Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair (original) (raw)
Mili, S., Moissoglu, K. & Macara, I. G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature453, 115–119 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell131, 174–187 (2007). ArticleCASPubMed Google Scholar
Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell127, 49–58 (2006). ArticleCASPubMed Google Scholar
Wang, D. O., Martin, K. C. & Zukin, R. S. Spatially restricting gene expression by local translation at synapses. Trends Neurosci.33, 173–182 (2010). ArticleCASPubMedPubMed Central Google Scholar
Giuditta, A., Dettbarn, W. D. & Brzin, M. Protein synthesis in the isolated giant axon of the squid. Proc. Natl Acad. Sci. USA59, 1284–1287 (1968). ArticleCASPubMedPubMed Central Google Scholar
Koenig, E. Synthetic mechanisms in the axon. IV. In vitro incorporation of [3H]precursors into axonal protein and RNA. J. Neurochem.14, 437–446 (1967). Together with reference 6, landmark studiesthat showed evidence for axonal protein synthesis. Using metabolic labelling, these studies showed that vertebrate and invertebrate axons without somas are capable of translation-dependent protein synthesis. ArticleCASPubMed Google Scholar
Edstrom, A. & Sjostrand, J. Protein synthesis in the isolated Mauthner nerve fibre of goldfish. J. Neurochem.16, 67–81 (1969). ArticleCASPubMed Google Scholar
Alvarez, J., Giuditta, A. & Koenig, E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog. Neurobiol.62, 1–62 (2000). ArticleCASPubMed Google Scholar
Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron32, 1013–1026 (2001). First demonstration of a functional role for axonal mRNA translation in mediating chemotropic responses of growth cones to guidance cue gradients. Netrin 1 and SEMA3A increase global translational activity in cultured growth cones by activating mTOR. This study also showed that proteasomal degradation and translation are intricately linked in cue-stimulated axonal responses. ArticleCASPubMed Google Scholar
Verma, P. et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci.25, 331–342 (2005). Key evidence showing that axonal protein synthesis is required for axon regeneration. Comparing regeneration of embryonic and adult, CNS and PNS neuronal axons in culture, with or without translation inhibitors, led to this conclusion. ArticleCASPubMedPubMed Central Google Scholar
Akten, B. et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl Acad. Sci. USA108, 10337–10342 (2011). ArticleCASPubMedPubMed Central Google Scholar
Donnelly, C. J. et al. Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J.30, 4665–4677 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ben-Yaakov, K. et al. Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J. 13 Jan 2012 (doi:10.1038/emboj.2011.494). ArticleCASPubMedPubMed Central Google Scholar
Andreassi, C. et al. An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons. Nature Neurosci.13, 291–301 (2010). Using sequential analysis of gene expression analysis, this study identified more axonal mRNAs (>11,000 sequence tags), among whichIMPA1mRNA was most abundant. A novel 3′-UTR element mediates axonal transport ofIMPA1mRNA, the axonal translation of which is required for NGF-mediated cell survival. ArticleCASPubMed Google Scholar
Zivraj, K. H. et al. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci.30, 15464–15478 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gumy, L. F. et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA17, 85–98 (2011). ArticleCASPubMedPubMed Central Google Scholar
Taylor, A. M. et al. Axonal mRNA in uninjured and regenerating cortical mammalian axons. J. Neurosci.29, 4697–4707 (2009). References 15–18 were key axonal transcriptome studies. Using compartmentalized culture systems and laser-capture microdissection, these studies provided comprehensive information on the complex and dynamic nature of axonal mRNA repertoires in embryonic and adult, growing and mature PNS and CNS neurons. Additionally, reference 16 showed that the growth cone of embryonic neurons has a translatome distinct from that of the axon shaft. ArticleCASPubMedPubMed Central Google Scholar
Lasek, R. J., Dabrowski, C. & Nordlander, R. Analysis of axoplasmic RNA from invertebrate giant axons. Nature New Biol.244, 162–165 (1973). ArticleCASPubMed Google Scholar
Giuditta, A., Cupello, A. & Lazzarini, G. Ribosomal RNA in the axoplasm of the squid giant axon. J. Neurochem.34, 1757–1760 (1980). ArticleCASPubMed Google Scholar
