Canonical ensemble (original) (raw)
통계 물리학에서 바른틀 앙상블(canonical ensemble) 또는 정준 앙상블(正準-)은 온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 고립계로 이루어진 앙상블, 즉 확률 분포를 일컫는다. 입자 수 N, 부피 V, 온도 T의 약자를 따서 NVT 앙상블이라고도 한다. 온도를 고정시키기 위해서 각각의 계는 커다란 열원(heat reservoir)안에 들어있는 것으로 생각한다. 어떤 미시계 가 에너지 를 가지고 있을 확률 은 볼츠만 분포를 따른다.. 여기에서 k는 볼츠만 상수이다.
Property | Value |
---|---|
dbo:abstract | Στη στατιστική μηχανική, η κανονική κατανομή (αγγλικά: canonical ensemble) είναι μια ιδεατή περίπτωση στατιστικής κατανομής που περιγράφει τις θερμοδυναμικές ιδιότητες ενός συστήματος που βρίσκεται σε θερμική ισορροπία και αλληλεπιδρά με λουτρό θερμότητας (ή θερμικό ρεζερβουάρ). Η διαφορά της μικροκανονικής από την κανονική κατανομή βρίσκεται στο γεγονός ότι η δεύτερη επιτρέπει την ανταλλαγή ενέργειας με το περιβάλλον, με αποτέλεσμα η ενέργεια του συστήματος (σε θερμική ισορροπία) να μην είναι απόλυτα καθορισμένη (να υπόκειται, δηλαδή, σε στατιστικές διακυμάνσεις). Πολλές φορές η κανονική κατανομή αναφέρεται και ως κατανομή NVT, καθώς ο αριθμός των σωματιδίων (Ν), ο όγκος (V) και η θερμοκρασία (Τ) τέτοιων συστημάτων είναι δεδομένες ποσότητες. (el) Das kanonische Ensemble (auch kanonische Gesamtheit oder NVT-Ensemble) ist in der statistischen Physik definiert als die Menge aller gleichartigen Systeme mit gleicher Teilchenzahl in einem gleich großen Volumen , die mit einem Reservoir Energie austauschen können und mit diesem zusammen ein Gesamtsystem im Zustand des thermischen Gleichgewichts mit einer Temperatur bilden. Das betrachtete System kann aus einem oder mehreren Teilchen bestehen oder auch ein thermodynamisches Vielteilchensystem sein. Durch Wechselwirkungen mit dem Wärmebad kann sich die Energie des Systems im Rahmen von statistischen Fluktuationen verändern. Das Reservoir ist ein Wärmebad, d. h. es hat eine vorgegebene Temperatur und ist so viel größer als das betrachtete System, dass es durch die Wechselwirkungen mit diesem nicht nennenswert beeinflusst wird. Jedes der im Ensemble zusammengefassten gleichartigen Systeme besetzt je einen der vielen Mikrozustände, in denen die Teilchen im Volumen mit dem Wärmebad zusammen ein Gesamtsystem im Gleichgewichtszustand bei der gegebenen Temperatur realisieren. Zusammen genommen bilden diese Mikrozustände den kanonischen Zustand, zu dem sie je nach der Häufigkeit beitragen, mit der sie im thermischen Gleichgewicht auftreten. Diese Häufigkeit ist durch den Boltzmann-Faktor gegeben. Klassisch wird der kanonische Zustand durch die Verteilung der Mikrozustände im Phasenraum des Systems beschrieben, also durch eine Dichtefunktion, die von allen unabhängigen Variablen aller Teile oder Teilchen des betrachteten Systems abhängt. Die quantenmechanische Beschreibung erfolgt mit dem Dichteoperator . Besteht das System aus vielen Teilchen, dann ist es wegen des thermischen Kontakts zum Wärmebad ein thermodynamisches System im thermischen Gleichgewicht bei der Temperatur des Wärmebads. Unter den im kanonischen Ensemble versammelten Kopien des Systems sind dann alle Mikrozustände vertreten, in denen die Teilchen denselben durch festgelegten Makrozustand realisieren. Seine innere Energie ist dabei keine feststehende Größe, sondern durch den Erwartungswert der Energie des Systems gegeben: . Ebenso lassen sich alle