- Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).
CAS PubMed Google Scholar
- Rosenbluth, J. & Wissig, S. L. The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol. 23, 307–325 (1964).
CAS PubMed PubMed Central Google Scholar
- Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes Aegypti. L. J. Cell Biol. 20, 313–332 (1964). One of the first papers reporting electron microscopy images of coated pits and vesicles.
CAS PubMed PubMed Central Google Scholar
- Pearse, B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc. Natl Acad. Sci. USA 73, 1255–1259 (1976). This seminal paper describes the discovery that clathrin forms the coat of purified coated vesicles.
CAS PubMed PubMed Central Google Scholar
- Hopkins, C. R., Miller, K. & Beardmore, J. M. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J. Cell Sci. 3, 173–186 (1985).
CAS Google Scholar
- Grant, B. D. & Donaldson, J. G. Pathways and mechanisms of endocytic recycling. Nature Rev. Mol. Cell Biol. 10, 597–608 (2009).
CAS Google Scholar
- Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269, 1872–1875 (1995).
CAS PubMed Google Scholar
- Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).
PubMed Google Scholar
- Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009). Shows that suppressor of yeast profilin 1 (Syp1) and EH domain-containing and endocytosis 1 (Ede1), the yeast homologues of FCHO proteins and EPS15, respectively, are early components of endocytic actin patches and defines their sites of formation.
CAS PubMed PubMed Central Google Scholar
- Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010). Reports that FCHO proteins are central components of a module comprising EPS15 and intersectins, which is required for clathrin-coated pit nucleation.
CAS PubMed PubMed Central Google Scholar
- Reider, A. et al. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation. EMBO J. 28, 3103–3116 (2009).
CAS PubMed PubMed Central Google Scholar
- Blondeau, F. et al. Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 3833–3838 (2004).
CAS PubMed PubMed Central Google Scholar
- Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14, 167–174 (2004).
CAS PubMed Google Scholar
- Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).
CAS PubMed Google Scholar
- Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979 (2008).
CAS PubMed PubMed Central Google Scholar
- Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nature Rev. Mol. Cell Biol. 10, 583–596 (2009).
CAS Google Scholar
- Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999).
CAS PubMed Google Scholar
- Yu, A. et al. Association of dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell 12, 129–141 (2007).
CAS PubMed PubMed Central Google Scholar
- Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134, 817–827 (2008).
CAS PubMed PubMed Central Google Scholar
- Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLoS Biol. 4, e262 (2006).
PubMed PubMed Central Google Scholar
- Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell 10, 329–342 (2006).
CAS PubMed Google Scholar
- Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).
CAS PubMed Google Scholar
- Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).
CAS PubMed Google Scholar
- Chidambaram, S., Zimmermann, J. & von Mollard, G. F. ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome. J. Cell Sci. 121, 329–338 (2008).
CAS PubMed Google Scholar
- Dittman, J. S. & Kaplan, J. M. Factors regulating the abundance and localization of synaptobrevin in the plasma membrane. Proc. Natl Acad. Sci. USA 103, 11399–11404 (2006).
CAS PubMed PubMed Central Google Scholar
- Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol. 162, 909–918 (2003).
CAS PubMed PubMed Central Google Scholar
- Boucrot, E., Saffarian, S., Zhang, R. & Kirchhausen, T. Roles of AP-2 in clathrin-mediated endocytosis. PLoS ONE 5, e10597 (2010).
PubMed PubMed Central Google Scholar
- Tebar, F., Sorkina, T., Sorkin, A., Ericsson, M. & Kirchhausen, T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J. Biol. Chem. 271, 28727–28730 (1996).
CAS PubMed Google Scholar
- Saffarian, S., Cocucci, E. & Kirchhausen, T. Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol. 7, e1000191 (2009).
PubMed PubMed Central Google Scholar
- Hinrichsen, L., Meyerholz, A., Groos, S. & Ungewickell, E. J. Bending a membrane: how clathrin affects budding. Proc. Natl Acad. Sci. USA 103, 8715–8720 (2006).
