock, K. L. & Goldberg, A. L. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J.20, 2357–2366 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sijts, E. J. & Kloetzel, P. M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci.68, 1491–1502 (2011). ArticleCASPubMedPubMed Central Google Scholar
Toes, R. E. et al. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J. Exp. Med.194, 1–12 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nitta, T. et al. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity32, 29–40 (2010). ArticleCASPubMed Google Scholar
Seifert, U. et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell142, 613–624 (2010). This paper shows how immunological stress induces protein aggregation and pathology. Immunoproteasomes are more active than constitutive proteasomes and prevent aggregation and pathology. ArticleCASPubMed Google Scholar
Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity18, 97–108 (2003). ArticleCASPubMed Google Scholar
Park, B. et al. Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell127, 369–382 (2006). ArticleCASPubMed Google Scholar
Wearsch, P. A., Peaper, D. R. & Cresswell, P. Essential glycan-dependent interactions optimize MHC class I peptide loading. Proc. Natl Acad. Sci. USA108, 4950–4955 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zarling, A. L. et al. Tapasin is a facilitator, not an editor, of class I MHC peptide binding. J. Immunol.171, 5287–5295 (2003). ArticleCASPubMed Google Scholar
Parcej, D. & Tampe, R. ABC proteins in antigen translocation and viral inhibition. Nature Chem. Biol.6, 572–580 (2010). ArticleCAS Google Scholar
Blanchard, N. et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol.184, 3033–3042 (2010). ArticleCASPubMed Google Scholar
Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature419, 480–483 (2002). ArticleCASPubMed Google Scholar
Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nature Immunol.6, 689–697 (2005). ArticleCAS Google Scholar
Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nature Immunol.3, 1169–1176 (2002). ArticleCAS Google Scholar
York, I. A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nature Immunol.3, 1177–1184 (2002). ArticleCAS Google Scholar
Roelse, J., Gromme, M., Momburg, F., Hammerling, G. & Neefjes, J. Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. J. Exp. Med.180, 1591–1597 (1994). ArticleCASPubMed Google Scholar
Neijssen, J. et al. Cross-presentation by intercellular peptide transfer through gap junctions. Nature434, 83–88 (2005). ArticleCASPubMed Google Scholar
Pang, B. et al. Direct antigen presentation and gap junction mediated cross-presentation during apoptosis. J. Immunol.183, 1083–1090 (2009). ArticleCASPubMed Google Scholar
Saccheri, F. et al. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci. Transl. Med.2, 44ra57 (2010). This study shows that gap junctions are induced byS. Typhimurium infection and are essential for generating a strong antitumour response with aS. Typhimurium-based antitumour vaccine. ArticlePubMed Google Scholar
Neisig, A., Melief, C. J. & Neefjes, J. Reduced cell surface expression of HLA-C molecules correlates with restricted peptide binding and stable TAP interaction. J. Immunol.160, 171–179 (1998). CASPubMed Google Scholar
Neisig, A., Wubbolts, R., Zang, X., Melief, C. & Neefjes, J. Allele-specific differences in the interaction of MHC class I molecules with transporters associated with antigen processing. J. Immunol.156, 3196–3206 (1996). CASPubMed Google Scholar
Peh, C. A. et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity8, 531–542 (1998). ArticleCASPubMed Google Scholar
Leslie, A. et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J. Virol.84, 9879–9888 (2010). ArticleCASPubMedPubMed Central Google Scholar