makroskopischen thermodynamischen Größen als Erwartungswerte über das Ensemble berechnen, zusätzlich aber auch die Größe ihrer statistischen Schwankungen. Als Gleichgewichtszustand hat der kanonische Zustand die höchste Entropie , die mit den vorgegebenen Parametern verträglich ist. (de) In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The principal thermodynamic variable of the canonical ensemble, determining the probability distribution of states, is the absolute temperature (symbol: T). The ensemble typically also depends on mechanical variables such as the number of particles in the system (symbol: N) and the system's volume (symbol: V), each of which influence the nature of the system's internal states. An ensemble with these three parameters is sometimes called the NVT ensemble. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. The number F is the free energy (specifically, the Helmholtz free energy) and is a constant for the ensemble. However, the probabilities and F will vary if different N, V, T are selected. The free energy F serves two roles: first, it provides a normalization factor for the probability distribution (the probabilities, over the complete set of microstates, must add up to one); second, many important ensemble averages can be directly calculated from the function F(N, V, T). An alternative but equivalent formulation for the same concept writes the probability as using the canonical partition function rather than the free energy. The equations below (in terms of free energy) may be restated in terms of the canonical partition function by simple mathematical manipulations. Historically, the canonical ensemble was first described by Boltzmann (who called it a holode) in 1884 in a relatively unknown paper. It was later reformulated and extensively investigated by Gibbs in 1902. (en) La colectividad canónica (también llamada colectivo canónico o ensamble canónico) es el formalismo de la física estadística que permite describir los estados de un sistema macroscópico con un número de partículas, volumen y temperatura determinados. Fuera de la física propiamente dicha, el formalismo del colectivo canónico ha sido usado para predecir teóricamente la distribución de la renta, por ejemplo, la observación de Pareto de que las rentas altas se distribuyen de acuerdo con una ley potencial inversa, puede deducirse del formalismo canónico. La evidencia indica además, que las rentas altas de diversos lugares de Estados Unidos se hallan en equilibrio termodinámico. (es) En physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée. Le couplage entre le système étudié et le réservoir est considéré comme faible, c'est-à-dire que l'état du réservoir n'est pas modifié quels que soient les échanges d'énergie entre lui et le système. Un exemple d'une telle situation peut être donné par une bouteille d'eau fermée et plongée dans une piscine : cette dernière constitue le réservoir. Il est clair que même si la bouteille est initialement à une température beaucoup plus basse, ou plus élevée, que celle de la piscine, elle n'influencera pas de façon mesurable la température de la piscine. La notion de réservoir est relative, ainsi une tasse de thé chaud pourra être approximativement considérée comme un réservoir pour