CAS PubMed PubMed Central Google Scholar
- Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).
CAS PubMed Google Scholar
- Kosaka, T. & Ikeda, K. Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J. Cell Biol. 97, 499–507 (1983).
CAS PubMed Google Scholar
- Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8, 2003–2015 (1997).
CAS PubMed PubMed Central Google Scholar
- Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).
CAS PubMed PubMed Central Google Scholar
- Sundborger, A. et al. An endophilin-dynamin complex promotes budding of clathrin-coated vesicles during synaptic vesicle recycling. J. Cell Sci. 124, 133–143 (2011).
CAS PubMed Google Scholar
- Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).
CAS PubMed Google Scholar
- Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998). The first evidence of the mechanoenzymatic activity of dynamin.
CAS PubMed Google Scholar
- Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).
CAS PubMed Google Scholar
- Roux., A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).
CAS PubMed Google Scholar
- Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).
CAS PubMed PubMed Central Google Scholar
- van der Bliek, A. M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).
CAS PubMed Google Scholar
- Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).
CAS PubMed Google Scholar
- Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984). Discovery of HSC70 as the enzyme that removes clathrin coats.
CAS PubMed Google Scholar
- Ungewickell, E. et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 378, 632–635 (1995).
CAS PubMed Google Scholar
- Massol, R. H., Boll, W., Griffin, A. M. & Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad. Sci. USA 103, 10265–10270 (2006).
CAS PubMed PubMed Central Google Scholar
- Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). The most extensive characterization to date of the arrival timing of all major proteins involved in clathrin-mediated endocytosis.
CAS PubMed PubMed Central Google Scholar
- Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).
CAS PubMed Google Scholar
- Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004).
CAS PubMed Google Scholar
- Rapoport, I., Boll, W., Yu, A., Bocking, T. & Kirchhausen, T. A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol. Biol. Cell 19, 405–413 (2008).
CAS PubMed PubMed Central Google Scholar
- Xing, Y. et al. Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. EMBO J. 29, 655–665 (2010).
CAS PubMed Google Scholar
- Bocking, T., Aguet, F., Harrison, S. C. & Kirchhausen, T. Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating. Nature Struct. Mol. Biol. 18, 295–301 (2011).
CAS Google Scholar
- Rothnie, A., Clarke, A. R., Kuzmic, P., Cameron, A. & Smith, C. J. A sequential mechanism for clathrin cage disassembly by 70-kDa heat-shock cognate protein (Hsc70) and auxilin. Proc. Natl Acad. Sci. USA 108, 6927–6932 (2011). References 51 and 52 use in vitro uncoating assays to determine a requirement of three or fewer HSC70 molecules per triskelion for clathrin uncoating.
CAS PubMed PubMed Central Google Scholar
- Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).
CAS PubMed Google Scholar
- Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005). Systematic study of deletion mutants revealing the modular organization of the clathrin machinery.
CAS PubMed Google Scholar
- Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).
CAS PubMed Google Scholar
- Marks, B. & McMahon, H. T. Calcium triggers calcineurin-dependent synaptic vesicle recycling in mammalian nerve terminals. Curr. Biol. 8, 740–749 (1998).
CAS PubMed Google Scholar
- Tan, T. C. et al. Cdk5 is essential for synaptic vesicle endocytosis. Nature Cell Biol. 5, 701–710 (2003).
CAS PubMed Google Scholar
- Garcia, C. K. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394–1398 (2001). Discovery of ARH as an LDLR cargo-specific adaptor protein, mutations of which cause a form of autosomal recessive hypercholesterolaemia.
CAS PubMed Google Scholar
- Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell 17, 4300–4317 (2006).
CAS PubMed PubMed Central Google Scholar
- Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).
CAS PubMed PubMed Central Google Scholar
- Ferguson, S. S. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1996).
CAS PubMed Google Scholar
- Warren, R. A., Green, F. A. & Enns, C. A. Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor. J. Biol. Chem. 272, 2116–2121 (1997).
