What’s new in 1.0.0 (January 29, 2020) — pandas 2.2.3 documentation (original) (raw)
These are the changes in pandas 1.0.0. See Release notes for a full changelog including other versions of pandas.
Note
The pandas 1.0 release removed a lot of functionality that was deprecated in previous releases (see belowfor an overview). It is recommended to first upgrade to pandas 0.25 and to ensure your code is working without warnings, before upgrading to pandas 1.0.
New deprecation policy#
Starting with pandas 1.0.0, pandas will adopt a variant of SemVer to version releases. Briefly,
- Deprecations will be introduced in minor releases (e.g. 1.1.0, 1.2.0, 2.1.0, …)
- Deprecations will be enforced in major releases (e.g. 1.0.0, 2.0.0, 3.0.0, …)
- API-breaking changes will be made only in major releases (except for experimental features)
See Version policy for more.
Enhancements#
Using Numba in rolling.apply
and expanding.apply
#
We’ve added an engine
keyword to apply() and apply()that allows the user to execute the routine using Numba instead of Cython. Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and the data set is larger (1 million rows or greater). For more details, seerolling apply documentation (GH 28987, GH 30936)
Defining custom windows for rolling operations#
We’ve added a pandas.api.indexers.BaseIndexer() class that allows users to define how window bounds are created during rolling
operations. Users can define their own get_window_bounds
method on a pandas.api.indexers.BaseIndexer() subclass that will generate the start and end indices used for each window during the rolling aggregation. For more details and example usage, see the custom window rolling documentation
Converting to markdown#
We’ve added to_markdown() for creating a markdown table (GH 11052)
In [1]: df = pd.DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]}, index=['a', 'a', 'b'])
In [2]: print(df.to_markdown())
A | B | |
---|---|---|
a | 1 | 1 |
a | 2 | 2 |
b | 3 | 3 |
Experimental new features#
Experimental NA
scalar to denote missing values#
A new pd.NA
value (singleton) is introduced to represent scalar missing values. Up to now, pandas used several values to represent missing data: np.nan
is used for this for float data, np.nan
orNone
for object-dtype data and pd.NaT
for datetime-like data. The goal of pd.NA
is to provide a “missing” indicator that can be used consistently across data types. pd.NA
is currently used by the nullable integer and boolean data types and the new string data type (GH 28095).
Warning
Experimental: the behaviour of pd.NA
can still change without warning.
For example, creating a Series using the nullable integer dtype:
In [3]: s = pd.Series([1, 2, None], dtype="Int64")
In [4]: s Out[4]: 0 1 1 2 2 Length: 3, dtype: Int64
In [5]: s[2] Out[5]:
Compared to np.nan
, pd.NA
behaves differently in certain operations. In addition to arithmetic operations, pd.NA
also propagates as “missing” or “unknown” in comparison operations:
In [6]: np.nan > 1 Out[6]: False
In [7]: pd.NA > 1 Out[7]:
For logical operations, pd.NA
follows the rules of thethree-valued logic (or_Kleene logic_). For example:
In [8]: pd.NA | True Out[8]: True
For more, see NA section in the user guide on missing data.
Dedicated string data type#
We’ve added StringDtype, an extension type dedicated to string data. Previously, strings were typically stored in object-dtype NumPy arrays. (GH 29975)
Warning
StringDtype
is currently considered experimental. The implementation and parts of the API may change without warning.
The 'string'
extension type solves several issues with object-dtype NumPy arrays:
- You can accidentally store a mixture of strings and non-strings in an
object
dtype array. AStringArray
can only store strings. object
dtype breaks dtype-specific operations like DataFrame.select_dtypes(). There isn’t a clear way to select just text while excluding non-text, but still object-dtype columns.- When reading code, the contents of an
object
dtype array is less clear thanstring
.
In [9]: pd.Series(['abc', None, 'def'], dtype=pd.StringDtype()) Out[9]: 0 abc 1 2 def Length: 3, dtype: string
You can use the alias "string"
as well.
In [10]: s = pd.Series(['abc', None, 'def'], dtype="string")
In [11]: s Out[11]: 0 abc 1 2 def Length: 3, dtype: string
The usual string accessor methods work. Where appropriate, the return type of the Series or columns of a DataFrame will also have string dtype.
In [12]: s.str.upper() Out[12]: 0 ABC 1 2 DEF Length: 3, dtype: string
In [13]: s.str.split('b', expand=True).dtypes Out[13]: 0 string[python] 1 string[python] Length: 2, dtype: object
String accessor methods returning integers will return a value with Int64Dtype
In [14]: s.str.count("a") Out[14]: 0 1 1 2 0 Length: 3, dtype: Int64
We recommend explicitly using the string
data type when working with strings. See Text data types for more.
Boolean data type with missing values support#
We’ve added BooleanDtype / BooleanArray, an extension type dedicated to boolean data that can hold missing values. The defaultbool
data type based on a bool-dtype NumPy array, the column can only holdTrue
or False
, and not missing values. This new BooleanArraycan store missing values as well by keeping track of this in a separate mask. (GH 29555, GH 30095, GH 31131)
In [15]: pd.Series([True, False, None], dtype=pd.BooleanDtype()) Out[15]: 0 True 1 False 2 Length: 3, dtype: boolean
You can use the alias "boolean"
as well.
In [16]: s = pd.Series([True, False, None], dtype="boolean")
In [17]: s Out[17]: 0 True 1 False 2 Length: 3, dtype: boolean
Method convert_dtypes
to ease use of supported extension dtypes#
In order to encourage use of the extension dtypes StringDtype
,BooleanDtype
, Int64Dtype
, Int32Dtype
, etc., that support pd.NA
, the methods DataFrame.convert_dtypes() and Series.convert_dtypes()have been introduced. (GH 29752) (GH 30929)
Example:
In [18]: df = pd.DataFrame({'x': ['abc', None, 'def'], ....: 'y': [1, 2, np.nan], ....: 'z': [True, False, True]}) ....:
In [19]: df Out[19]: x y z 0 abc 1.0 True 1 None 2.0 False 2 def NaN True
[3 rows x 3 columns]
In [20]: df.dtypes Out[20]: x object y float64 z bool Length: 3, dtype: object
In [21]: converted = df.convert_dtypes()
In [22]: converted Out[22]: x y z 0 abc 1 True 1 2 False 2 def True
[3 rows x 3 columns]
In [23]: converted.dtypes Out[23]: x string[python] y Int64 z boolean Length: 3, dtype: object
This is especially useful after reading in data using readers such as read_csv()and read_excel(). See here for a description.
Other enhancements#
- DataFrame.to_string() added the
max_colwidth
parameter to control when wide columns are truncated (GH 9784) - Added the
na_value
argument to Series.to_numpy(),Index.to_numpy()
and DataFrame.to_numpy() to control the value used for missing data (GH 30322) - MultiIndex.from_product() infers level names from inputs if not explicitly provided (GH 27292)
- DataFrame.to_latex() now accepts
caption
andlabel
arguments (GH 25436) - DataFrames with nullable integer, the new string dtypeand period data type can now be converted to
pyarrow
(>=0.15.0), which means that it is supported in writing to the Parquet file format when using thepyarrow
engine (GH 28368). Full roundtrip to parquet (writing and reading back in with to_parquet() / read_parquet()) is supported starting with pyarrow >= 0.16 (GH 20612). to_parquet()
now appropriately handles theschema
argument for user defined schemas in the pyarrow engine. (GH 30270)- DataFrame.to_json() now accepts an
indent
integer argument to enable pretty printing of JSON output (GH 12004) - read_stata() can read Stata 119 dta files. (GH 28250)
- Implemented Window.var() and Window.std() functions (GH 26597)
- Added
encoding
argument to DataFrame.to_string() for non-ascii text (GH 28766) - Added
encoding
argument to DataFrame.to_html() for non-ascii text (GH 28663) Styler.background_gradient()
now acceptsvmin
andvmax
arguments (GH 12145)Styler.format()
added thena_rep
parameter to help format the missing values (GH 21527, GH 28358)- read_excel() now can read binary Excel (
.xlsb
) files by passingengine='pyxlsb'
. For more details and example usage, see the Binary Excel files documentation. Closes GH 8540. - The
partition_cols
argument in DataFrame.to_parquet() now accepts a string (GH 27117) - pandas.read_json() now parses
NaN
,Infinity
and-Infinity
(GH 12213) - DataFrame constructor preserve
ExtensionArray
dtype withExtensionArray
(GH 11363) - DataFrame.sort_values() and Series.sort_values() have gained
ignore_index
keyword to be able to reset index after sorting (GH 30114) - DataFrame.sort_index() and Series.sort_index() have gained
ignore_index
keyword to reset index (GH 30114) - DataFrame.drop_duplicates() has gained
ignore_index
keyword to reset index (GH 30114) - Added new writer for exporting Stata dta files in versions 118 and 119,
StataWriterUTF8
. These files formats support exporting strings containing Unicode characters. Format 119 supports data sets with more than 32,767 variables (GH 23573, GH 30959) - Series.map() now accepts
collections.abc.Mapping
subclasses as a mapper (GH 29733) - Added an experimental attrs for storing global metadata about a dataset (GH 29062)
Timestamp.fromisocalendar()
is now compatible with python 3.8 and above (GH 28115)- DataFrame.to_pickle() and read_pickle() now accept URL (GH 30163)
Backwards incompatible API changes#
Avoid using names from MultiIndex.levels
#
As part of a larger refactor to MultiIndex the level names are now stored separately from the levels (GH 27242). We recommend usingMultiIndex.names to access the names, and Index.set_names()to update the names.