une tranche de citron plongée dedans mais certainement pas pour toute la pièce dans laquelle elle se trouve, qui pourra à l'inverse être considérée comme le réservoir vis-à-vis du système constitué par la tasse de thé (et la tranche de citron). La condition d'équilibre thermique entre le système étudié et le réservoir est réalisée lorsqu'ils sont à la même température. Plus précisément, le réservoir, beaucoup plus gros que le système considéré, impose sa température à ce dernier : c'est pourquoi il est souvent appelé thermostat. L'ensemble canonique est l'ensemble des « copies virtuelles » du même système dans le même état d'équilibre avec le thermostat, donc à la même température. Contrairement au cas de l'ensemble microcanonique, l'énergie du système étudié est alors amenée à fluctuer d’une « copie » du système à une autre de l'ensemble. Toutefois, et contrairement à la situation microcanonique, les différents micro-états d'énergie du système étudié ne possèdent pas tous la même probabilité, du fait de l'interaction avec le réservoir. Il est possible de déterminer la forme générale de la distribution de probabilité des micro-états d'énergie accessibles du système, appelée distribution canonique. (fr) 통계 물리학에서 바른틀 앙상블(canonical ensemble) 또는 정준 앙상블(正準-)은 온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 고립계로 이루어진 앙상블, 즉 확률 분포를 일컫는다. 입자 수 N, 부피 V, 온도 T의 약자를 따서 NVT 앙상블이라고도 한다. 온도를 고정시키기 위해서 각각의 계는 커다란 열원(heat reservoir)안에 들어있는 것으로 생각한다. 어떤 미시계 가 에너지 를 가지고 있을 확률 은 볼츠만 분포를 따른다.. 여기에서 k는 볼츠만 상수이다. (ko) In meccanica statistica, l'insieme canonico è un insieme statistico che rappresenta una misura di probabilità degli stati microscopici del sistema. Si tratta di un sistema chiuso in equilibrio termico con una grande sorgente di calore, detta anche bagno di calore o termostato. Talvolta lo si indica come insieme : il numero di particelle , il volume , e la temperatura sono costanti del sistema.La funzione di distribuzione per gli stati di un sistema è data dalla distribuzione di Boltzmann. Una generalizzazione di questo è l'insieme gran canonico, in cui i sistemi si dividono le particelle come pure l'energia; al contrario, nell'insieme microcanonico l'energia di ciascun sistema individuale è fissata. In alcune derivazioni, il bagno di calore si considera comprendente un gran numero di copie del sistema originale, vagamente accoppiate all'originale e tra di loro, così da dividere la stessa energia totale - questo rende il loro combinarsi descrivibile dalle statistiche di un insieme microcanonico. (it) 正準集団(せいじゅんしゅうだん、英語: canonical ensemble)とは、統計力学において、との間でエネルギーを自由にやり取り出来る閉鎖系を無数に集めた統計集団である。英語のカタカナ転写でカノニカルアンサンブルと呼ばれることも多い。 正準集団は等温条件にある熱力学系を表現する統計集団であり、外界の温度をパラメータとして特徴付けられる。 正準分布は、小正準分布、大正準分布とは体積が十分に大きい極限(すなわちエネルギーや粒子の出入りが無視できる極限)において熱力学的に等価である。 (ja) O conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física. Para um sistema em equilíbrio assumindo valores discretos de energia, com temperatura, número de partículas e volume fixos por reservatórios, a probabilidade de encontrá-lo num micro-estado particular é dada por: sendo a energia do microestado e a função de partição do sistema, definida por Fora da física, o formalismo canónico é amplamente utilizado, sendo aplicado, por exemplo, para prever teoricamente a distribuição