Malik, P., Klimovitsky, P., Deng, L. W., Boyson, J. E. & Strominger, J. L. Uniquely conformed peptide-containing β2-microglobulin-free heavy chains of HLA-B2705 on the cell surface. J. Immunol.169, 4379–4387 (2002). ArticleCASPubMed Google Scholar
Herberts, C. A. et al. Cutting edge: HLA-B27 acquires many N-terminal dibasic peptides: coupling cytosolic peptide stability to antigen presentation. J. Immunol.176, 2697–2701 (2006). ArticleCASPubMed Google Scholar
Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nature Genet.43, 761–767 (2011). ArticleCASPubMed Google Scholar
Princiotta, M. F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity18, 343–354 (2003). ArticleCASPubMed Google Scholar
Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nature Rev. Immunol.3, 952–961 (2003). ArticleCAS Google Scholar
Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature404, 774–778 (2000). ArticleCASPubMed Google Scholar
Reits, E. et al. A major role for TPPII in trimming proteasomal degradation products for MHC class I antigen presentation. Immunity20, 495–506 (2004). ArticleCASPubMed Google Scholar
York, I. A., Bhutani, N., Zendzian, S., Goldberg, A. L. & Rock, K. L. Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J. Immunol.177, 1434–1443 (2006). ArticleCASPubMed Google Scholar
Kloetzel, P. M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nature Immunol.5, 661–669 (2004). ArticleCAS Google Scholar
Kessler, J. H. et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nature Immunol.12, 45–53 (2011). ArticleCAS Google Scholar
Kawahara, M., York, I. A., Hearn, A., Farfan, D. & Rock, K. L. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo. J. Immunol.183, 6069–6077 (2009). ArticleCASPubMed Google Scholar
Saveanu, L., Carroll, O., Hassainya, Y. & van Endert, P. Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. Immunol. Rev.207, 42–59 (2005). ArticleCASPubMed Google Scholar
Lev, A. et al. The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity28, 787–798 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lev, A. et al. Compartmentalized MHC class I antigen processing enhances immunosurveillance by circumventing the law of mass action. Proc. Natl Acad. Sci. USA107, 6964–6969 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tenzer, S. et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol. Life Sci.62, 1025–1037 (2005). ArticleCASPubMed Google Scholar
Lundegaard, C., Lund, O., Buus, S. & Nielsen, M. Major histocompatibility complex class I binding predictions as a tool in epitope discovery. Immunology130, 309–318 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martayan, A. et al. Class I HLA folding and antigen presentation in β2-microglobulin-defective Daudi cells. J. Immunol.182, 3609–3617 (2009). ArticleCASPubMed Google Scholar
Rocca, A. et al. Localization of the conformational alteration of MHC molecules induced by the association of mouse class I heavy chain with a xenogeneic β2-microglobulin. Mol. Immunol.29, 481–487 (1992). ArticleCASPubMed Google Scholar
Neefjes, J. J., Smit, L., Gehrmann, M. & Ploegh, H. L. The fate of the three subunits of major histocompatibility complex class I molecules. Eur. J. Immunol.22, 1609–1614 (1992). ArticleCASPubMed Google Scholar
Boname, J. M. et al. Efficient internalization of MHC I requires lysine-11 and lysine-63 mixed linkage polyubiquitin chains. Traffic11, 210–220 (2010). ArticleCASPubMed Google Scholar
Bartee, E., Mansouri, M., Hovey Nerenberg, B. T., Gouveia, K. & Fruh, K. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J. Virol.78, 1109–1120 (2004). ArticleCASPubMedPubMed Central Google Scholar
Howe, C. et al. Calreticulin-dependent recycling in the early secretory pathway mediates optimal peptide loading of MHC class I molecules. EMBO J.28, 3730–3744 (2009). ArticleCASPubMedPubMed Central Google Scholar
Anders, A. K. et al. HLA-DM captures partially empty HLA-DR molecules for catalyzed removal of peptide. Nature Immunol.12, 54–61 (2011). ArticleCAS Google Scholar