For backwards compatibility, you can still access the names via the levels.
In [24]: mi = pd.MultiIndex.from_product([[1, 2], ['a', 'b']], names=['x', 'y'])
In [25]: mi.levels[0].name Out[25]: 'x'
However, it is no longer possible to update the names of the MultiIndex
via the level.
In [26]: mi.levels[0].name = "new name"
RuntimeError Traceback (most recent call last) Cell In[26], line 1 ----> 1 mi.levels[0].name = "new name"
File ~/work/pandas/pandas/pandas/core/indexes/base.py:1690, in Index.name(self, value) 1686 @name.setter 1687 def name(self, value: Hashable) -> None: 1688 if self._no_setting_name: 1689 # Used in MultiIndex.levels to avoid silently ignoring name updates. -> 1690 raise RuntimeError( 1691 "Cannot set name on a level of a MultiIndex. Use " 1692 "'MultiIndex.set_names' instead." 1693 ) 1694 maybe_extract_name(value, None, type(self)) 1695 self._name = value
RuntimeError: Cannot set name on a level of a MultiIndex. Use 'MultiIndex.set_names' instead.
In [27]: mi.names Out[27]: FrozenList(['x', 'y'])
To update, use MultiIndex.set_names
, which returns a new MultiIndex
.
In [28]: mi2 = mi.set_names("new name", level=0)
In [29]: mi2.names Out[29]: FrozenList(['new name', 'y'])
New repr for IntervalArray#
pandas.arrays.IntervalArray adopts a new __repr__
in accordance with other array classes (GH 25022)
pandas 0.25.x
In [1]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)]) Out[2]: IntervalArray([(0, 1], (2, 3]], closed='right', dtype='interval[int64]')
pandas 1.0.0
In [30]: pd.arrays.IntervalArray.from_tuples([(0, 1), (2, 3)]) Out[30]: [(0, 1], (2, 3]] Length: 2, dtype: interval[int64, right]
DataFrame.rename
now only accepts one positional argument#
DataFrame.rename() would previously accept positional arguments that would lead to ambiguous or undefined behavior. From pandas 1.0, only the very first argument, which maps labels to their new names along the default axis, is allowed to be passed by position (GH 29136).
pandas 0.25.x
In [1]: df = pd.DataFrame([[1]]) In [2]: df.rename({0: 1}, {0: 2}) Out[2]: FutureWarning: ...Use named arguments to resolve ambiguity... 2 1 1
pandas 1.0.0
In [3]: df.rename({0: 1}, {0: 2}) Traceback (most recent call last): ... TypeError: rename() takes from 1 to 2 positional arguments but 3 were given
Note that errors will now be raised when conflicting or potentially ambiguous arguments are provided.
pandas 0.25.x
In [4]: df.rename({0: 1}, index={0: 2}) Out[4]: 0 1 1
In [5]: df.rename(mapper={0: 1}, index={0: 2}) Out[5]: 0 2 1
pandas 1.0.0
In [6]: df.rename({0: 1}, index={0: 2}) Traceback (most recent call last): ... TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns'
In [7]: df.rename(mapper={0: 1}, index={0: 2}) Traceback (most recent call last): ... TypeError: Cannot specify both 'mapper' and any of 'index' or 'columns'
You can still change the axis along which the first positional argument is applied by supplying the axis
keyword argument.
In [31]: df.rename({0: 1}) Out[31]: 0 1 1
[1 rows x 1 columns]
In [32]: df.rename({0: 1}, axis=1) Out[32]: 1 0 1
[1 rows x 1 columns]
If you would like to update both the index and column labels, be sure to use the respective keywords.
In [33]: df.rename(index={0: 1}, columns={0: 2}) Out[33]: 2 1 1
[1 rows x 1 columns]
Extended verbose info output for DataFrame#
DataFrame.info() now shows line numbers for the columns summary (GH 17304)
pandas 0.25.x
In [1]: df = pd.DataFrame({"int_col": [1, 2, 3], ... "text_col": ["a", "b", "c"], ... "float_col": [0.0, 0.1, 0.2]}) In [2]: df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 3 columns): int_col 3 non-null int64 text_col 3 non-null object float_col 3 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 152.0+ bytes
pandas 1.0.0
In [34]: df = pd.DataFrame({"int_col": [1, 2, 3], ....: "text_col": ["a", "b", "c"], ....: "float_col": [0.0, 0.1, 0.2]}) ....:
In [35]: df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 3 columns):
Column Non-Null Count Dtype
0 int_col 3 non-null int64
1 text_col 3 non-null object
2 float_col 3 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 200.0+ bytes
pandas.array() inference changes#
pandas.array() now infers pandas’ new extension types in several cases (GH 29791):
- String data (including missing values) now returns a arrays.StringArray.
- Integer data (including missing values) now returns a arrays.IntegerArray.
- Boolean data (including missing values) now returns the new arrays.BooleanArray
pandas 0.25.x
In [1]: pd.array(["a", None]) Out[1]: ['a', None] Length: 2, dtype: object
In [2]: pd.array([1, None]) Out[2]: [1, None] Length: 2, dtype: object
pandas 1.0.0
In [36]: pd.array(["a", None]) Out[36]: ['a', ] Length: 2, dtype: string
In [37]: pd.array([1, None]) Out[37]: [1, ] Length: 2, dtype: Int64
As a reminder, you can specify the dtype
to disable all inference.
arrays.IntegerArray now uses pandas.NA#
arrays.IntegerArray now uses pandas.NA rather thannumpy.nan
as its missing value marker (GH 29964).
pandas 0.25.x
In [1]: a = pd.array([1, 2, None], dtype="Int64") In [2]: a Out[2]: [1, 2, NaN] Length: 3, dtype: Int64
In [3]: a[2] Out[3]: nan
pandas 1.0.0
In [38]: a = pd.array([1, 2, None], dtype="Int64")
In [39]: a Out[39]: [1, 2, ] Length: 3, dtype: Int64
In [40]: a[2] Out[40]:
This has a few API-breaking consequences.
Converting to a NumPy ndarray
When converting to a NumPy array missing values will be pd.NA
, which cannot be converted to a float. So calling np.asarray(integer_array, dtype="float")
will now raise.
pandas 0.25.x
In [1]: np.asarray(a, dtype="float") Out[1]: array([ 1., 2., nan])
pandas 1.0.0
In [41]: np.asarray(a, dtype="float") Out[41]: array([ 1., 2., nan])
Use arrays.IntegerArray.to_numpy()
with an explicit na_value
instead.
In [42]: a.to_numpy(dtype="float", na_value=np.nan) Out[42]: array([ 1., 2., nan])
Reductions can return pd.NA
When performing a reduction such as a sum with skipna=False
, the result will now be pd.NA
instead of np.nan
in presence of missing values (GH 30958).
pandas 0.25.x
In [1]: pd.Series(a).sum(skipna=False) Out[1]: nan
pandas 1.0.0
In [43]: pd.Series(a).sum(skipna=False) Out[43]:
value_counts returns a nullable integer dtype
Series.value_counts() with a nullable integer dtype now returns a nullable integer dtype for the values.
pandas 0.25.x
In [1]: pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype Out[1]: dtype('int64')
pandas 1.0.0
In [44]: pd.Series([2, 1, 1, None], dtype="Int64").value_counts().dtype Out[44]: Int64Dtype()
See NA semantics for more on the differences between pandas.NAand numpy.nan
.
arrays.IntegerArray comparisons return arrays.BooleanArray#
Comparison operations on a arrays.IntegerArray now returns aarrays.BooleanArray rather than a NumPy array (GH 29964).
pandas 0.25.x
In [1]: a = pd.array([1, 2, None], dtype="Int64") In [2]: a Out[2]: [1, 2, NaN] Length: 3, dtype: Int64
In [3]: a > 1 Out[3]: array([False, True, False])
pandas 1.0.0
In [45]: a = pd.array([1, 2, None], dtype="Int64")
In [46]: a > 1 Out[46]: [False, True, ] Length: 3, dtype: boolean
Note that missing values now propagate, rather than always comparing unequal like numpy.nan
. See NA semantics for more.