da rendas da observação de Pareto de que as rendas altas se distribuem de acordo com uma lei potencial inversa. A evidência indica que as rendas altas de diversos lugares dos Estados Unidos se encontram em equilíbrio termodinâmico. (pt) Zespół kanoniczny – zespół stanów pewnego układu kontaktującego się termicznie ze zbiornikiem o ustalonej temperaturze. Prawdopodobieństwo, że układ ten znajdzie się w określonym stanie o energii Ei jest dane rozkładem kanonicznym gdzie k – stała Boltzmanna,T – temperatura zbiornika,Z – suma statystyczna. Wzór na sumę statystyczną wynika z warunku unormowania rozkładu po całym zespole kanonicznym do jedności gdzie: N – liczba możliwych stanów układu. Średnią wartość pewnego parametru θ tego układu można wyznaczyć ze wzoru czyli (pl) En kanonisk ensemble är inom statistisk mekanik en , alltså en uppsättning identiskt preparerade system (till exempel atomer eller molekyler), som alla är i energijämvikt med ett externt . Den totala energin är fördelad mellan de olika tillstånden enligt tillståndssumman. Den kanoniska ensemblen är en generalisering av den , där varje enskilt system har fix energi, och ett specialfall av storkanonisk ensemble, där systemen även kan utbyta partiklar. I vissa härledningar anser man värmebadet bestå av ett stort antal kopior av själva systemet, som är löst kopplade inbördes och till systemet så att de på så sätt har samma totala energi. Detta gör att systemet och värmebadet tillsammans kan beskrivas som en mikrokanonisk ensemble. Den fundamentala storheten för en kanonisk ensemble är tillståndssumman. Med denna kan man lätt ta sig från den kanoniska ensemblen till en termodynamisk beskrivning av samma system. (sv) Канони́ческий анса́мбль — статистический ансамбль, отвечающий физической системе, которая обменивается энергией с окружающей средой (термостатом), находясь с ней в тепловом равновесии, но не обменивается веществом, поскольку отделена от термостата непроницаемой для частиц перегородкой. Параметрами сокращенного описания такой системы являются число частиц и средняя энергия . (ru) Канонічний ансамбль - статистичний ансамбль, який описує закриту термодинамічну систему, яка може обмінюватися енергією, але не частинками із середовищем. На відміну від мікроканонічного ансамблю до канонічного ансамблю входять не лише різні мікроскопічні стани, але й різні макроскопічні стани (різна енергія). (uk) 正则系综 (canonical ensemble)是统计力学中系综的一种。它代表了与恒温热库接触而处于热平衡的系统所有可能状态的集合。由于系统可以与热库交换能量,系统可能的微观状态可以具有不同的能量。 正则系综的宏观性质由系统的三个参量决定:热力学温度,粒子数和体积。给定这三个宏观量的系综也被称为系综。 正则系综中,系统每个微观状态出现的概率为: 其中是该微观状态的总能量,是玻尔兹曼常数。 表示体系的自由能,并且在正则系综中为常量。然而对于给定的参数,,,自由能及其对应的概率是可以改变的。因此,自由能有两个作用:第一,它为概率分布提供了归一化因子;第二,系综中许多重要的宏观量可以直接从函数F(N, V, T)中推导出来。 明确了上述概念后,我们可以等价地把概率表述为: 其中为正则配分函数: 。 在下文中,我们可以看到正则配分函数可以重新表述为对各微观状态权重的求和。 从历史上看,玻尔兹曼于1884年首次在论文中描述了正则系综。后来,吉布斯在1902年对它进行了重新阐述和广泛的研究。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Ensemble_quantum_1DOF_all_states.png?width=300 |
dbo:wikiPageID | 1137672 (xsd:integer) |