Denzin, L. K., Fallas, J. L., Prendes, M. & Yi, W. Right place, right time, right peptide: DO keeps DM focused. Immunol. Rev.207, 279–292 (2005). ArticleCASPubMed Google Scholar
Romieu-Mourez, R., Francois, M., Boivin, M. N., Stagg, J. & Galipeau, J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-γ, TGF-β, and cell density. J. Immunol.179, 1549–1558 (2007). ArticleCASPubMed Google Scholar
Geppert, T. D. & Lipsky, P. E. Antigen presentation by interferon-γ-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression. J. Immunol.135, 3750–3762 (1985). CASPubMed Google Scholar
Koretz, K., Leman, J., Brandt, I. & Moller, P. Metachromasia of 3-amino-9-ethylcarbazole (AEC) and its prevention in immunoperoxidase techniques. Histochemistry86, 471–478 (1987). ArticleCASPubMed Google Scholar
Mulder, D. J. et al. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis. Am. J. Pathol.178, 744–753 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schonefuss, A. et al. Upregulation of cathepsin S in psoriatic keratinocytes. Exp. Dermatol.19, e80–e88 (2010). ArticlePubMed Google Scholar
Tjernlund, U. M., Scheynius, A., Kabelitz, D. & Klareskog, L. Anti-Ia-reactive cells in mycosis fungoides: a study of skin biopsies, single epidermal cells and circulating T lymphocytes. Acta Derm. Venereol.61, 291–301 (1981). CASPubMed Google Scholar
Choi, N. M., Majumder, P. & Boss, J. M. Regulation of major histocompatibility complex class II genes. Curr. Opin. Immunol.23, 81–87 (2011). ArticleCASPubMed Google Scholar
Muhlethaler-Mottet, A., Otten, L. A., Steimle, V. & Mach, B. Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J.16, 2851–2860 (1997). ArticleCASPubMedPubMed Central Google Scholar
Reith, W., LeibundGut-Landmann, S. & Waldburger, J. M. Regulation of MHC class II gene expression by the class II transactivator. Nature Rev. Immunol.5, 793–806 (2005). ArticleCAS Google Scholar
Smith, M. A. et al. Positive regulatory domain I (PRDM1) and IRF8/Pu.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J. Biol. Chem.286, 7893–7904 (2011). A study of the transcriptional regulation of MHC class II expression in immature and mature DCs. ArticleCASPubMedPubMed Central Google Scholar
Sisk, T. J., Nickerson, K., Kwok, R. P. & Chang, C. H. Phosphorylation of class II transactivator regulates its interaction ability and transactivation function. Int. Immunol.15, 1195–1205 (2003). ArticleCASPubMed Google Scholar
Greer, S. F. et al. Serine residues 286, 288, and 293 within the CIITA: a mechanism for down-regulating CIITA activity through phosphorylation. J. Immunol.173, 376–383 (2004). ArticleCASPubMed Google Scholar
Bhat, K. P., Truax, A. D. & Greer, S. F. Phosphorylation and ubiquitination of degron proximal residues are essential for class II transactivator (CIITA) transactivation and major histocompatibility class II expression. J. Biol. Chem.285, 25893–25903 (2010). ArticleCASPubMedPubMed Central Google Scholar
Greer, S. F., Zika, E., Conti, B., Zhu, X. S. & Ting, J. P. Enhancement of CIITA transcriptional function by ubiquitin. Nature Immunol.4, 1074–1082 (2003). ArticleCAS Google Scholar
Paul, P. et al. A genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell145, 268–283 (2011). A genome-wide siRNA screen for factors that control expression and peptide loading of MHC class II molecules. Many unknown factors are identified and additional screens are presented to reveal new pathways controlling MHC class II expression and transport in immature DCs. ArticleCASPubMed Google Scholar
Busch, R., Doebele, R. C., Patil, N. S., Pashine, A. & Mellins, E. D. Accessory molecules for MHC class II peptide loading. Curr. Opin. Immunol.12, 99–106 (2000). ArticleCASPubMed Google Scholar