By default Categorical.min()
now returns the minimum instead of np.nan#
When Categorical contains np.nan
,Categorical.min()
no longer return np.nan
by default (skipna=True) (GH 25303)
pandas 0.25.x
In [1]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[1]: nan
pandas 1.0.0
In [47]: pd.Categorical([1, 2, np.nan], ordered=True).min() Out[47]: 1
Default dtype of empty pandas.Series#
Initialising an empty pandas.Series without specifying a dtype will raise a DeprecationWarning
now (GH 17261). The default dtype will change from float64
to object
in future releases so that it is consistent with the behaviour of DataFrame and Index.
pandas 1.0.0
In [1]: pd.Series() Out[2]: DeprecationWarning: The default dtype for empty Series will be 'object' instead of 'float64' in a future version. Specify a dtype explicitly to silence this warning. Series([], dtype: float64)
Result dtype inference changes for resample operations#
The rules for the result dtype in DataFrame.resample() aggregations have changed for extension types (GH 31359). Previously, pandas would attempt to convert the result back to the original dtype, falling back to the usual inference rules if that was not possible. Now, pandas will only return a result of the original dtype if the scalar values in the result are instances of the extension dtype’s scalar type.
In [48]: df = pd.DataFrame({"A": ['a', 'b']}, dtype='category', ....: index=pd.date_range('2000', periods=2)) ....:
In [49]: df Out[49]: A 2000-01-01 a 2000-01-02 b
[2 rows x 1 columns]
pandas 0.25.x
In [1]> df.resample("2D").agg(lambda x: 'a').A.dtype Out[1]: CategoricalDtype(categories=['a', 'b'], ordered=False)
pandas 1.0.0
In [50]: df.resample("2D").agg(lambda x: 'a').A.dtype Out[50]: CategoricalDtype(categories=['a', 'b'], ordered=False, categories_dtype=object)
This fixes an inconsistency between resample
and groupby
. This also fixes a potential bug, where the values of the result might change depending on how the results are cast back to the original dtype.
pandas 0.25.x
In [1] df.resample("2D").agg(lambda x: 'c') Out[1]:
A
0 NaN
pandas 1.0.0
In [51]: df.resample("2D").agg(lambda x: 'c') Out[51]: A 2000-01-01 c
[1 rows x 1 columns]
Increased minimum version for Python#
pandas 1.0.0 supports Python 3.6.1 and higher (GH 29212).
Increased minimum versions for dependencies#
Some minimum supported versions of dependencies were updated (GH 29766, GH 29723). If installed, we now require:
Package | Minimum Version | Required | Changed |
---|---|---|---|
numpy | 1.13.3 | X | |
pytz | 2015.4 | X | |
python-dateutil | 2.6.1 | X | |
bottleneck | 1.2.1 | ||
numexpr | 2.6.2 | ||
pytest (dev) | 4.0.2 |
For optional libraries the general recommendation is to use the latest version. The following table lists the lowest version per library that is currently being tested throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported.
Package | Minimum Version | Changed |
---|---|---|
beautifulsoup4 | 4.6.0 | |
fastparquet | 0.3.2 | X |
gcsfs | 0.2.2 | |
lxml | 3.8.0 | |
matplotlib | 2.2.2 | |
numba | 0.46.0 | X |
openpyxl | 2.5.7 | X |
pyarrow | 0.13.0 | X |
pymysql | 0.7.1 | |
pytables | 3.4.2 | |
s3fs | 0.3.0 | X |
scipy | 0.19.0 | |
sqlalchemy | 1.1.4 | |
xarray | 0.8.2 | |
xlrd | 1.1.0 | |
xlsxwriter | 0.9.8 | |
xlwt | 1.2.0 |
See Dependencies and Optional dependencies for more.
Build changes#
pandas has added a pyproject.toml file and will no longer include cythonized files in the source distribution uploaded to PyPI (GH 28341, GH 20775). If you’re installing a built distribution (wheel) or via conda, this shouldn’t have any effect on you. If you’re building pandas from source, you should no longer need to install Cython into your build environment before calling pip install pandas
.
Other API changes#
- DataFrameGroupBy.transform() and SeriesGroupBy.transform() now raises on invalid operation names (GH 27489)
- pandas.api.types.infer_dtype() will now return “integer-na” for integer and
np.nan
mix (GH 27283) - MultiIndex.from_arrays() will no longer infer names from arrays if
names=None
is explicitly provided (GH 27292) - In order to improve tab-completion, pandas does not include most deprecated attributes when introspecting a pandas object using
dir
(e.g.dir(df)
). To see which attributes are excluded, see an object’s_deprecations
attribute, for examplepd.DataFrame._deprecations
(GH 28805). - The returned dtype of unique() now matches the input dtype. (GH 27874)
- Changed the default configuration value for
options.matplotlib.register_converters
fromTrue
to"auto"
(GH 18720). Now, pandas custom formatters will only be applied to plots created by pandas, through plot(). Previously, pandas’ formatters would be applied to all plots created after a plot(). See units registration for more. - Series.dropna() has dropped its
**kwargs
argument in favor of a singlehow
parameter. Supplying anything else thanhow
to**kwargs
raised aTypeError
previously (GH 29388) - When testing pandas, the new minimum required version of pytest is 5.0.1 (GH 29664)
Series.str.__iter__()
was deprecated and will be removed in future releases (GH 28277).- Added
<NA>
to the list of default NA values for read_csv() (GH 30821)
Documentation improvements#
- Added new section on Scaling to large datasets (GH 28315).
- Added sub-section on Query MultiIndex for HDF5 datasets (GH 28791).
Deprecations#
- Series.item() and Index.item() have been _undeprecated_ (GH 29250)
Index.set_value
has been deprecated. For a given indexidx
, arrayarr
, value inidx
ofidx_val
and a new value ofval
,idx.set_value(arr, idx_val, val)
is equivalent toarr[idx.get_loc(idx_val)] = val
, which should be used instead (GH 28621).is_extension_type()
is deprecated,is_extension_array_dtype()
should be used instead (GH 29457)- eval() keyword argument “truediv” is deprecated and will be removed in a future version (GH 29812)
DateOffset.isAnchored()
andDatetOffset.onOffset()
are deprecated and will be removed in a future version, useDateOffset.is_anchored()
andDateOffset.is_on_offset()
instead (GH 30340)pandas.tseries.frequencies.get_offset
is deprecated and will be removed in a future version, usepandas.tseries.frequencies.to_offset
instead (GH 4205)Categorical.take_nd()
andCategoricalIndex.take_nd()
are deprecated, useCategorical.take()
andCategoricalIndex.take()
instead (GH 27745)- The parameter
numeric_only
ofCategorical.min()
andCategorical.max()
is deprecated and replaced withskipna
(GH 25303) - The parameter
label
in lreshape() has been deprecated and will be removed in a future version (GH 29742) pandas.core.index
has been deprecated and will be removed in a future version, the public classes are available in the top-level namespace (GH 19711)- pandas.json_normalize() is now exposed in the top-level namespace. Usage of
json_normalize
aspandas.io.json.json_normalize
is now deprecated and it is recommended to usejson_normalize
as pandas.json_normalize() instead (GH 27586). - The
numpy
argument of pandas.read_json() is deprecated (GH 28512). - DataFrame.to_stata(), DataFrame.to_feather(), and DataFrame.to_parquet() argument “fname” is deprecated, use “path” instead (GH 23574)
- The deprecated internal attributes
_start
,_stop
and_step
of RangeIndex now raise aFutureWarning
instead of aDeprecationWarning
(GH 26581) - The
pandas.util.testing
module has been deprecated. Use the public API inpandas.testing
documented at Assertion functions (GH 16232). pandas.SparseArray
has been deprecated. Usepandas.arrays.SparseArray
(arrays.SparseArray) instead. (GH 30642)- The parameter
is_copy
of Series.take() and DataFrame.take() has been deprecated and will be removed in a future version. (GH 27357) - Support for multi-dimensional indexing (e.g.
index[:, None]
) on a Index is deprecated and will be removed in a future version, convert to a numpy array before indexing instead (GH 30588) - The
pandas.np
submodule is now deprecated. Import numpy directly instead (GH 30296) - The
pandas.datetime
class is now deprecated. Import fromdatetime
instead (GH 30610) - diff will raise a
TypeError
rather than implicitly losing the dtype of extension types in the future. Convert to the correct dtype before callingdiff
instead (GH 31025)
Selecting Columns from a Grouped DataFrame
When selecting columns from a DataFrameGroupBy
object, passing individual keys (or a tuple of keys) inside single brackets is deprecated, a list of items should be used instead. (GH 23566) For example:
df = pd.DataFrame({ "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": np.random.randn(8), "C": np.random.randn(8), }) g = df.groupby('A')
single key, returns SeriesGroupBy
g['B']
tuple of single key, returns SeriesGroupBy
g[('B',)]
tuple of multiple keys, returns DataFrameGroupBy, raises FutureWarning
g[('B', 'C')]
multiple keys passed directly, returns DataFrameGroupBy, raises FutureWarning
(implicitly converts the passed strings into a single tuple)
g['B', 'C']
proper way, returns DataFrameGroupBy
g[['B', 'C']]
Removal of prior version deprecations/changes#
Removed SparseSeries and SparseDataFrame
SparseSeries
, SparseDataFrame
and the DataFrame.to_sparse
method have been removed (GH 28425). We recommend using a Series
orDataFrame
with sparse values instead.