Giuditta, A., Hunt, T. & Santella, L. Messenger RNA in squid axoplasm. Neurochem. Int.8, 435–442 (1986). ArticleCASPubMed Google Scholar
Giuditta, A. et al. Active polysomes in the axoplasm of the squid giant axon. J. Neurosci. Res.28, 18–28 (1991). ArticleCAS Google Scholar
Bassell, G. J. et al. Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci.18, 251–265 (1998). Together with reference 154, this showed evidence for an isoform-specific axonal transport of β-actin mRNAs that is regulated by extrinsic cues. Binding of ZBP1 to the zipcode in the β-actin 3′-UTR mediates this transport, which is enhanced by NT3 and necessary for growth cone motility. ArticleCASPubMedPubMed Central Google Scholar
Bunge, M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J. Cell Biol.56, 713–735 (1973). ArticleCASPubMedPubMed Central Google Scholar
Tennyson, V. M. The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J. Cell Biol.44, 62–79 (1970). ArticleCASPubMedPubMed Central Google Scholar
Tcherkezian, J., Brittis, P. A., Thomas, F., Roux., P. P. & Flanagan, J. G. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell141, 632–644 (2010). First evidence that guidance cue receptors can directly regulate ribosome activity. DCC inhibits translation by sequestering ribosomes and netrin 1 binding releases ribosomes from DCC, thus providing a novel mechanism to localize mRNA translation in the vicinity of receptor activation. ArticleCASPubMedPubMed Central Google Scholar
Yamada, K. M., Spooner, B. S. & Wessells, N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J. Cell Biol.49, 614–635 (1971). ArticleCASPubMedPubMed Central Google Scholar
Steward, O. & Ribak, C. E. Polyribosomes associated with synaptic specializations on axon initial segments: localization of protein-synthetic machinery at inhibitory synapses. J. Neurosci.6, 3079–3085 (1986). ArticleCASPubMedPubMed Central Google Scholar
Koenig, E. & Martin, R. Cortical plaque-like structures identify ribosome-containing domains in the Mauthner cell axon. J. Neurosci.16, 1400–1411 (1996). ArticleCASPubMedPubMed Central Google Scholar
Koenig, E., Martin, R., Titmus, M. & Sotelo-Silveira, J. R. Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J. Neurosci.20, 8390–8400 (2000). ArticleCAS Google Scholar
Kun, A., Otero, L., Sotelo-Silveira, J. R. & Sotelo, J. R. Ribosomal distributions in axons of mammalian myelinated fibers. J. Neurosci. Res.85, 2087–2098 (2007). ArticleCASPubMed Google Scholar
Li, Y. C. et al. Subsurface cisterna-lined axonal invaginations and double-walled vesicles at the axonal–myelin sheath interface. Neurosci. Res.53, 298–303 (2005). ArticleCASPubMed Google Scholar
Zelena, J. Ribosome-like particles in myelinated axons of the rat. Brain Res.24, 359–363 (1970). ArticleCASPubMed Google Scholar
Walker, B. A. et al. Reprogramming axonal behavior by axon-specific viral transduction. Gene Ther. 26 Jan 2012 (doi:10.1038/gt.2011.217). ArticleCASPubMedPubMed Central Google Scholar
Koenig, E. & Adams, P. Local protein synthesizing activity in axonal fields regenerating in vitro. J. Neurochem.39, 386–400 (1982). ArticleCASPubMed Google Scholar
Eng, H., Lund, K. & Campenot, R. B. Synthesis of β-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J. Neurosci.19, 1–9 (1999). Using a highly efficient compartmentalized culture system, now known as the Campenot chamber, this study showed that local protein synthesis occurs and that it is not required for the basal rate of axon growth. ArticleCASPubMedPubMed Central Google Scholar
Koenig, E. Evaluation of local synthesis of axonal proteins in the goldfish Mauthner cell axon and axons of dorsal and ventral roots of the rat in vitro. Mol. Cell Neurosci.2, 384–394 (1991). ArticleCASPubMed Google Scholar
Tobias, G. S. & Koenig, E. Influence of nerve cell body and neurolemma cell on local axonal protein synthesis following neurotomy. Exp. Neurol.49, 235–245 (1975). ArticleCASPubMed Google Scholar
Tobias, G. S. & Koenig, E. Axonal protein synthesizing activity during the early outgrowth period following neurotomy. Exp. Neurol.49, 221–234 (1975). ArticleCASPubMed Google Scholar
Van Minnen, J. et al. De novo protein synthesis in isolated axons of identified neurons. Neuroscience80, 1–7 (1997). ArticleCASPubMed Google Scholar
Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell110, 223–235 (2002). First evidence that extrinsic cues may regulate translation of guidance cue receptor mRNAs in growing axons. The authors suggested an intriguing mechanism by which intermediate targets regulate future responsiveness of pathfinding axons by stimulating local synthesis of new guidance cue receptors needed for the next part of the journey. ArticleCASPubMed Google Scholar