dbo:wikiPageLength | 23584 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1119082880 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Canonical_coordinates dbr:Schrödinger_equation dbr:Boltzmann_constant dbr:Bra–ket_notation dbr:Josiah_Willard_Gibbs dbr:Variance dbr:Matrix_diagonalization dbr:Matrix_exponential dbr:Chemical_potential dbr:Entropy dbr:Grand_canonical_ensemble dbr:Ludwig_Boltzmann dbr:Statistical_ensemble_(mathematical_physics) dbr:Density_matrix dbr:Fundamental_thermodynamic_relation dbr:Hamiltonian_(quantum_mechanics) dbr:Helmholtz_free_energy dbr:Gibbs_entropy dbr:Phase_space dbr:Stationary_state dbr:Microstate_(statistical_mechanics) dbr:Trace_(linear_algebra) dbr:Heat_bath dbr:Exact_differential dbr:First_law_of_thermodynamics dbr:Partition_function_(statistical_mechanics) dbr:Ising_model dbr:Thermal_fluctuations dbr:Statistical_mechanics dbr:Lars_Onsager dbr:Phase_transition dbr:Boltzmann_distribution dbr:Planck's_law dbr:Square-lattice_Ising_model dbr:Ferromagnetism dbr:Maxwell_speed_distribution dbr:Microcanonical_ensemble dbc:Statistical_ensembles dbr:Maxwell–Boltzmann_statistics dbr:Self-assembled_monolayer dbr:Thermal_equilibrium dbr:Polymer_physics dbr:Statistical_physics dbr:Thermodynamic_limit dbr:Macroscopic_limit dbr:Joint_probability_density_function dbr:Absolute_temperature |
dbp:align | right (en) |
dbp:caption | Plot of all possible states of this system. The available stationary states displayed as horizontal bars of varying darkness according to . (en) Plot of all possible states of this system. The available physical states are evenly distributed in phase space, but with an uneven distribution in energy; the side-plot displays . (en) A canonical ensemble for this system, for the temperature shown. The states are weighted exponentially in energy. (en) |
dbp:direction | horizontal (en) |
dbp:footer | Each panel shows phase space and energy-position space . The particle's Hamiltonian is , with the potential shown as a red curve. The side plot shows the distribution of states in energy. (en) |
dbp:header | Example of canonical ensemble for a quantum system consisting of one particle in a potential well. (en) Example of canonical ensemble for a classical system consisting of one particle in a potential well. (en) |
dbp:image | Ensemble classical 1DOF all states.png (en) Ensemble classical 1DOF canonical.png (en) Ensemble quantum 1DOF all states.png (en) Ensemble quantum 1DOF canonical.png (en) |
dbp:width | 220 (xsd:integer) |
dbp:wikiPageUsesTemplate | dbt:Statistical_mechanics_topics dbt:! dbt:= dbt:Citation_needed dbt:Details dbt:Main dbt:Math dbt:Multiple_image dbt:Mvar dbt:Reflist dbt:Short_description dbt:Small dbt:Unreferenced_section dbt:Use_American_English dbt:Use_mdy_dates dbt:Unordered_list dbt:Statistical_mechanics |
dct:subject | dbc:Statistical_ensembles |
rdf:type | yago:WikicatStatisticalEnsembles yago:Abstraction100002137 yago:Ensemble108188235 yago:Group100031264 yago:MusicalOrganization108246613 yago:Organization108008335 yago:YagoLegalActor yago:YagoLegalActorGeo yago:YagoPermanentlyLocatedEntity yago:SocialGroup107950920 |