Matplotlib unit registration
Previously, pandas would register converters with matplotlib as a side effect of importing pandas (GH 18720). This changed the output of plots made via matplotlib plots after pandas was imported, even if you were using matplotlib directly rather than plot().
To use pandas formatters with a matplotlib plot, specify
In [1]: import pandas as pd In [2]: pd.options.plotting.matplotlib.register_converters = True
Note that plots created by DataFrame.plot() and Series.plot() do register the converters automatically. The only behavior change is when plotting a date-like object via matplotlib.pyplot.plot
or matplotlib.Axes.plot
. See Custom formatters for timeseries plots for more.
Other removals
- Removed the previously deprecated keyword “index” from read_stata(),
StataReader
, andStataReader.read()
, use “index_col” instead (GH 17328) - Removed
StataReader.data
method, useStataReader.read()
instead (GH 9493) - Removed
pandas.plotting._matplotlib.tsplot
, use Series.plot() instead (GH 19980) pandas.tseries.converter.register
has been moved to pandas.plotting.register_matplotlib_converters() (GH 18307)- Series.plot() no longer accepts positional arguments, pass keyword arguments instead (GH 30003)
- DataFrame.hist() and Series.hist() no longer allows
figsize="default"
, specify figure size by passinig a tuple instead (GH 30003) - Floordiv of integer-dtyped array by Timedelta now raises
TypeError
(GH 21036) - TimedeltaIndex and DatetimeIndex no longer accept non-nanosecond dtype strings like “timedelta64” or “datetime64”, use “timedelta64[ns]” and “datetime64[ns]” instead (GH 24806)
- Changed the default “skipna” argument in pandas.api.types.infer_dtype() from
False
toTrue
(GH 24050) - Removed
Series.ix
andDataFrame.ix
(GH 26438) - Removed
Index.summary
(GH 18217) - Removed the previously deprecated keyword “fastpath” from the Index constructor (GH 23110)
- Removed
Series.get_value
,Series.set_value
,DataFrame.get_value
,DataFrame.set_value
(GH 17739) - Removed
Series.compound
andDataFrame.compound
(GH 26405) - Changed the default “inplace” argument in DataFrame.set_index() and Series.set_axis() from
None
toFalse
(GH 27600) - Removed
Series.cat.categorical
,Series.cat.index
,Series.cat.name
(GH 24751) - Removed the previously deprecated keyword “box” from to_datetime() and to_timedelta(); in addition these now always returns DatetimeIndex, TimedeltaIndex, Index, Series, or DataFrame (GH 24486)
- to_timedelta(), Timedelta, and TimedeltaIndex no longer allow “M”, “y”, or “Y” for the “unit” argument (GH 23264)
- Removed the previously deprecated keyword “time_rule” from (non-public)
offsets.generate_range
, which has been moved tocore.arrays._ranges.generate_range()
(GH 24157) - DataFrame.loc() or Series.loc() with listlike indexers and missing labels will no longer reindex (GH 17295)
- DataFrame.to_excel() and Series.to_excel() with non-existent columns will no longer reindex (GH 17295)
- Removed the previously deprecated keyword “join_axes” from concat(); use
reindex_like
on the result instead (GH 22318) - Removed the previously deprecated keyword “by” from DataFrame.sort_index(), use DataFrame.sort_values() instead (GH 10726)
- Removed support for nested renaming in DataFrame.aggregate(), Series.aggregate(), core.groupby.DataFrameGroupBy.aggregate(), core.groupby.SeriesGroupBy.aggregate(), core.window.rolling.Rolling.aggregate() (GH 18529)
- Passing
datetime64
data to TimedeltaIndex ortimedelta64
data toDatetimeIndex
now raisesTypeError
(GH 23539, GH 23937) - Passing
int64
values to DatetimeIndex and a timezone now interprets the values as nanosecond timestamps in UTC, not wall times in the given timezone (GH 24559) - A tuple passed to DataFrame.groupby() is now exclusively treated as a single key (GH 18314)
- Removed
Index.contains
, usekey in index
instead (GH 30103) - Addition and subtraction of
int
or integer-arrays is no longer allowed in Timestamp, DatetimeIndex, TimedeltaIndex, useobj + n * obj.freq
instead ofobj + n
(GH 22535) - Removed
Series.ptp
(GH 21614) - Removed
Series.from_array
(GH 18258) - Removed
DataFrame.from_items
(GH 18458) - Removed
DataFrame.as_matrix
,Series.as_matrix
(GH 18458) - Removed
Series.asobject
(GH 18477) - Removed
DataFrame.as_blocks
,Series.as_blocks
,DataFrame.blocks
,Series.blocks
(GH 17656) - pandas.Series.str.cat() now defaults to aligning
others
, usingjoin='left'
(GH 27611) - pandas.Series.str.cat() does not accept list-likes within list-likes anymore (GH 27611)
- Series.where() with
Categorical
dtype (or DataFrame.where() withCategorical
column) no longer allows setting new categories (GH 24114) - Removed the previously deprecated keywords “start”, “end”, and “periods” from the DatetimeIndex, TimedeltaIndex, and PeriodIndex constructors; use date_range(), timedelta_range(), and period_range() instead (GH 23919)
- Removed the previously deprecated keyword “verify_integrity” from the DatetimeIndex and TimedeltaIndex constructors (GH 23919)
- Removed the previously deprecated keyword “fastpath” from
pandas.core.internals.blocks.make_block
(GH 19265) - Removed the previously deprecated keyword “dtype” from
Block.make_block_same_class()
(GH 19434) - Removed
ExtensionArray._formatting_values
. UseExtensionArray._formatter
instead. (GH 23601) - Removed
MultiIndex.to_hierarchical
(GH 21613) - Removed
MultiIndex.labels
, use MultiIndex.codes instead (GH 23752) - Removed the previously deprecated keyword “labels” from the MultiIndex constructor, use “codes” instead (GH 23752)
- Removed
MultiIndex.set_labels
, use MultiIndex.set_codes() instead (GH 23752) - Removed the previously deprecated keyword “labels” from MultiIndex.set_codes(), MultiIndex.copy(), MultiIndex.drop(), use “codes” instead (GH 23752)
- Removed support for legacy HDF5 formats (GH 29787)
- Passing a dtype alias (e.g. ‘datetime64[ns, UTC]’) to DatetimeTZDtype is no longer allowed, use
DatetimeTZDtype.construct_from_string()
instead (GH 23990) - Removed the previously deprecated keyword “skip_footer” from read_excel(); use “skipfooter” instead (GH 18836)
- read_excel() no longer allows an integer value for the parameter
usecols
, instead pass a list of integers from 0 tousecols
inclusive (GH 23635) - Removed the previously deprecated keyword “convert_datetime64” from DataFrame.to_records() (GH 18902)
- Removed
IntervalIndex.from_intervals
in favor of the IntervalIndex constructor (GH 19263) - Changed the default “keep_tz” argument in DatetimeIndex.to_series() from
None
toTrue
(GH 23739) - Removed
api.types.is_period
andapi.types.is_datetimetz
(GH 23917) - Ability to read pickles containing Categorical instances created with pre-0.16 version of pandas has been removed (GH 27538)
- Removed
pandas.tseries.plotting.tsplot
(GH 18627) - Removed the previously deprecated keywords “reduce” and “broadcast” from DataFrame.apply() (GH 18577)
- Removed the previously deprecated
assert_raises_regex
function inpandas._testing
(GH 29174) - Removed the previously deprecated
FrozenNDArray
class inpandas.core.indexes.frozen
(GH 29335) - Removed the previously deprecated keyword “nthreads” from read_feather(), use “use_threads” instead (GH 23053)
- Removed
Index.is_lexsorted_for_tuple
(GH 29305) - Removed support for nested renaming in DataFrame.aggregate(), Series.aggregate(), core.groupby.DataFrameGroupBy.aggregate(), core.groupby.SeriesGroupBy.aggregate(), core.window.rolling.Rolling.aggregate() (GH 29608)
- Removed
Series.valid
; use Series.dropna() instead (GH 18800) - Removed
DataFrame.is_copy
,Series.is_copy
(GH 18812) - Removed
DataFrame.get_ftype_counts
,Series.get_ftype_counts
(GH 18243) - Removed
DataFrame.ftypes
,Series.ftypes
,Series.ftype
(GH 26744) - Removed
Index.get_duplicates
, useidx[idx.duplicated()].unique()
instead (GH 20239) - Removed
Series.clip_upper
,Series.clip_lower
,DataFrame.clip_upper
,DataFrame.clip_lower
(GH 24203) - Removed the ability to alter DatetimeIndex.freq,
TimedeltaIndex.freq
, or PeriodIndex.freq (GH 20772) - Removed
DatetimeIndex.offset
(GH 20730) - Removed
DatetimeIndex.asobject
,TimedeltaIndex.asobject
,PeriodIndex.asobject
, useastype(object)
instead (GH 29801) - Removed the previously deprecated keyword “order” from factorize() (GH 19751)
- Removed the previously deprecated keyword “encoding” from read_stata() and DataFrame.to_stata() (GH 21400)
- Changed the default “sort” argument in concat() from
None
toFalse
(GH 20613) - Removed the previously deprecated keyword “raise_conflict” from DataFrame.update(), use “errors” instead (GH 23585)
- Removed the previously deprecated keyword “n” from
DatetimeIndex.shift()
,TimedeltaIndex.shift()
,PeriodIndex.shift()
, use “periods” instead (GH 22458) - Removed the previously deprecated keywords “how”, “fill_method”, and “limit” from DataFrame.resample() (GH 30139)
- Passing an integer to Series.fillna() or DataFrame.fillna() with
timedelta64[ns]
dtype now raisesTypeError
(GH 24694) - Passing multiple axes to DataFrame.dropna() is no longer supported (GH 20995)
- Removed
Series.nonzero
, useto_numpy().nonzero()
instead (GH 24048) - Passing floating dtype
codes
to Categorical.from_codes() is no longer supported, passcodes.astype(np.int64)
instead (GH 21775) - Removed the previously deprecated keyword “pat” from Series.str.partition() and Series.str.rpartition(), use “sep” instead (GH 23767)
- Removed
Series.put
(GH 27106) - Removed
Series.real
,Series.imag
(GH 27106) - Removed
Series.to_dense
,DataFrame.to_dense
(GH 26684) - Removed
Index.dtype_str
, usestr(index.dtype)
instead (GH 27106) Categorical.ravel()
returns a Categorical instead of andarray
(GH 27199)- The ‘outer’ method on Numpy ufuncs, e.g.