CAS PubMed Google Scholar
- Warren, R. A., Green, F. A., Stenberg, P. E. & Enns, C. A. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J. Biol. Chem. 273, 17056–17063 (1998).
CAS PubMed Google Scholar
- Diril, M. K., Wienisch, M., Jung, N., Klingauf, J. & Haucke, V. Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev. Cell 10, 233–244 (2006).
CAS PubMed Google Scholar
- Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell 127, 113–124 (2006).
CAS PubMed Google Scholar
- Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010).
CAS PubMed PubMed Central Google Scholar
- Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).
CAS PubMed Google Scholar
- Boucrot, E., Saffarian, S., Massol, R., Kirchhausen, T. & Ehrlich, M. Role of lipids and actin in the formation of clathrin-coated pits. Exp. Cell Res. 312, 4036–4048 (2006).
CAS PubMed PubMed Central Google Scholar
- Cureton, D. K., Massol, R. H., Saffarian, S., Kirchhausen, T. L. & Whelan, S. P. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog. 5, e1000394 (2009).
PubMed PubMed Central Google Scholar
- Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nature Cell Biol. 11, 1039–1042 (2009).
CAS PubMed Google Scholar
- Veiga, E. et al. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe 2, 340–351 (2007).
CAS PubMed PubMed Central Google Scholar
- Kanaseki, T. & Kadota, K. The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).
CAS PubMed PubMed Central Google Scholar
- Shapiro, S. Z. & Webster, P. Coated vesicles from the protozoan parasite Trypanosoma brucei: purification and characterization. J. Protozool. 36, 344–349 (1989).
CAS PubMed Google Scholar
- Mueller, S. C. & Branton, D. Identification of coated vesicles in Saccharomyces cerevisiae. J. Cell Biol. 98, 341–346 (1984).
CAS PubMed Google Scholar
- Holstein, S. E., Drucker, M. & Robinson, D. G. Identification of a β-type adaptin in plant clathrin-coated vesicles. J. Cell Sci. 107, 945–953 (1994).
CAS PubMed Google Scholar
- Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).
CAS PubMed Google Scholar
- Dhonukshe, P. et al. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17, 520–527 (2007).
CAS PubMed Google Scholar
- Smaczynska-de Rooij, I. I. et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci. 123, 3496–3506 (2010). Establishes a role for vacuolar protein sorting-associated 1 (Vps1), the yeast homologue of dynamin, in vesicle endocytosis.
CAS PubMed Google Scholar
- Bretscher, M. S., Thomson, J. N. & Pearse, B. M. Coated pits act as molecular filters. Proc. Natl Acad. Sci. USA 77, 4156–4159 (1980).
CAS PubMed PubMed Central Google Scholar
- Perry, M. M. & Gilbert, A. B. Yolk transport in the ovarian follicle of the hen (Gallus domesticus): lipoprotein-like particles at the periphery of the oocyte in the rapid growth phase. J. Cell Sci. 39, 257–272 (1979).
CAS PubMed Google Scholar
- Cheng, Y., Boll, W., Kirchhausen, T., Harrison, S. C. & Walz, T. Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J. Mol. Biol. 365, 892–899 (2007).
CAS PubMed Google Scholar
- Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).
CAS PubMed Google Scholar
- Bazinet, C., Katzen, A. L., Morgan, M., Mahowald, A. P. & Lemmon, S. K. The Drosophila clathrin heavy chain gene: clathrin function is essential in a multicellular organism. Genetics 134, 1119–1134 (1993).
CAS PubMed PubMed Central Google Scholar
- Inoue, T., Hayashi, T., Takechi, K. & Agata, K. Clathrin-mediated endocytic signals are required for the regeneration of, as well as homeostasis in, the planarian CNS. Development 134, 1679–1689 (2007).
CAS PubMed Google Scholar
- Seeger, M. & Payne, G. S. A role for clathrin in the sorting of vacuolar proteins in the Golgi complex of yeast. EMBO J. 11, 2811–2818 (1992).