Bertolino, P. & Rabourdin-Combe, C. The MHC class II-associated invariant chain: a molecule with multiple roles in MHC class II biosynthesis and antigen presentation to CD4+ T cells. Crit. Rev. Immunol.16, 359–379 (1996). CASPubMed Google Scholar
Landsverk, O. J., Bakke, O. & Gregers, T. F. MHC II and the endocytic pathway: regulation by invariant chain. Scand. J. Immunol.70, 184–193 (2009). ArticleCASPubMed Google Scholar
Bodmer, H., Viville, S., Benoist, C. & Mathis, D. Diversity of endogenous epitopes bound to MHC class II molecules limited by invariant chain. Science263, 1284–1286 (1994). ArticleCASPubMed Google Scholar
Viville, S. et al. Mice lacking the MHC class II-associated invariant chain. Cell72, 635–648 (1993). ArticleCASPubMed Google Scholar
Bikoff, E. K. et al. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain expression. J. Exp. Med.177, 1699–1712 (1993). ArticleCASPubMed Google Scholar
Tewari, M. K., Sinnathamby, G., Rajagopal, D. & Eisenlohr, L. C. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nature Immunol.6, 287–294 (2005). ArticleCAS Google Scholar
Hofmann, M. W. et al. The leucine-based sorting motifs in the cytoplasmic domain of the invariant chain are recognized by the clathrin adaptors AP1 and AP2 and their medium chains. J. Biol. Chem.274, 36153–36158 (1999). ArticleCASPubMed Google Scholar
Dugast, M., Toussaint, H., Dousset, C. & Benaroch, P. AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J. Biol. Chem.280, 19656–19664 (2005). ArticleCASPubMed Google Scholar
McCormick, P. J., Martina, J. A. & Bonifacino, J. S. Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc. Natl Acad. Sci. USA102, 7910–7915 (2005). ArticleCASPubMedPubMed Central Google Scholar
Santambrogio, L. et al. Involvement of caspase-cleaved and intact adaptor protein 1 complex in endosomal remodeling in maturing dendritic cells. Nature Immunol.6, 1020–1028 (2005). ArticleCAS Google Scholar
Peters, P. J., Neefjes, J. J., Oorschot, V., Ploegh, H. L. & Geuze, H. J. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature349, 669–676 (1991). ArticleCASPubMed Google Scholar
Sanderson, F. et al. Accumulation of HLA-DM, a regulator of antigen presentation, in MHC class II compartments. Science266, 1566–1569 (1994). ArticleCASPubMed Google Scholar
Engering, A. & Pieters, J. Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells. Int. Immunol.13, 127–134 (2001). ArticleCASPubMed Google Scholar
Hsing, L. C. & Rudensky, A. Y. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev.207, 229–241 (2005). ArticleCASPubMed Google Scholar
Hartman, I. Z. et al. A reductionist cell-free major histocompatibility complex class II antigen processing system identifies immunodominant epitopes. Nature Med.16, 1333–1340 (2010). ArticleCASPubMed Google Scholar
Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature458, 445–452 (2009). ArticleCASPubMed Google Scholar
Zwart, W. et al. Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity22, 221–233 (2005). ArticleCASPubMed Google Scholar
ten Broeke, T., van Niel, G., Wauben, M. H., Wubbolts, R. & Stoorvogel, W. Endosomally stored MHC class II does not contribute to antigen presentation by dendritic cells at inflammatory conditions. Traffic12, 1025–1036 (2011). ArticleCASPubMed Google Scholar
Neefjes, J. J., Stollorz, V., Peters, P. J., Geuze, H. J. & Ploegh, H. L. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell61, 171–183 (1990). ArticleCASPubMed Google Scholar
Nordeng, T. W. et al. The cytoplasmic tail of invariant chain regulates endosome fusion and morphology. Mol. Biol. Cell13, 1846–1856 (2002). ArticleCASPubMedPubMed Central Google Scholar
Landsverk, O. J., Barois, N., Gregers, T. F. & Bakke, O. Invariant chain increases the half-life of MHC II by delaying endosomal maturation. Immunol. Cell Biol.89, 619–629 (2011). ArticleCASPubMed Google Scholar