np.subtract.outer
operating on Series objects is no longer supported, and will raiseNotImplementedError
(GH 27198) - Removed
Series.get_dtype_counts
andDataFrame.get_dtype_counts
(GH 27145) - Changed the default “fill_value” argument in
Categorical.take()
fromTrue
toFalse
(GH 20841) - Changed the default value for the
raw
argument inSeries.rolling().apply()
,DataFrame.rolling().apply()
,Series.expanding().apply()
, andDataFrame.expanding().apply()
fromNone
toFalse
(GH 20584) - Removed deprecated behavior of Series.argmin() and Series.argmax(), use Series.idxmin() and Series.idxmax() for the old behavior (GH 16955)
- Passing a tz-aware
datetime.datetime
or Timestamp into the Timestamp constructor with thetz
argument now raises aValueError
(GH 23621) - Removed
Series.base
,Index.base
,Categorical.base
,Series.flags
,Index.flags
,PeriodArray.flags
,Series.strides
,Index.strides
,Series.itemsize
,Index.itemsize
,Series.data
,Index.data
(GH 20721) - Changed Timedelta.resolution() to match the behavior of the standard library
datetime.timedelta.resolution
, for the old behavior, useTimedelta.resolution_string()
(GH 26839) - Removed
Timestamp.weekday_name
,DatetimeIndex.weekday_name
, andSeries.dt.weekday_name
(GH 18164) - Removed the previously deprecated keyword “errors” in Timestamp.tz_localize(), DatetimeIndex.tz_localize(), and Series.tz_localize() (GH 22644)
- Changed the default “ordered” argument in CategoricalDtype from
None
toFalse
(GH 26336) - Series.set_axis() and DataFrame.set_axis() now require “labels” as the first argument and “axis” as an optional named parameter (GH 30089)
- Removed
to_msgpack
,read_msgpack
,DataFrame.to_msgpack
,Series.to_msgpack
(GH 27103) - Removed
Series.compress
(GH 21930) - Removed the previously deprecated keyword “fill_value” from
Categorical.fillna()
, use “value” instead (GH 19269) - Removed the previously deprecated keyword “data” from
andrews_curves()
, use “frame” instead (GH 6956) - Removed the previously deprecated keyword “data” from
parallel_coordinates()
, use “frame” instead (GH 6956) - Removed the previously deprecated keyword “colors” from
parallel_coordinates()
, use “color” instead (GH 6956) - Removed the previously deprecated keywords “verbose” and “private_key” from read_gbq() (GH 30200)
- Calling
np.array
andnp.asarray
on tz-aware Series and DatetimeIndex will now return an object array of tz-aware Timestamp (GH 24596)
Performance improvements#
- Performance improvement in DataFrame arithmetic and comparison operations with scalars (GH 24990, GH 29853)
- Performance improvement in indexing with a non-unique IntervalIndex (GH 27489)
- Performance improvement in
MultiIndex.is_monotonic
(GH 27495) - Performance improvement in cut() when
bins
is an IntervalIndex (GH 27668) - Performance improvement when initializing a DataFrame using a
range
(GH 30171) - Performance improvement in DataFrame.corr() when
method
is"spearman"
(GH 28139) - Performance improvement in DataFrame.replace() when provided a list of values to replace (GH 28099)
- Performance improvement in DataFrame.select_dtypes() by using vectorization instead of iterating over a loop (GH 28317)
- Performance improvement in
Categorical.searchsorted()
andCategoricalIndex.searchsorted()
(GH 28795) - Performance improvement when comparing a Categorical with a scalar and the scalar is not found in the categories (GH 29750)
- Performance improvement when checking if values in a Categorical are equal, equal or larger or larger than a given scalar. The improvement is not present if checking if the Categorical is less than or less than or equal than the scalar (GH 29820)
- Performance improvement in Index.equals() and
MultiIndex.equals()
(GH 29134) - Performance improvement in infer_dtype() when
skipna
isTrue
(GH 28814)
Bug fixes#
Categorical#
- Added test to assert the
fillna()
raises the correctValueError
message when the value isn’t a value from categories (GH 13628) - Bug in
Categorical.astype()
whereNaN
values were handled incorrectly when casting to int (GH 28406) - DataFrame.reindex() with a CategoricalIndex would fail when the targets contained duplicates, and wouldn’t fail if the source contained duplicates (GH 28107)
- Bug in
Categorical.astype()
not allowing for casting to extension dtypes (GH 28668) - Bug where merge() was unable to join on categorical and extension dtype columns (GH 28668)
Categorical.searchsorted()
andCategoricalIndex.searchsorted()
now work on unordered categoricals also (GH 21667)- Added test to assert roundtripping to parquet with DataFrame.to_parquet() or read_parquet() will preserve Categorical dtypes for string types (GH 27955)
- Changed the error message in
Categorical.remove_categories()
to always show the invalid removals as a set (GH 28669) - Using date accessors on a categorical dtyped Series of datetimes was not returning an object of the same type as if one used the
str.()
/dt.()
on a Series of that type. E.g. when accessing Series.dt.tz_localize() on aCategorical with duplicate entries, the accessor was skipping duplicates (GH 27952) - Bug in DataFrame.replace() and Series.replace() that would give incorrect results on categorical data (GH 26988)
- Bug where calling
Categorical.min()
orCategorical.max()
on an empty Categorical would raise a numpy exception (GH 30227) - The following methods now also correctly output values for unobserved categories when called through
groupby(..., observed=False)
(GH 17605) * core.groupby.SeriesGroupBy.count()* core.groupby.SeriesGroupBy.size()* core.groupby.SeriesGroupBy.nunique()* core.groupby.SeriesGroupBy.nth()
Datetimelike#
- Bug in
Series.__setitem__()
incorrectly castingnp.timedelta64("NaT")
tonp.datetime64("NaT")
when inserting into a Series with datetime64 dtype (GH 27311) - Bug in Series.dt() property lookups when the underlying data is read-only (GH 27529)
- Bug in
HDFStore.__getitem__
incorrectly reading tz attribute created in Python 2 (GH 26443) - Bug in to_datetime() where passing arrays of malformed
str
with errors=”coerce” could incorrectly lead to raisingValueError
(GH 28299) - Bug in core.groupby.SeriesGroupBy.nunique() where
NaT
values were interfering with the count of unique values (GH 27951) - Bug in Timestamp subtraction when subtracting a Timestamp from a
np.datetime64
object incorrectly raisingTypeError
(GH 28286) - Addition and subtraction of integer or integer-dtype arrays with Timestamp will now raise
NullFrequencyError
instead ofValueError
(GH 28268) - Bug in Series and DataFrame with integer dtype failing to raise
TypeError
when adding or subtracting anp.datetime64
object (GH 28080) - Bug in Series.astype(), Index.astype(), and DataFrame.astype() failing to handle
NaT
when casting to an integer dtype (GH 28492) - Bug in
Week
withweekday