rdfs:comment | 통계 물리학에서 바른틀 앙상블(canonical ensemble) 또는 정준 앙상블(正準-)은 온도와 계의 부피, 계 내부에 있는 입자의 수가 고정된 고립계로 이루어진 앙상블, 즉 확률 분포를 일컫는다. 입자 수 N, 부피 V, 온도 T의 약자를 따서 NVT 앙상블이라고도 한다. 온도를 고정시키기 위해서 각각의 계는 커다란 열원(heat reservoir)안에 들어있는 것으로 생각한다. 어떤 미시계 가 에너지 를 가지고 있을 확률 은 볼츠만 분포를 따른다.. 여기에서 k는 볼츠만 상수이다. (ko) 正準集団(せいじゅんしゅうだん、英語: canonical ensemble)とは、統計力学において、との間でエネルギーを自由にやり取り出来る閉鎖系を無数に集めた統計集団である。英語のカタカナ転写でカノニカルアンサンブルと呼ばれることも多い。 正準集団は等温条件にある熱力学系を表現する統計集団であり、外界の温度をパラメータとして特徴付けられる。 正準分布は、小正準分布、大正準分布とは体積が十分に大きい極限(すなわちエネルギーや粒子の出入りが無視できる極限)において熱力学的に等価である。 (ja) Zespół kanoniczny – zespół stanów pewnego układu kontaktującego się termicznie ze zbiornikiem o ustalonej temperaturze. Prawdopodobieństwo, że układ ten znajdzie się w określonym stanie o energii Ei jest dane rozkładem kanonicznym gdzie k – stała Boltzmanna,T – temperatura zbiornika,Z – suma statystyczna. Wzór na sumę statystyczną wynika z warunku unormowania rozkładu po całym zespole kanonicznym do jedności gdzie: N – liczba możliwych stanów układu. Średnią wartość pewnego parametru θ tego układu można wyznaczyć ze wzoru czyli (pl) Канони́ческий анса́мбль — статистический ансамбль, отвечающий физической системе, которая обменивается энергией с окружающей средой (термостатом), находясь с ней в тепловом равновесии, но не обменивается веществом, поскольку отделена от термостата непроницаемой для частиц перегородкой. Параметрами сокращенного описания такой системы являются число частиц и средняя энергия . (ru) Канонічний ансамбль - статистичний ансамбль, який описує закриту термодинамічну систему, яка може обмінюватися енергією, але не частинками із середовищем. На відміну від мікроканонічного ансамблю до канонічного ансамблю входять не лише різні мікроскопічні стани, але й різні макроскопічні стани (різна енергія). (uk) 正则系综 (canonical ensemble)是统计力学中系综的一种。它代表了与恒温热库接触而处于热平衡的系统所有可能状态的集合。由于系统可以与热库交换能量,系统可能的微观状态可以具有不同的能量。 正则系综的宏观性质由系统的三个参量决定:热力学温度,粒子数和体积。给定这三个宏观量的系综也被称为系综。 正则系综中,系统每个微观状态出现的概率为: 其中是该微观状态的总能量,是玻尔兹曼常数。 表示体系的自由能,并且在正则系综中为常量。然而对于给定的参数,,,自由能及其对应的概率是可以改变的。因此,自由能有两个作用:第一,它为概率分布提供了归一化因子;第二,系综中许多重要的宏观量可以直接从函数F(N, V, T)中推导出来。 明确了上述概念后,我们可以等价地把概率表述为: 其中为正则配分函数: 。 在下文中,我们可以看到正则配分函数可以重新表述为对各微观状态权重的求和。 从历史上看,玻尔兹曼于1884年首次在论文中描述了正则系综。后来,吉布斯在1902年对它进行了重新阐述和广泛的研究。 (zh) Das kanonische Ensemble (auch kanonische Gesamtheit oder NVT-Ensemble) ist in der statistischen Physik definiert als die Menge aller gleichartigen Systeme mit gleicher Teilchenzahl in einem gleich großen Volumen , die mit einem Reservoir Energie austauschen können und mit diesem zusammen ein Gesamtsystem im Zustand des thermischen Gleichgewichts mit einer Temperatur bilden. Das betrachtete System kann aus einem oder mehreren Teilchen bestehen oder auch ein thermodynamisches Vielteilchensystem sein. Durch Wechselwirkungen mit dem Wärmebad kann sich die Energie des Systems im Rahmen von statistischen Fluktuationen verändern. Das Reservoir ist ein Wärmebad, d. h. es hat eine vorgegebene Temperatur und ist so viel größer als das betrachtete System, dass es durch die Wechselwirkungen mit die (de) Στη στατιστική μηχανική, η κανονική κατανομή (αγγλικά: canonical ensemble) είναι μια ιδεατή περίπτωση στατιστικής κατανομής που περιγράφει τις θερμοδυναμικές ιδιότητες ενός συστήματος που βρίσκεται σε θερμική ισορροπία και αλληλεπιδρά με λουτρό θερμότητας (ή θερμικό ρεζερβουάρ). Η διαφορά της μικροκανονικής από την κανονική κατανομή βρίσκεται στο γεγονός ότι η δεύτερη επιτρέπει την ανταλλαγή ενέργειας με το περιβάλλον, με αποτέλεσμα η ενέργεια του συστήματος (σε θερμική ισορροπία) να μην είναι απόλυτα καθορισμένη (να υπόκειται, δηλαδή, σε στατιστικές διακυμάνσεις). (el) In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the heat bath, so that the states of the