CAS PubMed PubMed Central Google Scholar
- Allen, C. L., Goulding, D. & Field, M. C. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002 (2003). Although clathrin is important for many intracellular functions, endocytosis still occurs in T. brucei clathrin mutants.
CAS PubMed PubMed Central Google Scholar
- Hung, C. H., Qiao, X., Lee, P. T. & Lee, M. G. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Eukaryot. Cell 3, 1004–1014 (2004).
CAS PubMed PubMed Central Google Scholar
- Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J. 18, 3897–3908 (1999). An initial indication that adaptor complexes may not play such a central part in clathrin-mediated endocytosis in yeast.
CAS PubMed PubMed Central Google Scholar
- Nannapaneni, S. et al. The yeast dynamin-like protein Vps1:vps1 mutations perturb the internalization and the motility of endocytic vesicles and endosomes via disorganization of the actin cytoskeleton. Eur. J. Cell Biol. 89, 499–508 (2010).
CAS PubMed Google Scholar
- Gonzalez-Gaitan, M. & Jackle, H. Role of Drosophila α-adaptin in presynaptic vesicle recycling. Cell 88, 767–776 (1997).
CAS PubMed Google Scholar
- Greener, T. et al. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nature Cell Biol. 3, 215–219 (2001).
CAS PubMed Google Scholar
- Koh, T. W., Verstreken, P. & Bellen, H. J. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron 43, 193–205 (2004).
CAS PubMed Google Scholar
- Koh, T. W. et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J. Cell Biol. 178, 309–322 (2007).
CAS PubMed PubMed Central Google Scholar
- Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112 (2002).
CAS PubMed Google Scholar
- Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).
CAS PubMed Google Scholar
- Stimson, D. T. et al. Drosophila stoned proteins regulate the rate and fidelity of synaptic vesicle internalization. J. Neurosci. 21, 3034–3044 (2001).
CAS PubMed PubMed Central Google Scholar
- Jung, N. et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2. J. Cell Biol. 179, 1497–1510 (2007).
CAS PubMed PubMed Central Google Scholar
- Nonet, M. L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).
CAS PubMed PubMed Central Google Scholar
- Holmes, A., Flett, A., Coudreuse, D., Korswagen, H. C. & Pettitt, J. C. elegans Disabled is required for cell-type specific endocytosis and is essential in animals lacking the AP-3 adaptor complex. J. Cell Sci. 120, 2741–2751 (2007).
CAS PubMed Google Scholar
- O'Halloran, T. J. & Anderson, R. G. Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J. Cell Biol. 118, 1371–1377 (1992).
CAS PubMed Google Scholar
- Tan, P. K., Davis, N. G., Sprague, G. F. & Payne, G. S. Clathrin facilitates the internalization of seven transmembrane segment receptors for mating pheromones in yeast. J. Cell Biol. 123, 1707–1716 (1993).
CAS PubMed Google Scholar
- Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004). References 26, 27 and 102 show that AP2 is crucial for clathrin-coated pit formation and internalization of transferrin (Ref. 26), EGF (Ref. 102) and LDLRs (Ref. 27). Upon depletion of AP2, there is a reduction of ∼tenfold in the number of clathrin-coated pits forming (Ref. 26), with the remaining pits still containing AP2 (Ref. 27).
CAS PubMed Google Scholar
- Anderson, R. G., Brown, M. S. & Goldstein, J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10, 351–364 (1977). A seminal study establishing receptor-mediated endocytosis of LDLR by clathrin-coated pits.
CAS PubMed Google Scholar
- Pearse, B. M. Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc. Natl Acad. Sci. USA 79, 451–455 (1982).
CAS PubMed PubMed Central Google Scholar
- Jing, S. Q., Spencer, T., Miller, K., Hopkins, C. & Trowbridge, I. S. Role of the human transferrin receptor cytoplasmic domain in endocytosis: localization of a specific signal sequence for internalization. J. Cell Biol. 110, 283–294 (1990). Identification of the internalization sequence in the cytoplasmic tail of TfR.