incorrectly raisingAttributeError
instead ofTypeError
when adding or subtracting an invalid type (GH 28530) - Bug in DataFrame arithmetic operations when operating with a Series with dtype
'timedelta64[ns]'
(GH 28049) - Bug in
core.groupby.generic.SeriesGroupBy.apply()
raisingValueError
when a column in the original DataFrame is a datetime and the column labels are not standard integers (GH 28247) - Bug in
pandas._config.localization.get_locales()
where thelocales -a
encodes the locales list as windows-1252 (GH 23638, GH 24760, GH 27368) - Bug in Series.var() failing to raise
TypeError
when called withtimedelta64[ns]
dtype (GH 28289) - Bug in DatetimeIndex.strftime() and Series.dt.strftime() where
NaT
was converted to the string'NaT'
instead ofnp.nan
(GH 29578) - Bug in masking datetime-like arrays with a boolean mask of an incorrect length not raising an
IndexError
(GH 30308) - Bug in Timestamp.resolution being a property instead of a class attribute (GH 29910)
- Bug in pandas.to_datetime() when called with
None
raisingTypeError
instead of returningNaT
(GH 30011) - Bug in pandas.to_datetime() failing for
deque
objects when usingcache=True
(the default) (GH 29403) - Bug in Series.item() with
datetime64
ortimedelta64
dtype,DatetimeIndex.item()
, andTimedeltaIndex.item()
returning an integer instead of a Timestamp or Timedelta (GH 30175) - Bug in DatetimeIndex addition when adding a non-optimized
DateOffset
incorrectly dropping timezone information (GH 30336) - Bug in DataFrame.drop() where attempting to drop non-existent values from a DatetimeIndex would yield a confusing error message (GH 30399)
- Bug in
DataFrame.append()
would remove the timezone-awareness of new data (GH 30238) - Bug in Series.cummin() and Series.cummax() with timezone-aware dtype incorrectly dropping its timezone (GH 15553)
- Bug in
DatetimeArray
,TimedeltaArray
, andPeriodArray
where inplace addition and subtraction did not actually operate inplace (GH 24115) - Bug in pandas.to_datetime() when called with
Series
storingIntegerArray
raisingTypeError
instead of returningSeries
(GH 30050) - Bug in date_range() with custom business hours as
freq
and given number ofperiods
(GH 30593) - Bug in PeriodIndex comparisons with incorrectly casting integers to Period objects, inconsistent with the Period comparison behavior (GH 30722)
- Bug in
DatetimeIndex.insert()
raising aValueError
instead of aTypeError
when trying to insert a timezone-aware Timestamp into a timezone-naive DatetimeIndex, or vice-versa (GH 30806)
Timedelta#
- Bug in subtracting a TimedeltaIndex or
TimedeltaArray
from anp.datetime64
object (GH 29558)
Timezones#
Numeric#
- Bug in DataFrame.quantile() with zero-column DataFrame incorrectly raising (GH 23925)
- DataFrame flex inequality comparisons methods (DataFrame.lt(), DataFrame.le(), DataFrame.gt(), DataFrame.ge()) with object-dtype and
complex
entries failing to raiseTypeError
like their Series counterparts (GH 28079) - Bug in DataFrame logical operations (
&
,|
,^
) not matching Series behavior by filling NA values (GH 28741) - Bug in DataFrame.interpolate() where specifying axis by name references variable before it is assigned (GH 29142)
- Bug in Series.var() not computing the right value with a nullable integer dtype series not passing through ddof argument (GH 29128)
- Improved error message when using
frac
> 1 andreplace
= False (GH 27451) - Bug in numeric indexes resulted in it being possible to instantiate an
Int64Index
,UInt64Index
, orFloat64Index
with an invalid dtype (e.g. datetime-like) (GH 29539) - Bug in
UInt64Index
precision loss while constructing from a list with values in thenp.uint64
range (GH 29526) - Bug in
NumericIndex
construction that caused indexing to fail when integers in thenp.uint64
range were used (GH 28023) - Bug in
NumericIndex
construction that causedUInt64Index
to be casted toFloat64Index
when integers in thenp.uint64
range were used to index a DataFrame (GH 28279) - Bug in Series.interpolate() when using method=`index` with an unsorted index, would previously return incorrect results. (GH 21037)
- Bug in DataFrame.round() where a DataFrame with a CategoricalIndex of IntervalIndex columns would incorrectly raise a
TypeError
(GH 30063) - Bug in Series.pct_change() and DataFrame.pct_change() when there are duplicated indices (GH 30463)
- Bug in DataFrame cumulative operations (e.g. cumsum, cummax) incorrect casting to object-dtype (GH 19296)
- Bug in diff losing the dtype for extension types (GH 30889)
- Bug in DataFrame.diff raising an
IndexError
when one of the columns was a nullable integer dtype (GH 30967)
Conversion#
Strings#
- Calling Series.str.isalnum() (and other “ismethods”) on an empty
Series
would return anobject
dtype instead ofbool
(GH 29624)
Interval#
- Bug in IntervalIndex.get_indexer() where a Categorical or CategoricalIndex
target
would incorrectly raise aTypeError
(GH 30063) - Bug in
pandas.core.dtypes.cast.infer_dtype_from_scalar
where passingpandas_dtype=True
did not infer IntervalDtype (GH 30337) - Bug in Series constructor where constructing a
Series
from alist
of Interval objects resulted inobject
dtype instead of IntervalDtype (GH 23563) - Bug in IntervalDtype where the
kind
attribute was incorrectly set asNone
instead of"O"
(GH 30568) - Bug in IntervalIndex, IntervalArray, and Series with interval data where equality comparisons were incorrect (GH 24112)
Indexing#
- Bug in assignment using a reverse slicer (GH 26939)
- Bug in DataFrame.explode() would duplicate frame in the presence of duplicates in the index (GH 28010)
- Bug in reindexing a PeriodIndex() with another type of index that contained a
Period
(GH 28323) (GH 28337) - Fix assignment of column via
.loc
with numpy non-ns datetime type (GH 27395) - Bug in
Float64Index.astype()
wherenp.inf
was not handled properly when casting to an integer dtype (GH 28475) - Index.union() could fail when the left contained duplicates (GH 28257)
- Bug when indexing with
.loc
where the index was a CategoricalIndex with non-string categories didn’t work (GH 17569, GH 30225) - Index.get_indexer_non_unique() could fail with
TypeError
in some cases, such as when searching for ints in a string index (GH 28257) - Bug in
Float64Index.get_loc()
incorrectly raisingTypeError
instead ofKeyError
(GH 29189) - Bug in DataFrame.loc() with incorrect dtype when setting Categorical value in 1-row DataFrame (GH 25495)
- MultiIndex.get_loc() can’t find missing values when input includes missing values (GH 19132)
- Bug in
Series.__setitem__()
incorrectly assigning values with boolean indexer when the length of new data matches the number ofTrue
values and new data is not aSeries
or annp.array
(GH 30567) - Bug in indexing with a PeriodIndex incorrectly accepting integers representing years, use e.g.