system will differ in total energy. The canonical ensemble assigns a probability P to each distinct microstate given by the following exponential: where E is the total energy of the microstate, and k is the Boltzmann constant. An alternative but equivalent formulation for the same concept writes the probability as (en) La colectividad canónica (también llamada colectivo canónico o ensamble canónico) es el formalismo de la física estadística que permite describir los estados de un sistema macroscópico con un número de partículas, volumen y temperatura determinados. (es) En physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée. Le couplage entre le système étudié et le réservoir est considéré comme faible, c'est-à-dire que l'état du réservoir n'est pas modifié quels que soient les échanges d'énergie entre lui et le système. (fr) In meccanica statistica, l'insieme canonico è un insieme statistico che rappresenta una misura di probabilità degli stati microscopici del sistema. Si tratta di un sistema chiuso in equilibrio termico con una grande sorgente di calore, detta anche bagno di calore o termostato. Talvolta lo si indica come insieme : il numero di particelle , il volume , e la temperatura sono costanti del sistema.La funzione di distribuzione per gli stati di un sistema è data dalla distribuzione di Boltzmann. Una generalizzazione di questo è l'insieme gran canonico, in cui i sistemi si dividono le particelle come pure l'energia; al contrario, nell'insieme microcanonico l'energia di ciascun sistema individuale è fissata. (it) O conjunto canónico (português europeu) ou conjunto canônico (português brasileiro) ou ensemble canónico (português europeu) ou ensemble canônico (português brasileiro) em física estatística é um ensemble estatístico que modeliza um sistema físico em contato com um reservatório térmico de temperatura fixa, supondo que o volume e o número de partículas do sistema também são fixos. O ensemble canônico descreve tipicamente um sistema em contato com um reservatório térmico através de uma parede diatérmica, fixa e impermeável, mas sua aplicação transcende os limites da física. (pt) En kanonisk ensemble är inom statistisk mekanik en , alltså en uppsättning identiskt preparerade system (till exempel atomer eller molekyler), som alla är i energijämvikt med ett externt . Den totala energin är fördelad mellan de olika tillstånden enligt tillståndssumman. Den kanoniska ensemblen är en generalisering av den , där varje enskilt system har fix energi, och ett specialfall av storkanonisk ensemble, där systemen även kan utbyta partiklar. (sv) |
rdfs:label | Kanonisches Ensemble (de) Κανονική κατανομή (στατιστική μηχανική) (el) Colectividad canónica (es) Canonical ensemble (en) Insieme canonico (it) Ensemble canonique (fr) 正準集団 (ja) 바른틀 앙상블 (ko) Zespół kanoniczny (pl) Conjunto canónico (pt) Канонический ансамбль (ru) Kanonisk ensemble (sv) Канонічний ансамбль (фізика) (uk) 正则系综 (zh) |
owl:sameAs | freebase:Canonical ensemble yago-res:Canonical ensemble wikidata:Canonical ensemble dbpedia-de:Canonical ensemble dbpedia-el:Canonical ensemble dbpedia-es:Canonical ensemble dbpedia-fr:Canonical ensemble dbpedia-it:Canonical ensemble dbpedia-ja:Canonical ensemble dbpedia-ko:Canonical ensemble dbpedia-no:Canonical ensemble dbpedia-pl:Canonical ensemble dbpedia-pt:Canonical ensemble dbpedia-ru:Canonical ensemble dbpedia-sr:Canonical ensemble dbpedia-sv:Canonical ensemble dbpedia-uk:Canonical ensemble dbpedia-vi:Canonical ensemble dbpedia-zh:Canonical ensemble https://global.dbpedia.org/id/9bMW |