Bi, J., Tsai, N. P., Lin, Y. P., Loh, H. H. & Wei, L. N. Axonal mRNA transport and localized translational regulation of κ-opioid receptor in primary neurons of dorsal root ganglia. Proc. Natl Acad. Sci. USA103, 19919–19924 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zheng, J. Q. et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J. Neurosci.21, 9291–9303 (2001). Landmark study that showed evidence for involvement of axonal protein synthesis in axon regeneration. Adult peripheral sensory neurons can locally synthesize proteinsin vitro, and this ability is enhanced by preconditioning nerve injuryin vivo. ArticleCASPubMedPubMed Central Google Scholar
Merianda, T. T. et al. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell Neurosci.40, 128–142 (2009). ArticleCASPubMed Google Scholar
Willis, D. et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci.25, 778–791 (2005). ArticleCASPubMedPubMed Central Google Scholar
Spencer, G. E. et al. Synthesis and functional integration of a neurotransmitter receptor in isolated invertebrate axons. J. Neurobiol.44, 72–81 (2000). ArticleCASPubMed Google Scholar
Lyles, V., Zhao, Y. & Martin, K. C. Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron49, 349–356 (2006). ArticleCASPubMed Google Scholar
Lujan, H. D. et al. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J. Biol. Chem.270, 4612–4618 (1995). ArticleCASPubMed Google Scholar
Harris, W. A., Holt, C. E. & Bonhoeffer, F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development101, 123–133 (1987). CASPubMed Google Scholar
Ming, G. L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature417, 411–418 (2002). First evidence that local mRNA translation may be necessary for the adaptation of growth cones to extracellular signals. Cultured growth cones are desensitized to continuously applied guidance cues but later resensitized to the same cue, and resensitization is blocked by inhibitors of MAPKs and ribosome function. ArticleCASPubMed Google Scholar
Campbell, D. S. et al. Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J. Neurosci.21, 8538–8547 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hengst, U., Deglincerti, A., Kim, H. J., Jeon, N. L. & Jaffrey, S. R. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nature Cell Biol.11, 1024–1030 (2009). ArticleCASPubMed Google Scholar
Leung, K. M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neurosci.9, 1247–1256 (2006). ArticleCASPubMed Google Scholar
Yao, J., Sasaki, Y., Wen, Z., Bassell, G. J. & Zheng, J. Q. An essential role for β-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nature Neurosci.9, 1265–1273 (2006). Together with reference 53, this provided the first evidence that asymmetric mRNA translation mediates chemotropic growth cone turning. Netrin 1 and BDNF gradients activate asymmetric β-actin synthesis by increasing its transport and translation via ZBP1, a process that is required for attractive growth cone turning towards the sources of gradients. ArticleCASPubMed Google Scholar
Piper, M. et al. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron49, 215–228 (2006). Together with reference 55, these were the first studies to suggest a mechanism for translation-dependent growth cone repulsion. Repulsive cues SEMA3A and SLIT2 increase global translational activity but activate translation of selective mRNAs that encode cytoskeletal-disassembling molecules, such as RHOA and cofilin, respectively. ArticleCASPubMedPubMed Central Google Scholar
Alvarez-Fischer, D. et al. Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nature Neurosci.14, 1260–1266 (2011). ArticleCASPubMed Google Scholar
Wizenmann, A. et al. Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo. Neuron64, 355–366 (2009). ArticleCASPubMedPubMed Central Google Scholar
Guirland, C., Buck, K. B., Gibney, J. A., DiCicco-Bloom, E. & Zheng, J. Q. Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J. Neurosci.23, 2274–2283 (2003). ArticleCASPubMedPubMed Central Google Scholar
Cox, L. J., Hengst, U., Gurskaya, N. G., Lukyanov, K. A. & Jaffrey, S. R. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature Cell Biol.10, 149–159 (2008). Together with references 64 and 130, provided key evidence that axonally synthesized proteins generate retrograde signaling to the nucleus. Axonally synthesized importin-β1 mediates retrograde transport of transcription factors to the cell body, a process essential for axon regeneration after injuryin vivo. Axonally synthesized transcription factors CREB and C/EBP1 mediate cell survivalin vitroandin vivo, respectively. ArticleCASPubMed Google Scholar