ser.loc["2007"]
instead ofser.loc[2007]
(GH 30763)
Missing#
MultiIndex#
- Constructor for MultiIndex verifies that the given
sortorder
is compatible with the actuallexsort_depth
ifverify_integrity
parameter isTrue
(the default) (GH 28735) - Series and MultiIndex
.drop
withMultiIndex
raise exception if labels not in given in level (GH 8594)
IO#
- read_csv() now accepts binary mode file buffers when using the Python csv engine (GH 23779)
- Bug in DataFrame.to_json() where using a Tuple as a column or index value and using
orient="columns"
ororient="index"
would produce invalid JSON (GH 20500) - Improve infinity parsing. read_csv() now interprets
Infinity
,+Infinity
,-Infinity
as floating point values (GH 10065) - Bug in DataFrame.to_csv() where values were truncated when the length of
na_rep
was shorter than the text input data. (GH 25099) - Bug in DataFrame.to_string() where values were truncated using display options instead of outputting the full content (GH 9784)
- Bug in DataFrame.to_json() where a datetime column label would not be written out in ISO format with
orient="table"
(GH 28130) - Bug in DataFrame.to_parquet() where writing to GCS would fail with
engine='fastparquet'
if the file did not already exist (GH 28326) - Bug in read_hdf() closing stores that it didn’t open when Exceptions are raised (GH 28699)
- Bug in
DataFrame.read_json()
where usingorient="index"
would not maintain the order (GH 28557) - Bug in DataFrame.to_html() where the length of the
formatters
argument was not verified (GH 28469) - Bug in
DataFrame.read_excel()
withengine='ods'
whensheet_name
argument references a non-existent sheet (GH 27676) - Bug in pandas.io.formats.style.Styler() formatting for floating values not displaying decimals correctly (GH 13257)
- Bug in DataFrame.to_html() when using
formatters=<list>
andmax_cols
together. (GH 25955) - Bug in
Styler.background_gradient()
not able to work with dtypeInt64
(GH 28869) - Bug in DataFrame.to_clipboard() which did not work reliably in ipython (GH 22707)
- Bug in read_json() where default encoding was not set to
utf-8
(GH 29565) - Bug in
PythonParser
where str and bytes were being mixed when dealing with the decimal field (GH 29650) - read_gbq() now accepts
progress_bar_type
to display progress bar while the data downloads. (GH 29857) - Bug in
pandas.io.json.json_normalize()
where a missing value in the location specified byrecord_path
would raise aTypeError
(GH 30148) - read_excel() now accepts binary data (GH 15914)
- Bug in read_csv() in which encoding handling was limited to just the string
utf-16
for the C engine (GH 24130)
Plotting#
- Bug in Series.plot() not able to plot boolean values (GH 23719)
- Bug in DataFrame.plot() not able to plot when no rows (GH 27758)
- Bug in DataFrame.plot() producing incorrect legend markers when plotting multiple series on the same axis (GH 18222)
- Bug in DataFrame.plot() when
kind='box'
and data contains datetime or timedelta data. These types are now automatically dropped (GH 22799) - Bug in DataFrame.plot.line() and DataFrame.plot.area() produce wrong xlim in x-axis (GH 27686, GH 25160, GH 24784)
- Bug where DataFrame.boxplot() would not accept a
color
parameter like DataFrame.plot.box() (GH 26214) - Bug in the
xticks
argument being ignored for DataFrame.plot.bar() (GH 14119) - set_option() now validates that the plot backend provided to
'plotting.backend'
implements the backend when the option is set, rather than when a plot is created (GH 28163) - DataFrame.plot() now allow a
backend
keyword argument to allow changing between backends in one session (GH 28619). - Bug in color validation incorrectly raising for non-color styles (GH 29122).
- Allow DataFrame.plot.scatter() to plot
objects
anddatetime
type data (GH 18755, GH 30391) - Bug in DataFrame.hist(),
xrot=0
does not work withby
and subplots (GH 30288).
GroupBy/resample/rolling#
- Bug in core.groupby.DataFrameGroupBy.apply() only showing output from a single group when function returns an Index (GH 28652)
- Bug in DataFrame.groupby() with multiple groups where an
IndexError
would be raised if any group contained all NA values (GH 20519) - Bug in Resampler.size() and Resampler.count() returning wrong dtype when used with an empty Series or DataFrame (GH 28427)
- Bug in DataFrame.rolling() not allowing for rolling over datetimes when
axis=1
(GH 28192) - Bug in DataFrame.rolling() not allowing rolling over multi-index levels (GH 15584).
- Bug in DataFrame.rolling() not allowing rolling on monotonic decreasing time indexes (GH 19248).
- Bug in DataFrame.groupby() not offering selection by column name when
axis=1
(GH 27614) - Bug in
core.groupby.DataFrameGroupby.agg()
not able to use lambda function with named aggregation (GH 27519) - Bug in DataFrame.groupby() losing column name information when grouping by a categorical column (GH 28787)
- Remove error raised due to duplicated input functions in named aggregation in DataFrame.groupby() and Series.groupby(). Previously error will be raised if the same function is applied on the same column and now it is allowed if new assigned names are different. (GH 28426)
- core.groupby.SeriesGroupBy.value_counts() will be able to handle the case even when the Grouper makes empty groups (GH 28479)
- Bug in core.window.rolling.Rolling.quantile() ignoring
interpolation
keyword argument when used within a groupby (GH 28779) - Bug in DataFrame.groupby() where
any
,all
,nunique
and transform functions would incorrectly handle duplicate column labels (GH 21668) - Bug in core.groupby.DataFrameGroupBy.agg() with timezone-aware datetime64 column incorrectly casting results to the original dtype (GH 29641)
- Bug in DataFrame.groupby() when using axis=1 and having a single level columns index (GH 30208)
- Bug in DataFrame.groupby() when using nunique on axis=1 (GH 30253)
- Bug in DataFrameGroupBy.quantile() and SeriesGroupBy.quantile() with multiple list-like q value and integer column names (GH 30289)
- Bug in DataFrameGroupBy.pct_change() and SeriesGroupBy.pct_change() causes
TypeError
whenfill_method
isNone
(GH 30463) - Bug in
Rolling.count()
andExpanding.count()
argument wheremin_periods
was ignored (GH 26996)
Reshaping#
- Bug in DataFrame.apply() that caused incorrect output with empty DataFrame (GH 28202, GH 21959)
- Bug in DataFrame.stack() not handling non-unique indexes correctly when creating MultiIndex (GH 28301)
- Bug in pivot_table() not returning correct type
float
whenmargins=True
andaggfunc='mean'
(GH 24893) - Bug merge_asof() could not use datetime.timedelta for
tolerance
kwarg (GH 28098) - Bug in merge(), did not append suffixes correctly with MultiIndex (GH 28518)
- qcut() and cut() now handle boolean input (GH 20303)
- Fix to ensure all int dtypes can be used in merge_asof() when using a tolerance value. Previously every non-int64 type would raise an erroneous
MergeError
(GH 28870). - Better error message in get_dummies() when
columns
isn’t a list-like value (GH 28383) - Bug in Index.join() that caused infinite recursion error for mismatched
MultiIndex
name orders. (GH 25760, GH 28956) - Bug Series.pct_change() where supplying an anchored frequency would throw a
ValueError
(GH 28664) - Bug where DataFrame.equals() returned True incorrectly in some cases when two DataFrames had the same columns in different orders (GH 28839)
- Bug in DataFrame.replace() that caused non-numeric replacer’s dtype not respected (GH 26632)
- Bug in melt() where supplying mixed strings and numeric values for
id_vars
orvalue_vars
would incorrectly raise aValueError
(GH 29718) - Dtypes are now preserved when transposing a
DataFrame
where each column is the same extension dtype (GH 30091) - Bug in merge_asof() merging on a tz-aware
left_index
andright_on
a tz-aware column (GH 29864) - Improved error message and docstring in cut() and qcut() when
labels=True
(GH 13318) - Bug in missing
fill_na
parameter to DataFrame.unstack() with list of levels (GH 30740)
Sparse#
- Bug in
SparseDataFrame
arithmetic operations incorrectly casting inputs to float (GH 28107) - Bug in
DataFrame.sparse
returning aSeries
when there was a column namedsparse
rather than the accessor (GH 30758) - Fixed
operator.xor()
with a boolean-dtypeSparseArray
. Now returns a sparse result, rather than object dtype (GH 31025)
ExtensionArray#
- Bug in
arrays.PandasArray
when setting a scalar string (GH 28118, GH 28150). - Bug where nullable integers could not be compared to strings (GH 28930)
- Bug where DataFrame constructor raised
ValueError
with list-like data anddtype
specified (GH 30280)
Other#
- Trying to set the
display.precision
,display.max_rows
ordisplay.max_columns
using set_option() to anything but aNone
or a positive int will raise aValueError
(GH 23348) - Using DataFrame.replace() with overlapping keys in a nested dictionary will no longer raise, now matching the behavior of a flat dictionary (GH 27660)
- DataFrame.to_csv() and Series.to_csv() now support dicts as
compression
argument with key'method'
being the compression method and others as additional compression options when the compression method is'zip'
. (GH 26023) - Bug in Series.diff() where a boolean series would incorrectly raise a
TypeError
(GH 17294) Series.append()
will no longer raise aTypeError
when passed a tuple ofSeries
(GH 28410)- Fix corrupted error message when calling
pandas.libs._json.encode()
on a 0d array (GH 18878) - Backtick quoting in DataFrame.query() and DataFrame.eval() can now also be used to use invalid identifiers like names that start with a digit, are python keywords, or are using single character operators. (GH 27017)
- Bug in
pd.core.util.hashing.hash_pandas_object
where arrays containing tuples were incorrectly treated as non-hashable (GH 28969) - Bug in
DataFrame.append()
that raisedIndexError
when appending with empty list (GH 28769) - Fix
AbstractHolidayCalendar
to return correct results for years after 2030 (now goes up to 2200) (GH 27790) - Fixed IntegerArray returning
inf
rather thanNaN
for operations dividing by0
(GH 27398) - Fixed
pow
operations for IntegerArray when the other value is0
or1
(GH 29997) - Bug in Series.count() raises if use_inf_as_na is enabled (GH 29478)
- Bug in Index where a non-hashable name could be set without raising
TypeError
(GH 29069) - Bug in DataFrame constructor when passing a 2D
ndarray
and an extension dtype (GH 12513) - Bug in DataFrame.to_csv() when supplied a series with a
dtype="string"
and ana_rep
, thena_rep
was being truncated to 2 characters. (GH 29975) - Bug where DataFrame.itertuples() would incorrectly determine whether or not namedtuples could be used for dataframes of 255 columns (GH 28282)
- Handle nested NumPy
object
arrays in testing.assert_series_equal() for ExtensionArray implementations (GH 30841) - Bug in Index constructor incorrectly allowing 2-dimensional input arrays (GH 13601, GH 27125)
Contributors#
A total of 308 people contributed patches to this release. People with a “+” by their names contributed a patch for the first time.