CAS PubMed Google Scholar
- Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nature Rev. Mol. Cell Biol. 10, 609–622 (2009).
CAS Google Scholar
- Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).
CAS PubMed Google Scholar
- Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473 (2010).
CAS PubMed Google Scholar
- Haucke, V., Neher, E. & Sigrist, S. J. Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. Nature Rev. Neurosci. 12, 127–138 (2011).
CAS Google Scholar
- Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).
CAS PubMed Google Scholar
- McMahon, H. T. & Nicholls, D. G. Transmitter glutamate release from isolated nerve terminals: evidence for biphasic release and triggering by localized Ca2+. J. Neurochem. 56, 86–94 (1991).
CAS PubMed Google Scholar
- Heuser, J. E. & Reese, T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973). Seminal study on the morphology of clathrin-coated vesicle formation in synapses.
CAS PubMed PubMed Central Google Scholar
- Sato, K. et al. Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc. Natl Acad. Sci. USA 106, 1139–1144 (2009).
CAS PubMed PubMed Central Google Scholar
- Shupliakov, O. et al. Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276, 259–263 (1997).
CAS PubMed Google Scholar
- Kasprowicz, J. et al. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J. Cell Biol. 182, 1007–1016 (2008).
CAS PubMed PubMed Central Google Scholar
- Maycox, P. R., Link, E., Reetz, A., Morris, S. A. & Jahn, R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J. Cell Biol. 118, 1379–1388 (1992).
CAS PubMed Google Scholar
- Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & De Camilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).
CAS PubMed Google Scholar
- Neher, E. & Zucker, R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30 (1993).
CAS PubMed Google Scholar
- Thomas, P., Lee, A. K., Wong, J. G. & Almers, W. A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J. Cell Biol. 124, 667–675 (1994).
CAS PubMed Google Scholar
- Jockusch, W. J., Praefcke, G. J., McMahon, H. T. & Lagnado, L. Clathrin-dependent and clathrin-independent retrieval of synaptic vesicles in retinal bipolar cells. Neuron 46, 869–878 (2005).
CAS PubMed Google Scholar
- Dong, M. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol. 162, 1293–1303 (2003).
CAS PubMed PubMed Central Google Scholar
- Morris, R. E., Gerstein, A. S., Bonventre, P. F. & Saelinger, C. B. Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect. Immun. 50, 721–727 (1985).
CAS PubMed PubMed Central Google Scholar
- Sandvig, K., Olsnes, S., Brown, J. E., Petersen, O. W. & van Deurs, B. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J. Cell Biol. 108, 1331–1343 (1989).
CAS PubMed Google Scholar
- Abrami, L., Liu, S., Cosson, P., Leppla, S. H. & van der Goot, F. G. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 160, 321–328 (2003).
CAS PubMed PubMed Central Google Scholar
- Deinhardt, K., Berninghausen, O., Willison, H. J., Hopkins, C. R. & Schiavo, G. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J. Cell Biol. 174, 459–471 (2006).
CAS PubMed PubMed Central Google Scholar
- Skretting, G., Torgersen, M. L., van Deurs, B. & Sandvig, K. Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J. Cell Sci. 112, 3899–3909 (1999).
CAS PubMed Google Scholar
- Boll, W., Ehrlich, M., Collier, R. J. & Kirchhausen, T. Effects of dynamin inactivation on pathways of anthrax toxin uptake. Eur. J. Cell Biol. 83, 281–288 (2004).
CAS PubMed Google Scholar
- Saint-Pol, A. et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6, 525–538 (2004).
CAS PubMed Google Scholar
- Romer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).
PubMed Google Scholar
- Abrami, L., Bischofberger, M., Kunz, B., Groux, R. & van der Goot, F. G. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog. 6, e1000792 (2010).
PubMed PubMed Central Google Scholar
- Raiborg, C., Bache, K. G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).