Zhang, H. L., Singer, R. H. & Bassell, G. J. Neurotrophin regulation of β-actin mRNA and protein localization within growth cones. J. Cell Biol.147, 59–70 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron40, 1095–1104 (2003). ArticleCASPubMed Google Scholar
Perlson, E. et al. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron45, 715–726 (2005). ArticleCASPubMed Google Scholar
Yudin, D. et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron59, 241–252 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mann, F., Miranda, E., Weinl, C., Harmer, E. & Holt, C. E. B-type Eph receptors and ephrins induce growth cone collapse through distinct intracellular pathways. J. Neurobiol.57, 323–336 (2003). ArticleCASPubMedPubMed Central Google Scholar
Strochlic, L., Dwivedy, A., van Horck, F. P., Falk, J. & Holt, C. E. A role for S1P signalling in axon guidance in the Xenopus visual system. Development135, 333–342 (2008). ArticleCASPubMed Google Scholar
Nedelec, S. et al. Concentration-dependent requirement for local protein synthesis in motor neuron subtype-specific response to axon guidance cues. J. Neurosci.32, 1496–1506 (2012). ArticleCASPubMedPubMed Central Google Scholar
Roche, F. K., Marsick, B. M. & Letourneau, P. C. Protein synthesis in distal axons is not required for growth cone responses to guidance cues. J. Neurosci.29, 638–652 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huttelmaier, S. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature438, 512–515 (2005). ArticleCASPubMed Google Scholar
Welshhans, K. & Bassell, G. J. Netrin-1-induced local β-actin synthesis and growth cone guidance requires zipcode binding protein 1. J. Neurosci.31, 9800–9813 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kislauskis, E. H., Zhu, X. & Singer, R. H. β-actin messenger RNA localization and protein synthesis augment cell motility. J. Cell Biol.136, 1263–1270 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shestakova, E. A., Singer, R. H. & Condeelis, J. The physiological significance of β-actin mRNA localization in determining cell polarity and directional motility. Proc. Natl Acad. Sci. USA98, 7045–7050 (2001). ArticleCASPubMedPubMed Central Google Scholar
Karakozova, M. et al. Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science313, 192–196 (2006). ArticleCASPubMed Google Scholar
Wang, J. et al. Reversible glutathionylation regulates actin polymerization in A431 cells. J. Biol. Chem.276, 47763–47766 (2001). ArticleCASPubMed Google Scholar
von Philipsborn, A. & Bastmeyer, M. Mechanisms of gradient detection: a comparison of axon pathfinding with eukaryotic cell migration. Int. Rev. Cytol.263, 1–62 (2007). ArticleCASPubMed Google Scholar
Piper, M., Salih, S., Weinl, C., Holt, C. E. & Harris, W. A. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nature Neurosci.8, 179–186 (2005). ArticleCASPubMed Google Scholar
Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature401, 69–73 (1999). ArticleCASPubMed Google Scholar
Shewan, D., Dwivedy, A., Anderson, R. & Holt, C. E. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nature Neurosci.5, 955–962 (2002). ArticleCASPubMed Google Scholar
Kamiguchi, H. & Yoshihara, F. The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J. Neurosci.21, 9194–9203 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kuwako, K. et al. Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron67, 407–421 (2010). ArticleCASPubMed Google Scholar
Shaw, G. & Bray, D. Movement and extension of isolated growth cones. Exp. Cell Res.104, 55–62 (1977). ArticleCASPubMed Google Scholar
van Kesteren, R. E. et al. Local synthesis of actin-binding protein β-thymosin regulates neurite outgrowth. J. Neurosci.26, 152–157 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhang, X. & Poo, M. M. Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron36, 675–688 (2002). ArticleCASPubMed Google Scholar
Crispino, M. et al. Active polysomes are present in the large presynaptic endings of the synaptosomal fraction from squid brain. J. Neurosci.17, 7694–7702 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hu, J. Y., Meng, X. & Schacher, S. Target interaction regulates distribution and stability of specific mRNAs. J. Neurosci.22, 2669–2678 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schacher, S., Wu, F., Panyko, J. D., Sun, Z. Y. & Wang, D. Expression and branch-specific export of mRNA are regulated by synapse formation and interaction with specific postsynaptic targets. J. Neurosci.19, 6338–6347 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lee, W., Jones, A. M., Ono, J. K. & Wayne, N. L. Regional differences in processing of locally translated prohormone in peptidergic neurons of Aplysia californica. J. Neurochem.83, 1423–1430 (2002). ArticleCASPubMed Google Scholar