- Aaditya Panikath +
- Abdullah İhsan Seçer
- Abhijeet Krishnan +
- Adam J. Stewart
- Adam Klaum +
- Addison Lynch
- Aivengoe +
- Alastair James +
- Albert Villanova del Moral
- Alex Kirko +
- Alfredo Granja +
- Allen Downey
- Alp Arıbal +
- Andreas Buhr +
- Andrew Munch +
- Andy
- Angela Ambroz +
- Aniruddha Bhattacharjee +
- Ankit Dhankhar +
- Antonio Andraues Jr +
- Arda Kosar +
- Asish Mahapatra +
- Austin Hackett +
- Avi Kelman +
- AyowoleT +
- Bas Nijholt +
- Ben Thayer
- Bharat Raghunathan
- Bhavani Ravi
- Bhuvana KA +
- Big Head
- Blake Hawkins +
- Bobae Kim +
- Brett Naul
- Brian Wignall
- Bruno P. Kinoshita +
- Bryant Moscon +
- Cesar H +
- Chris Stadler
- Chris Zimmerman +
- Christopher Whelan
- Clemens Brunner
- Clemens Tolboom +
- Connor Charles +
- Daniel Hähnke +
- Daniel Saxton
- Darin Plutchok +
- Dave Hughes
- David Stansby
- DavidRosen +
- Dean +
- Deepan Das +
- Deepyaman Datta
- DorAmram +
- Dorothy Kabarozi +
- Drew Heenan +
- Eliza Mae Saret +
- Elle +
- Endre Mark Borza +
- Eric Brassell +
- Eric Wong +
- Eunseop Jeong +
- Eyden Villanueva +
- Felix Divo
- ForTimeBeing +
- Francesco Truzzi +
- Gabriel Corona +
- Gabriel Monteiro +
- Galuh Sahid +
- Georgi Baychev +
- Gina
- GiuPassarelli +
- Grigorios Giannakopoulos +
- Guilherme Leite +
- Guilherme Salomé +
- Gyeongjae Choi +
- Harshavardhan Bachina +
- Harutaka Kawamura +
- Hassan Kibirige
- Hielke Walinga
- Hubert
- Hugh Kelley +
- Ian Eaves +
- Ignacio Santolin +
- Igor Filippov +
- Irv Lustig
- Isaac Virshup +
- Ivan Bessarabov +
- JMBurley +
- Jack Bicknell +
- Jacob Buckheit +
- Jan Koch
- Jan Pipek +
- Jan Škoda +
- Jan-Philip Gehrcke
- Jasper J.F. van den Bosch +
- Javad +
- Jeff Reback
- Jeremy Schendel
- Jeroen Kant +
- Jesse Pardue +
- Jethro Cao +
- Jiang Yue
- Jiaxiang +
- Jihyung Moon +
- Jimmy Callin
- Jinyang Zhou +
- Joao Victor Martinelli +
- Joaq Almirante +
- John G Evans +
- John Ward +
- Jonathan Larkin +
- Joris Van den Bossche
- Josh Dimarsky +
- Joshua Smith +
- Josiah Baker +
- Julia Signell +
- Jung Dong Ho +
- Justin Cole +
- Justin Zheng
- Kaiqi Dong
- Karthigeyan +
- Katherine Younglove +
- Katrin Leinweber
- Kee Chong Tan +
- Keith Kraus +
- Kevin Nguyen +
- Kevin Sheppard
- Kisekka David +
- Koushik +
- Kyle Boone +
- Kyle McCahill +
- Laura Collard, PhD +
- LiuSeeker +
- Louis Huynh +
- Lucas Scarlato Astur +
- Luiz Gustavo +
- Luke +
- Luke Shepard +
- MKhalusova +
- Mabel Villalba
- Maciej J +
- Mak Sze Chun
- Manu NALEPA +
- Marc
- Marc Garcia
- Marco Gorelli +
- Marco Neumann +
- Martin Winkel +
- Martina G. Vilas +
- Mateusz +
- Matthew Roeschke
- Matthew Tan +
- Max Bolingbroke
- Max Chen +
- MeeseeksMachine
- Miguel +
- MinGyo Jung +
- Mohamed Amine ZGHAL +
- Mohit Anand +
- MomIsBestFriend +
- Naomi Bonnin +
- Nathan Abel +
- Nico Cernek +
- Nigel Markey +
- Noritada Kobayashi +
- Oktay Sabak +
- Oliver Hofkens +
- Oluokun Adedayo +
- Osman +
- Oğuzhan Öğreden +
- Pandas Development Team +
- Patrik Hlobil +
- Paul Lee +
- Paul Siegel +
- Petr Baev +
- Pietro Battiston
- Prakhar Pandey +
- Puneeth K +
- Raghav +
- Rajat +
- Rajhans Jadhao +
- Rajiv Bharadwaj +
- Rik-de-Kort +
- Roei.r
- Rohit Sanjay +
- Ronan Lamy +
- Roshni +
- Roymprog +
- Rushabh Vasani +
- Ryan Grout +
- Ryan Nazareth
- Samesh Lakhotia +
- Samuel Sinayoko
- Samyak Jain +
- Sarah Donehower +
- Sarah Masud +
- Saul Shanabrook +
- Scott Cole +
- SdgJlbl +
- Seb +
- Sergei Ivko +
- Shadi Akiki
- Shorokhov Sergey
- Siddhesh Poyarekar +
- Sidharthan Nair +
- Simon Gibbons
- Simon Hawkins
- Simon-Martin Schröder +
- Sofiane Mahiou +
- Sourav kumar +
- Souvik Mandal +
- Soyoun Kim +
- Sparkle Russell-Puleri +
- Srinivas Reddy Thatiparthy (శ్రీనివాస్ రెడ్డి తాటిపర్తి)
- Stuart Berg +
- Sumanau Sareen
- Szymon Bednarek +
- Tambe Tabitha Achere +
- Tan Tran
- Tang Heyi +
- Tanmay Daripa +
- Tanya Jain
- Terji Petersen
- Thomas Li +
- Tirth Jain +
- Tola A +
- Tom Augspurger
- Tommy Lynch +
- Tomoyuki Suzuki +
- Tony Lorenzo
- Unprocessable +
- Uwe L. Korn
- Vaibhav Vishal
- Victoria Zdanovskaya +
- Vijayant +
- Vishwak Srinivasan +
- WANG Aiyong
- Wenhuan
- Wes McKinney
- Will Ayd
- Will Holmgren
- William Ayd
- William Blan +
- Wouter Overmeire
- Wuraola Oyewusi +
- YaOzI +
- Yash Shukla +
- Yu Wang +
- Yusei Tahara +
- alexander135 +
- alimcmaster1
- avelineg +
- bganglia +
- bolkedebruin
- bravech +
- chinhwee +
- cruzzoe +
- dalgarno +
- daniellebrown +
- danielplawrence
- est271 +
- francisco souza +
- ganevgv +
- garanews +
- gfyoung
- h-vetinari
- hasnain2808 +
- ianzur +
- jalbritt +
- jbrockmendel
- jeschwar +
- jlamborn324 +
- joy-rosie +
- kernc
- killerontherun1
- krey +
- lexy-lixinyu +
- lucyleeow +
- lukasbk +
- maheshbapatu +
- mck619 +
- nathalier
- naveenkaushik2504 +
- nlepleux +
- nrebena
- ohad83 +
- pilkibun
- pqzx +
- proost +
- pv8493013j +
- qudade +
- rhstanton +
- rmunjal29 +
- sangarshanan +
- sardonick +
- saskakarsi +
- shaido987 +
- ssikdar1
- steveayers124 +
- tadashigaki +
- timcera +
- tlaytongoogle +
- tobycheese
- tonywu1999 +
- tsvikas +
- yogendrasoni +
- zys5945 +