CAS PubMed PubMed Central Google Scholar
- Deborde, S. et al. Clathrin is a key regulator of basolateral polarity. Nature 452, 719–723 (2008).
CAS PubMed PubMed Central Google Scholar
- Rust, M. J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nature Struct. Mol. Biol. 11, 567–573 (2004).
CAS Google Scholar
- Cureton, D. K., Massol, R. H., Whelan, S. P. & Kirchhausen, T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 6, e1001127 (2010). Shows the influence that size has the recruitment of actin to clathrin-coated pits.
PubMed PubMed Central Google Scholar
- Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).
CAS PubMed PubMed Central Google Scholar
- Veiga, E. & Cossart, P. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nature Cell Biol. 7, 894–900 (2005).
CAS PubMed Google Scholar
- Eto, D. S., Gordon, H. B., Dhakal, B. K., Jones, T. A. & Mulvey, M. A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell. Microbiol. 10, 2553–2567 (2008).
CAS PubMed Google Scholar
- Moreno-Ruiz, E. et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11, 1179–1189 (2009).
CAS PubMed PubMed Central Google Scholar
- Pizarro-Cerda, J. et al. Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell. Microbiol. 9, 2381–2390 (2007).
CAS PubMed Google Scholar
- Braun, V. et al. AP-1 and ARF1 control endosomal dynamics at sites of FcR mediated phagocytosis. Mol. Biol. Cell 18, 4921–4931 (2007).
CAS PubMed PubMed Central Google Scholar
- Mitsunari, T. et al. Clathrin adaptor AP-2 is essential for early embryonal development. Mol. Cell. Biol. 25, 9318–9323 (2005).
CAS PubMed PubMed Central Google Scholar
- Chen, H. et al. Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc. Natl Acad. Sci. USA 106, 13838–13843 (2009).
CAS PubMed PubMed Central Google Scholar
- Bernard, O. A., Mauchauffe, M., Mecucci, C., Van den Berghe, H. & Berger, R. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 9, 1039–1045 (1994).
CAS PubMed Google Scholar
- Dreyling, M. H. et al. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc. Natl Acad. Sci. USA 93, 4804–4809 (1996). References 143 and 144 are the first reports of gene fusions involving the clathrin machinery.
CAS PubMed PubMed Central Google Scholar
- Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).
CAS PubMed PubMed Central Google Scholar
- Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).
CAS PubMed Google Scholar
- Wettey, F. R. et al. Controlled elimination of clathrin heavy-chain expression in DT40 lymphocytes. Science 297, 1521–1525 (2002).
CAS PubMed Google Scholar
- Borlido, J., Veltri, G., Jackson, A. P. & Mills, I. G. Clathrin is spindle-associated but not essential for mitosis. PLoS ONE 3, e3115 (2008).
PubMed PubMed Central Google Scholar
- Royle, S. J., Bright, N. A. & Lagnado, L. Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157 (2005).
CAS PubMed PubMed Central Google Scholar
- Boucrot, E. & Kirchhausen, T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl Acad. Sci. USA 104, 7939–7944 (2007).
CAS PubMed PubMed Central Google Scholar
- Bitoun, M. et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet. 37, 1207–1209 (2005).
CAS PubMed Google Scholar
- Zuchner, S. et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nature Genet. 37, 289–294 (2005).
PubMed Google Scholar
- Nicot, A. S. et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature Genet. 39, 1134–1139 (2007). References 151–153 report mutations in amphiphysin and dynamin in patients with myopathy and neuropathy.
CAS PubMed Google Scholar
- Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001).
CAS PubMed PubMed Central Google Scholar
- Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).
CAS PubMed Google Scholar
- Arai, Y., Ijuin, T., Takenawa, T., Becker, L. E. & Takashima, S. Excessive expression of synaptojanin in brains with Down syndrome. Brain Dev. 24, 67–72 (2002).