Cheng, L., Locke, C. & Davis, G. W. S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development. J. Cell Biol.194, 921–935 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ronesi, J. A. & Huber, K. M. Metabotropic glutamate receptors and fragile X mental retardation protein: partners in translational regulation at the synapse. Sci. Signal.1, pe6 (2008). ArticlePubMed Google Scholar
Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron60, 201–214 (2008). ArticleCASPubMedPubMed Central Google Scholar
Antar, L. N., Li, C., Zhang, H., Carroll, R. C. & Bassell, G. J. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol. Cell. Neurosci.32, 37–48 (2006). ArticleCASPubMed Google Scholar
Li, C., Bassell, G. J. & Sasaki, Y. Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by semaphorin-3A. Front. Neural Circuits3, 11 (2009). ArticleCASPubMedPubMed Central Google Scholar
Christie, S. B., Akins, M. R., Schwob, J. E. & Fallon, J. R. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J. Neurosci.29, 1514–1524 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hanson, J. E. & Madison, D. V. Presynaptic Fmr1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. J. Neurosci.27, 4014–4018 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fallini, C. et al. The survival of motor neuron (SMN) protein interacts with the mRNA-binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J. Neurosci.31, 3914–3925 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H. et al. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J. Neurosci.26, 8622–8632 (2006). ArticleCAS Google Scholar
Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. J. Cell Sci.115, 3817–3827 (2002). ArticleCASPubMed Google Scholar
Smith, C. L. et al. GAP-43 mRNA in growth cones is associated with HuD and ribosomes. J. Neurobiol.61, 222–235 (2004). ArticleCAS Google Scholar
Droz, B. & Barondes, S. M. Nerve endings: rapid appearance of labeled protein shown by electron microscope radioautography. Science165, 1131–1133 (1969). ArticleCASPubMed Google Scholar
Thoenen, H., Mueller, R. A. & Axelrod, J. Phase difference in the induction of tyrosine hydroxylase in cell body and nerve terminals of sympathetic neurones. Proc. Natl Acad. Sci. USA65, 58–62 (1970). ArticleCASPubMedPubMed Central Google Scholar
Koenig, E. & Koelle, G. B. Acetylcholinesterase regeneration in peripheral nerve after irreversible inactivation. Science132, 1249–1250 (1960). ArticleCASPubMed Google Scholar
Melia, K. R., Trembleau, A., Oddi, R., Sanna, P. P. & Bloom, F. E. Detection and regulation of tyrosine hydroxylase mRNA in catecholaminergic terminal fields: possible axonal compartmentalization. Exp. Neurol.130, 394–406 (1994). ArticleCASPubMed Google Scholar
Jirikowski, G. F., Sanna, P. P. & Bloom, F. E. mRNA coding for oxytocin is present in axons of the hypothalamo–neurohypophysial tract. Proc. Natl Acad. Sci. USA87, 7400–7404 (1990). ArticleCASPubMedPubMed Central Google Scholar
Trembleau, A., Melia, K. R. & Bloom, F. E. BC1 RNA and vasopressin mRNA in rat neurohypophysis: axonal compartmentalization and differential regulation during dehydration and rehydration. Eur. J. Neurosci.7, 2249–2260 (1995). ArticleCASPubMed Google Scholar
Trembleau, A., Morales, M. & Bloom, F. E. Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo–neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience70, 113–125 (1996). ArticleCASPubMed Google Scholar
Mohr, E., Fehr, S. & Richter, D. Axonal transport of neuropeptide encoding mRNAs within the hypothalamo–hypophyseal tract of rats. EMBO J.10, 2419–2424 (1991). ArticleCASPubMedPubMed Central Google Scholar
Mohr, E. & Richter, D. Diversity of mRNAs in the axonal compartment of peptidergic neurons in the rat. Eur. J. Neurosci.4, 870–876 (1992). ArticlePubMed Google Scholar
Dirks, R. W. et al. Ultrastructural evidence for the axonal localization of caudodorsal cell hormone mRNA in the central nervous system of the mollusc Lymnaea stagnalis. Microsc. Res. Tech.25, 12–18 (1993). ArticleCASPubMed Google Scholar
Twiss, J. L. & Shooter, E. M. Nerve growth factor promotes neurite regeneration in PC12 cells by translational control. J. Neurochem.64, 550–557 (1995). ArticleCASPubMed Google Scholar