Strong, B. S. & Unanue, E. R. Presentation of type B peptide–MHC complexes from hen egg white lysozyme by TLR ligands and type I IFNs independent of H2-DM regulation. J. Immunol.187, 2193–2201 (2011). ArticleCASPubMed Google Scholar
Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science299, 1400–1403 (2003). ArticleCASPubMed Google Scholar
Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning. J. Cell Biol.185, 1209–1225 (2009). This study reveals the complex effects of motor regulation on the MIIC and other late endosomes. Cholesterol in late endosomes and/or the MIIC controls interactions with the ER protein VAPA, which removes the dynein motor from its receptor RILP, resulting in vesicle relocation. ArticleCASPubMedPubMed Central Google Scholar
Kuipers, H. F. et al. Statins affect cell-surface expression of major histocompatibility complex class II molecules by disrupting cholesterol-containing microdomains. Hum. Immunol.66, 653–665 (2005). ArticleCASPubMed Google Scholar
Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature388, 782–787 (1997). CASPubMed Google Scholar
Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature388, 787–792 (1997). ArticleCASPubMed Google Scholar
Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature418, 983–988 (2002). ArticleCASPubMed Google Scholar
Wubbolts, R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol.135, 611–622 (1996). ArticleCASPubMed Google Scholar
Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol.155, 53–63 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vascotto, F. et al. The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J. Cell Biol.176, 1007–1019 (2007). ArticleCASPubMedPubMed Central Google Scholar
Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Rev. Mol. Cell Biol.10, 623–635 (2009). ArticleCAS Google Scholar
de Gassart, A. et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl Acad. Sci. USA105, 3491–3496 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature444, 115–118 (2006). ArticleCASPubMed Google Scholar
Thibodeau, J. et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur. J. Immunol.38, 1225–1230 (2008). This study explains the effects of IL-10 on MHC class II expression in human monocytes. IL-10 controls MARCH1 expression, which in turn controls the half-life of MHC class II on the cell surface. ArticleCASPubMedPubMed Central Google Scholar
Koppelman, B., Neefjes, J. J., de Vries, J. E. & Waal Malefyt, R. Interleukin-10 down-regulates MHC class II αβ peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity7, 861–871 (1997). ArticleCASPubMed Google Scholar
Tze, L. E. et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J. Exp. Med.208, 149–165 (2011). This study shows how CD83 inhibits MHC class II ubiquitylation by MARCH1. ArticleCASPubMedPubMed Central Google Scholar
McGehee, A. M. et al. Ubiquitin-dependent control of class II MHC localization is dispensable for antigen presentation and antibody production. PLoS ONE6, e18817 (2011). ArticleCASPubMedPubMed Central Google Scholar
Walseng, E. et al. Ubiquitination regulates MHC class II–peptide complex retention and degradation in dendritic cells. Proc. Natl Acad. Sci. USA107, 20465–20470 (2010). This article shows how ubiquitylation regulates the degradation of internalized MHC class II molecules but not the endocytosis of MHC class II. ArticleCASPubMedPubMed Central Google Scholar
Al Daccak, R., Mooney, N. & Charron, D. MHC class II signaling in antigen-presenting cells. Curr. Opin. Immunol.16, 108–113 (2004). ArticleCASPubMed Google Scholar
Drenou, B. et al. A caspase-independent pathway of MHC class II antigen-mediated apoptosis of human B lymphocytes. J. Immunol.163, 4115–4124 (1999). CASPubMed Google Scholar
Hemon, P. et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J. Immunol.186, 5173–5183 (2011). ArticleCASPubMed Google Scholar