prov:wasDerivedFrom | wikipedia-en:Canonical_ensemble?oldid=1119082880&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Ensemble_classical_1DOF_all_states.png wiki-commons:Special:FilePath/Ensemble_classical_1DOF_canonical.png wiki-commons:Special:FilePath/Ensemble_quantum_1DOF_all_states.png wiki-commons:Special:FilePath/Ensemble_quantum_1DOF_canonical.png |
foaf:isPrimaryTopicOf | wikipedia-en:Canonical_ensemble |
is dbo:knownFor of | dbr:Ludwig_Boltzmann |
is dbo:wikiPageRedirects of | dbr:Canonical_Ensemble dbr:Canonical_Distributions dbr:Canonical_distribution dbr:Canonical_distributions dbr:Canonical_probability_distribution dbr:Gibbs_Ensemble dbr:Gibbs_canonical_ensemble dbr:Gibbs_ensemble dbr:NVT_ensemble |
is dbo:wikiPageWikiLink of | dbr:Qbox dbr:Energy_drift dbr:Entropic_force dbr:Entropy_(statistical_thermodynamics) dbr:Entropy_in_thermodynamics_and_information_theory dbr:NVT dbr:Metastate dbr:Bose–Einstein_statistics dbr:Josiah_Willard_Gibbs dbr:Path_integral_formulation dbr:Characteristic_state_function dbr:Canonical_Ensemble dbr:Canonical_model_(disambiguation) dbr:Depletion_force dbr:Dynamical_billiards dbr:Index_of_physics_articles_(C) dbr:Intermolecular_force dbr:Nosé–Hoover_thermostat dbr:Maxwell–Boltzmann_distribution dbr:Measure_(mathematics) dbr:Gas dbr:Statistical_manifold dbr:Ensemble_(mathematical_physics) dbr:Entropy dbr:Entropy_of_network_ensembles dbr:Equipartition_theorem dbr:Gibbs_measure dbr:Grand_canonical_ensemble dbr:Concentration_of_measure dbr:Correlation_function_(statistical_mechanics) dbr:Crooks_fluctuation_theorem dbr:Thermodynamic_free_energy dbr:Ergodicity dbr:Bennett_acceptance_ratio dbr:Berendsen_thermostat dbr:Ludwig_Boltzmann dbr:Density_matrix dbr:Helmholtz_free_energy dbr:Partition_function_(mathematics) dbr:Thermodynamic_integration dbr:Maximum-entropy_random_graph_model dbr:Microstate_(statistical_mechanics) dbr:Tomaž_Prosen dbr:Langevin_dynamics dbr:Langmuir_adsorption_model dbr:Translational_partition_function dbr:Fermi_level dbr:Fluctuation-dissipation_theorem dbr:Partition_function_(statistical_mechanics) dbr:Fluctuation_theorem dbr:Isothermal–isobaric_ensemble dbr:KT_(energy) dbr:Lee–Yang_theory dbr:Molecular_dynamics dbr:Potts_model dbr:Temperature dbr:Soft_configuration_model dbr:Statistical_mechanics dbr:Boltzmann_distribution dbr:Bose_gas dbr:Fermi_gas dbr:Fermi–Dirac_statistics dbr:Microcanonical_ensemble dbr:Negative_temperature dbr:Canonical dbr:Radial_distribution_function dbr:Second_law_of_thermodynamics dbr:Thermodynamic_beta dbr:Maxwell–Boltzmann_statistics dbr:Schottky_anomaly dbr:Universality_(dynamical_systems) dbr:Network_entropy dbr:Multicanonical_ensemble dbr:Thermodynamic_limit dbr:Thermal_quantum_field_theory dbr:Canonical_Distributions dbr:Canonical_distribution dbr:Canonical_distributions dbr:Canonical_probability_distribution dbr:Gibbs_Ensemble dbr:Gibbs_canonical_ensemble dbr:Gibbs_ensemble dbr:NVT_ensemble |
is foaf:primaryTopic of | wikipedia-en:Canonical_ensemble |