Gioio, A. E. et al. Local synthesis of nuclear-encoded mitochondrial proteins in the presynaptic nerve terminal. J. Neurosci. Res.64, 447–453 (2001). ArticleCASPubMed Google Scholar
Aschrafi, A., Natera-Naranjo, O., Gioio, A. E. & Kaplan, B. B. Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol. Cell Neurosci.43, 422–430 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hillefors, M., Gioio, A. E., Mameza, M. G. & Kaplan, B. B. Axon viability and mitochondrial function are dependent on local protein synthesis in sympathetic neurons. Cell. Mol. Neurobiol.27, 701–716 (2007). Together with reference 118, this showed that mitochondria in distal axons are maintained by locally synthesized nuclear-encoded proteins. Blocking either local protein synthesis or protein import in distal axons leads to mitochondrial dysfunction and axon degeneration. ArticleCASPubMed Google Scholar
Yoon, B. C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell148, 1–13 (2012). ArticleCAS Google Scholar
Pareyson, D. & Marchesi, C. Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol.8, 654–667 (2009). ArticleCASPubMed Google Scholar
Capell, B. C. & Collins, F. S. Human laminopathies: nuclei gone genetically awry. Nature Rev. Genet.7, 940–952 (2006). ArticleCASPubMed Google Scholar
Wang, W., van Niekerk, E., Willis, D. E. & Twiss, J. L. RNA transport and localized protein synthesis in neurological disorders and neural repair. Dev. Neurobiol.67, 1166–1182 (2007). ArticleCASPubMed Google Scholar
Gumy, L. F., Tan, C. L. & Fawcett, J. W. The role of local protein synthesis and degradation in axon regeneration. Exp. Neurol.223, 28–37 (2010). ArticleCASPubMedPubMed Central Google Scholar
Christie, K. J., Webber, C. A., Martinez, J. A., Singh, B. & Zochodne, D. W. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J. Neurosci.30, 9306–9315 (2010). ArticleCASPubMedPubMed Central Google Scholar
Court, F. A., Hendriks, W. T., MacGillavry, H. D., Alvarez, J. & van Minnen, J. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J. Neurosci.28, 11024–11029 (2008). ArticleCASPubMedPubMed Central Google Scholar
Court, F. A. et al. Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia59, 1529–1539 (2011). ArticlePubMed Google Scholar
Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell79, 981–991 (1994). ArticleCASPubMed Google Scholar
Wensley, C. H. et al. Olfactory marker protein mRNA is found in axons of olfactory receptor neurons. J. Neurosci.15, 4827–4837 (1995). ArticleCASPubMedPubMed Central Google Scholar
Dubacq, C., Jamet, S. & Trembleau, A. Evidence for developmentally regulated local translation of odorant receptor mRNAs in the axons of olfactory sensory neurons. J. Neurosci.29, 10184–10190 (2009). ArticleCASPubMedPubMed Central Google Scholar
Michaelevski, I. et al. Signaling to transcription networks in the neuronal retrograde injury response. Sci. Signal3, ra53 (2011). Google Scholar
Yan, D., Wu, Z., Chisholm, A. D. & Jin, Y. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell138, 1005–1018 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sengupta, S., Peterson, T. R. & Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell40, 310–322 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tohda, C. et al. Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity. J. Neurochem.76, 1628–1635 (2001). ArticleCASPubMed Google Scholar
Ruangsri, S. et al. Relationship of axonal voltage-gated sodium channel 1.8 (NaV1.8) mRNA accumulation to sciatic nerve injury-induced painful neuropathy in rats. J. Biol. Chem.286, 39836–39847 (2011). ArticleCASPubMedPubMed Central Google Scholar
Geranton, S. M. et al. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J. Neurosci.29, 15017–15027 (2009). ArticleCASPubMedPubMed Central Google Scholar
Melemedjian, O. K. et al. IL-6- and NGF-induced rapid control of protein synthesis and nociceptive plasticity via convergent signaling to the eIF4F complex. J. Neurosci.30, 15113–15123 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bi, J., Hu, X., Loh, H. H. & Wei, L. N. Mouse κ-opioid receptor mRNA differential transport in neurons. Mol. Pharmacol.64, 594–599 (2003). ArticleCASPubMed Google Scholar
Bear, M. F., Dolen, G., Osterweil, E. & Nagarajan, N. Fragile X: translation in action. Neuropsychopharmacology33, 84–87 (2008). ArticleCASPubMed Google Scholar
Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80, 155–165 (1995). ArticleCASPubMed Google Scholar
Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell95, 615–624 (1998). ArticleCASPubMed Google Scholar
Sharma, A. et al. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp. Cell Res.309, 185–197 (2005). ArticleCASPubMed Google Scholar
Rossoll, W. et al. SMN, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J. Cell Biol.163, 801–812 (2003). ArticleCASPubMedPubMed Central Google Scholar
Piazzon, N. et al. In vitro and in cellulo evidences for association of the survival of motor neuron complex with the fragile X mental retardation protein. J. Biol. Chem.283, 5598–5610 (2008). ArticleCASPubMed Google Scholar
Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci.2, 806–819 (2001). ArticleCAS Google Scholar
Chen-Plotkin, A. S., Lee, V. M. & Trojanowski, J. Q. TAR DNA-binding protein 43 in neurodegenerative disease. Nature Rev. Neurol.6, 211–220 (2010). ArticleCAS Google Scholar
Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet.38, 411–413 (2006). ArticleCASPubMed Google Scholar
Emara, M. M. et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J. Biol. Chem.285, 10959–10968 (2010). ArticleCASPubMedPubMed Central Google Scholar
Campbell, D. S. & Holt, C. E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron37, 939–952 (2003). ArticleCASPubMed Google Scholar
Nie, D. et al. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nature Neurosci.13, 163–172 (2010). First evidence showing that some guidance cues can repress mRNA translation. Ephrin A represses mTOR by inhibiting MAPK ERK1/2, providing a mechanism by which multiple cues regulate local protein synthesis in axons and growth cones by modulating diverse pathways that converge on mTOR. ArticleCASPubMed Google Scholar
Kim, S. & Coulombe, P. A. Emerging role for the cytoskeleton as an organizer and regulator of translation. Nature Rev. Mol. Cell Biol.11, 75–81 (2010). ArticleCAS Google Scholar
Zhang, H. L. et al. Neurotrophin-induced transport of a β-actin mRNP complex increases β-actin levels and stimulates growth cone motility. Neuron31, 261–275 (2001). ArticleCASPubMed Google Scholar
Vuppalanchi, D. et al. Conserved 3′-untranslated region sequences direct subcellular localization of chaperone protein mRNAs in neurons. J. Biol. Chem.285, 18025–18038 (2010). ArticleCASPubMedPubMed Central Google Scholar
Willis, D. E. et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol.178, 965–980 (2007). Comprehensive profiling study that showed extrinsic cues can influence the axonal transcriptome. Systematic analysis of axons treated with NGF, BDNF, NT3, MAG and SEMA3A showed that these cues regulate axonal transport of 50 candidate mRNAs in culture. ArticleCASPubMedPubMed Central Google Scholar
Sotelo-Silveira, J. R., Calliari, A., Kun, A., Koenig, E. & Sotelo, J. R. RNA trafficking in axons. Traffic7, 508–515 (2006). ArticleCASPubMed Google Scholar
van Niekerk, E. A. et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La. Proc. Natl Acad. Sci. USA104, 12913–12918 (2007). ArticleCASPubMedPubMed Central Google Scholar
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem.267, 6321–6330 (2000). ArticleCASPubMed Google Scholar
Vuppalanchi, D., Willis, D. E. & Twiss, J. L. Regulation of mRNA transport and translation in axons. Results Probl. Cell Differ.48, 193–224 (2009). CASPubMed Google Scholar
Krichevsky, A. M. & Kosik, K. S. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron32, 683–696 (2001). ArticleCASPubMed Google Scholar
Parker, R. & Sheth, U. P bodies and the control of mRNA translation and degradation. Mol. Cell25, 635–646 (2007). ArticleCASPubMed Google Scholar
Tsai, N. P., Bi, J. & Wei, L. N. The adaptor Grb7 links netrin-1 signaling to regulation of mRNA translation. EMBO J.26, 1522–1531 (2007). ArticleCASPubMedPubMed Central Google Scholar
Buckley, P. T. et al. Cytoplasmic intron sequence-retaining transcripts can be dendritically targeted via ID element retrotransposons. Neuron69, 877–884 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z., Gore, B. B., Long, H., Ma, L. & Tessier-Lavigne, M. Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron58, 325–332 (2008). ArticleCASPubMed Google Scholar
Giorgi, C. et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell130, 179–191 (2007). ArticleCASPubMed Google Scholar
Kiebler, M. A. & Bassell, G. J. Neuronal RNA granules: movers and makers. Neuron51, 685–690 (2006). ArticleCASPubMed Google Scholar
Sasaki, Y. et al. Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local β-actin synthesis and growth cone turning. J. Neurosci.30, 9349–9358 (2010). ArticleCASPubMedPubMed Central Google Scholar