PubMed Google Scholar
- Pucharcos, C. et al. Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in proliferating and differentiating neurons and overexpressed in Down syndrome. Eur. J. Hum. Genet. 7, 704–712 (1999).
CAS PubMed Google Scholar
- Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biol. 13, 331–337 (2011).
CAS PubMed Google Scholar
- Jones, S. A., Shim, S. H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nature Methods 8, 499–505 (2011).
CAS PubMed PubMed Central Google Scholar
- Keyel, P. A., Watkins, S. C. & Traub, L. M. Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J. Biol. Chem. 279, 13190–13204 (2004).
CAS PubMed Google Scholar
- Damke, H., Baba, T., van der Bliek, A. M. & Schmid, S. L. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131, 69–80 (1995).
CAS PubMed Google Scholar
- Vallis, Y., Wigge, P., Marks, B., Evans, P. R. & McMahon, H. T. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr. Biol. 9, 257–260 (1999).
CAS PubMed Google Scholar
- Hill, T. A. et al. Inhibition of dynamin mediated endocytosis by the dynoles—synthesis and functional activity of a family of indoles. J. Med. Chem. 52, 3762–3773 (2009).
CAS PubMed Google Scholar
- Howes, M. T. et al. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J. Cell Biol. 190, 675–691 (2010).
CAS PubMed PubMed Central Google Scholar
- McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005). Summarizes the role of curvature in cell membrane remodelling.
CAS PubMed Google Scholar
- Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).
CAS PubMed Google Scholar
- Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).
CAS PubMed Google Scholar
- Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).
CAS PubMed PubMed Central Google Scholar
- Roux, A. et al. Membrane curvature controls dynamin polymerization. Proc. Natl Acad. Sci. USA 107, 4141–4146 (2010).
CAS PubMed PubMed Central Google Scholar
- Ramachandran, R. et al. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell 20, 4630–4639 (2009).
CAS PubMed PubMed Central Google Scholar
- Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011). Highlights the importance of membrane curvature in the function of synaptojanin.
CAS PubMed PubMed Central Google Scholar
- Schlegel, R., Dickson, R. B., Willingham, M. C. & Pastan, I. H. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of α2-macroglobulin. Proc. Natl Acad. Sci. USA 79, 2291–2295 (1982).
CAS PubMed PubMed Central Google Scholar
- Larkin, J. M., Brown, M. S., Goldstein, J. L. & Anderson, R. G. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell 33, 273–285 (1983).
CAS PubMed Google Scholar
- Gibson, A. E., Noel, R. J., Herlihy, J. T. & Ward, W. F. Phenylarsine oxide inhibition of endocytosis: effects on asialofetuin internalization. Am. J. Physiol. 257, C182–C184 (1989).
CAS PubMed Google Scholar
- Cosson, P., de Curtis, I., Pouyssegur, J., Griffiths, G. & Davoust, J. Low cytoplasmic pH inhibits endocytosis and transport from the _trans_-Golgi network to the cell surface. J. Cell Biol. 108, 377–387 (1989).
CAS PubMed Google Scholar
- Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).
CAS PubMed Google Scholar
- Wang, L. H., Rothberg, K. G. & Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117 (1993).
CAS PubMed Google Scholar
- Benmerah, A., Bayrou, M., Cerf-Bensussan, N. & Dautry-Varsat, A. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J. Cell Sci. 112, 1303–1311 (1999).
CAS PubMed Google Scholar
- Robinson, M. S., Sahlender, D. A. & Foster, S. D. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. Dev. Cell 18, 324–331 (2010). Shows that rerouting AP2 to mitochondria is a rapid and acute way of inactivating clathrin-mediated endocytosis.
CAS PubMed PubMed Central Google Scholar
- Pechstein, A. et al. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2. Proc. Natl Acad. Sci. USA 107, 4206–4211 (2010).
CAS PubMed PubMed Central Google Scholar
- Aggeler, J. & Werb, Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol. 94, 613–623 (1982).
CAS PubMed Google Scholar
- Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).
CAS PubMed Google Scholar