Liu, X. et al. Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nature Immunol.12, 416–424 (2011). This comprehensive study reveals crosstalk between TLRs, MHC class II and CD40. A full mechanism is presented to describe how MHC class II molecules are involved in outside-in signalling. ArticleCAS Google Scholar
Lang, P. et al. TCR-induced transmembrane signaling by peptide/MHC class II via associated Ig-α/β dimers. Science291, 1537–1540 (2001). ArticleCASPubMed Google Scholar
Bonnefoy, J. Y. et al. The low-affinity receptor for IgE (CD23) on B lymphocytes is spatially associated with HLA-DR antigens. J. Exp. Med.167, 57–72 (1988). ArticleCASPubMed Google Scholar
Bradbury, L. E., Kansas, G. S., Levy, S., Evans, R. L. & Tedder, T. F. The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J. Immunol.149, 2841–2850 (1992). CASPubMed Google Scholar
van der Burg, S. H. & Melief, C. J. Therapeutic vaccination against human papilloma virus induced malignancies. Curr. Opin. Immunol.23, 252–257 (2011). ArticleCASPubMed Google Scholar
Mitea, C. et al. A universal approach to eliminate antigenic properties of α-gliadin peptides in celiac disease. PLoS ONE5, e15637 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baugh, M. et al. Therapeutic dosing of an orally active, selective cathepsin S inhibitor suppresses disease in models of autoimmunity. J. Autoimmun.36, 201–209 (2011). ArticleCASPubMed Google Scholar
Fallang, L. E. et al. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nature Immunol.10, 1096–1101 (2009). ArticleCAS Google Scholar
Chow, K. M. et al. Studies on the subsite specificity of rat nardilysin (N-arginine dibasic convertase). J. Biol. Chem.275, 19545–19551 (2000). ArticleCASPubMed Google Scholar
Chow, K. M. et al. Nardilysin cleaves peptides at monobasic sites. Biochemistry42, 2239–2244 (2003). ArticleCASPubMed Google Scholar
York, I. A. et al. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity18, 429–440 (2003). ArticleCASPubMed Google Scholar
Kim, S. I., Pabon, A., Swanson, T. A. & Glucksman, M. J. Regulation of cell-surface major histocompatibility complex class I expression by the endopeptidase EC3.4.24.15 (thimet oligopeptidase). Biochem. J.375, 111–120 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rock, K. L., York, I. A., Saric, T. & Goldberg, A. L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol.80, 1–70 (2002). ArticleCASPubMed Google Scholar
Bhutani, N., Venkatraman, P. & Goldberg, A. L. Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation. EMBO J.26, 1385–1396 (2007). ArticleCASPubMedPubMed Central Google Scholar
Stoltze, L. et al. Two new proteases in the MHC class I processing pathway. Nature Immunol.1, 413–418 (2000). ArticleCAS Google Scholar
Parmentier, N. et al. Production of an antigenic peptide by insulin-degrading enzyme. Nature Immunol.11, 449–454 (2010). ArticleCAS Google Scholar
Shen, X. Z., Lukacher, A. E., Billet, S., Williams, I. R. & Bernstein, K. E. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J. Biol. Chem.283, 9957–9965 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chang, S. C., Momburg, F., Bhutani, N. & Goldberg, A. L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism. Proc. Natl Acad. Sci. USA102, 17107–17112 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hammer, G. E., Gonzalez, F., James, E., Nolla, H. & Shastri, N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nature Immunol.8, 101–108 (2007). ArticleCAS Google Scholar
Nguyen, T. T. et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nature Struct. Mol. Biol.18, 604–613 (2011). References 39 and 155–157 show how ERAAP acts as a molecular ruler for MHC class I peptides and skews the peptide repertoire. ArticleCAS Google Scholar
Kreisel, D. et al. Cutting edge: MHC class II expression by pulmonary nonhematopoietic cells plays a critical role in controlling local inflammatory responses. J. Immunol.185, 3809–3813 (2010). ArticleCASPubMed Google Scholar