Melko, M. & Bardoni, B. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie92, 919–926 (2010). ArticleCASPubMed Google Scholar
Narayanan, U. et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem.283, 18478–18482 (2008). ArticleCASPubMedPubMed Central Google Scholar
Richter, J. D. Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev.63, 446–456 (1999). CASPubMedPubMed Central Google Scholar
Kundel, M., Jones, K. J., Shin, C. Y. & Wells, D. G. Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent β-catenin mRNA translation in developing hippocampal neurons. J. Neurosci.29, 13630–13639 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lin, A. C. et al. Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development. Neural Dev.4, 8 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alexandrov, I. M. et al. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance. PLoS Genet.8, e1002457 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schratt, G. M. et al. A brain-specific microRNA regulates dendritic spine development. Nature439, 283–289 (2006). ArticleCASPubMed Google Scholar
Aschrafi, A. et al. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J. Neurosci.28, 12581–12590 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ashley, C. T., Jr, Wilkinson, K. D., Reines, D. & Warren, S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science262, 563–566 (1993). ArticleCASPubMed Google Scholar
Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci.7, 113–117 (2004). ArticleCASPubMed Google Scholar
Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell145, 383–397 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tsurugi, K. & Ogata, K. Evidence for the exchangeability of acidic ribosomal proteins on cytoplasmic ribosomes in regenerating rat liver. J. Biochem.98, 1427–1431 (1985). ArticleCASPubMed Google Scholar
Taylor, A. M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods2, 599–605 (2005). ArticleCASPubMedPubMed Central Google Scholar
Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W. & Jeon, N. L. Microfluidic culture platform for neuroscience research. Nature Protoc.1, 2128–2136 (2006). ArticleCAS Google Scholar
Campenot, R. B., Lund, K. & Mok, S. A. Production of compartmented cultures of rat sympathetic neurons. Nature Protoc.4, 1869–1887 (2009). ArticleCAS Google Scholar
Dmochowski, I. J. & Tang, X. Taking control of gene expression with light-activated oligonucleotides. Biotechniques43, 161–171 (2007). ArticleCASPubMed Google Scholar
Je, H. S. et al. Chemically inducible inactivation of protein synthesis in genetically targeted neurons. J. Neurosci.29, 6761–6766 (2009). ArticleCASPubMedPubMed Central Google Scholar
Campenot, R. B. NGF and the local control of nerve terminal growth. J. Neurobiol.25, 599–611 (1994). ArticleCASPubMed Google Scholar
Leung, K. M. & Holt, C. E. Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos. Nature Protoc.3, 1318–1327 (2008). ArticleCAS Google Scholar
Bi, J., Tsai, N. P., Lu, H. Y., Loh, H. H. & Wei, L. N. Copb1-facilitated axonal transport and translation of κ opioid-receptor mRNA. Proc. Natl Acad. Sci. USA104, 13810–13815 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. K. & Hollenbeck, P. J. Organization and translation of mRNA in sympathetic axons. J. Cell Sci.116, 4467–4478 (2003). ArticleCASPubMed Google Scholar
Dieterich, D. C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nature Neurosci.13, 897–905 (2010). ArticleCASPubMed Google Scholar
Twiss, J. L., Smith, D. S., Chang, B. & Shooter, E. M. Translational control of ribosomal protein L4 mRNA is required for rapid neurite regeneration. Neurobiol. Dis.7, 416–428 (2000). ArticleCASPubMed Google Scholar
Natera-Naranjo, O. et al. Local translation of ATP synthase subunit 9 mRNA alters ATP levels and the production of ROS in the axon. Mol. Cell Neurosci.49, 263–270 (2012). ArticleCASPubMed Google Scholar
Giustetto, M. et al. Axonal transport of eukaryotic translation elongation factor 1α mRNA couples transcription in the nucleus to long-term facilitation at the synapse. Proc. Natl Acad. Sci. USA100, 13680–13685 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sotelo-Silveira, J. R. et al. Neurofilament mRNAs are present and translated in the normal and severed sciatic nerve. J. Neurosci. Res.62, 65–74 (2000). ArticleCASPubMed Google Scholar
Aronov, S., Aranda, G., Behar, L. & Ginzburg, I. Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal. J. Neurosci.21, 6577–6587 (2001). ArticleCASPubMedPubMed Central Google Scholar